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Abstract Logging is widely used in modern software development to record
run-time information for software systems and plays a significant role in soft-
ware testing. Although the research area of logging has attracted much atten-
tion, little attention is paid to the practice of test logging (i.e., the logging
involved in test files). To fill this knowledge gap, we conduct this empirical
study to explore and disclose the practice of test logging. This study examines
21 open-source subjects with ∼70K logging statements, of which ∼48K are
production logging statements and ∼22K are test logging statements. We or-
ganize our study by answering four research questions, and as a result, (1) we
have yielded five findings to reveal the differences between test and production
logging statements, (2) we have disclosed four findings regarding the differences
between the maintenance efforts of test and production logging statements, (3)
we have identified four reasons why developers use test log, and (4) we have
uncovered the relationship between test logging and production logging. To
the best of our knowledge, this is the first study that quantitatively and qual-
itatively analyzes the logging practices in test and production code, providing
developers and researchers with insight into this topic.
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1 Introduction

Logging is an important practice in recording the run-time information of
software systems. Logging has been used for a variety of purposes, such as
software quality evaluation (Kernighan and Pike, 1999; Shang et al., 2015),
anomaly detection (Fu et al., 2009; Lou et al., 2010), error reporting (Glerum
et al., 2009), performance diagnosis (Nagaraj et al., 2012), system behavior
understanding (Fu et al., 2013; Li et al., 2020a) and code coverage estimation
(Chen et al., 2018), many of which facilitate testing. Moreover, a number
of programming languages provide logging frameworks to assist developers
in logging. For instance, Python has a widely used built-in logging module,
logging, and Java offers a variety of logging frameworks, including the built-in
logging framework JUL (Oracle and/or its affiliates, 2021) and frameworks
provided by third parties (such as SLF4J (QOS.ch, 2021) and Log4j (The
Apache Software Foundation, 2021)).

Logs are generated by logging statements. The following is a sample of a
typical logging statement that consists of four components: a logging object
(LOG), a logging level (INFO), a static text, and a dynamic variable:

LOG.info("Static text." + variable);

A logging level allows developers to filter the run-time information of software
systems, printing only information about critical events (e.g., errors) while sup-
pressing less critical information (e.g., debugging information) (Gülcü, 2002).

The significance of software logging has long been acknowledged, and nu-
merous studies have been undertaken to improve logging practices. Yuan et al.
(2012b); Chen and Jiang (2017c); Zeng et al. (2019); He et al. (2018); Chen
and Jiang (2017a) characterize the logging practice and logging anti-patterns
in different programming languages and platforms. Li et al. (2017b, 2021);
Liu et al. (2019); Shang et al. (2014) explore what information to log and Fu
et al. (2014); Zhu et al. (2015); Zhao et al. (2017) investigate where developers
should place logging statements.

Despite the considerable efforts that prior studies spent on analyzing and
improving logging practices, to the best of our knowledge, there is no study
that explores logging practices in test files and production files separately. In
general, production files are used to develop software that will be released to
users, while test files are used to verify the functionality of production files.
In this paper, we define the logging involved in test and production files as
test logging and production logging respectively. Production and test files can
be easily distinguished by their file paths. For example, in Hadoop, the source
code directory of each module consists of two separate folders, a main folder
and a test folder that contain production and test files, respectively. Since test
files and production files serve different purposes, the logging practices in test
and production files may also differ, and identifying such differences may help
developers more effectively and unambiguously log in test and production files.
Therefore, to fill this knowledge gap between the logging practices in test and
production code, we conduct an empirical study on logging statements in test

https://github.com/apache/hadoop
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files. Specifically, this study focuses on four aspects: (1) the statistical differ-
ences of logging statements in test and production files, (2) the differences of
efforts that developers spent on maintaining test and production logging state-
ments, (3) the rationales why developers use test logging, (4) the relationships
between test and production logging.

To investigate the logging practice in test and production files, we have con-
ducted a comprehensive study on 21 software projects. These projects have ∼8
million source code lines, ∼70K logging statements (including ∼48K produc-
tion logging statements and ∼22K test logging statements), ∼214K commits
(during the analyzed histories) and ∼89K files in total. To identify the differ-
ences in the logging practice between test and production files, we analyze the
density, distributions, and historical data of test and production logging state-
ments separately. Furthermore, we conduct a “firehouse email” (Murphy-Hill
et al., 2015) survey to reveal why developers use logging statements in test
files. Then, we analyze and label test logs according to their relationship with
production logging to explore how test and production logging are related. Our
research yielded five findings regarding the comparisons between the charac-
teristics of test logging statements and production logging statements, four
findings with respect to the comparisons between developers’ maintenance ef-
forts for test and production logging statements, and revealed four reasons for
why developers use test logs, as well as the relationship between production
and test logging. The summary of our research questions and findings are as
follows:

RQ1: What is the difference between the characteristics of test logging state-
ments and production logging statements?

To answer this question, we quantified the production and test log-
ging statements using three dimensions of metrics (log quantity, log-
ging level, and logging information metrics). By measuring the log-
ging statement numbers, we find that logging is commonly used both
in test and production files. However, in terms of logging level and
log information, we observed that the distribution of logging levels
in production logging statements is more evenly distributed than in
test logging statements, and that production logging statements have
more information on average than test logging statements.

RQ2: What is the difference between developers’ maintenance efforts for test
and production logging statements?

We analyzed historical log changes by two dimensions of metrics (log
change and component metrics) to answer this question. Our findings
disclose that compared to test logging statements, production logging
statements are more likely to be updated and require slightly more
maintenance effort. In addition, the updated logging components are
slightly associated with the logging statement types (i.e., test or pro-
duction logging statements).
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RQ3: Why do developers use test logging?

We surveyed developers and gathered feedback on 43 test logging
statements. As a result, we found that developers log in test files
for four reasons: Debugging, Recording Operational Information, Code
refactoring, and Code clone. The most common reason is Debugging
(20/43), followed by Recording Operational Information (18/43). Two
minor reasons for using test logging are Refactoring (3/43) and Code
Clone (2/43)

.

RQ4: What is the relationship between test logging and production logging?

We analyzed 385 test logs to figure out their relationship with sur-
rounding production logs. Although the vast majority of test logs
(290/385) are used for testing only, around a quarter of test logs are
relevant to (i.e., overlap, complement, or elaborate) production logs.
Among the test logs associated with production logs, we then discov-
ered that about a third of them are useful to production logging. To
further understand why test logs are useful for production logging, we
divided such test logs into ten categories, with around a third of them
used to record production intermediate data.

The implications of our findings are that test logging is quite essential to
developers, and future research should treat logging statements in test files
discretely, due to significant differences between test and production logging.
Our findings also suggest that some information (e.g., production intermediate
data) recorded by test logging statements can be used in production logging,
implying that more research into how to extract and leverage such information
is required.

Paper organization. The rest of this paper is organized as follows. Section
2 introduces the subjects we have studied and how we extract the related data
from these subjects. Section 3 explains the motivation, research process as well
as results of each research question. Section 4 presents the threats to validity.
Section 5 discusses the related work. Section 6 concludes this paper.

2 Case study setup

This section describes the projects under study and how we extract data from
these projects1.

1 Scripts and data files used in our research are available online and can be found here:
https://github.com/senseconcordia/TestLoggingPractice

https://github.com/senseconcordia/TestLoggingPractice
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Table 1: Overview of studied subjects

Subjects KLOC Files Commits Commit history

Hadoop 1,753.94 14,042 24,083 (2009-05-19, 2020-08-05)
Hbase 776.12 5,083 17,896 (2007-04-03, 2020-08-05)
Hive 1,480.47 19,310 14,777 (2008-09-02, 2020-08-03)
Zookeeper 108.85 1,372 2,173 (2008-05-19, 2020-08-04)
Tomcat 338.98 4,159 22,363 (2006-03-27, 2020-08-04)
Lucene 1,285.20 12,607 33,950 (2001-09-11, 2020-08-05)
ActiveMQ 414.74 5,462 10,644 (2005-12-12, 2020-07-31)
Maven 89.58 1,978 11,216 (2003-09-01, 2020-08-05)
Ant 143.75 2,383 14,648 (2000-01-13, 2020-07-30)
Empire-DB 55.23 729 1,172 (2008-08-04, 2020-07-01)
Karaf 124.84 2,575 8,208 (2007-11-26, 2020-07-29)
Log4j 30.29 620 3,275 (2000-11-16, 2015-06-04)
Mahout 110.19 2,080 4,440 (2008-01-14, 2020-07-29)
Mina 23.63 362 2,401 (2005-12-28, 2017-06-06)
Pig 269.98 2,458 3,693 (2007-10-29, 2020-04-23)
Pivot 106.47 1,791 4,660 (2008-06-05, 2019-08-14)
Struts 166.23 3,244 5,938 (2006-02-22, 2020-07-17)
Openmts∗ 55.16 1,194 2,833 (2015-12-13, 2020-07-27)
Fop 215.43 4,169 8,354 (1999-10-31, 2020-07-30)
Jmeter 143.13 2,987 16,996 (1998-09-02, 2020-08-05)
Rat 9.72 294 1,043 (2008-03-11, 2020-07-28)

Total 7,701.95 88,899 214,763

* Openmts is Openmeetings.

2.1 Subjects

Our research involves 21 open-source subjects varying in size and domain.
These subjects were chosen because: (1) These are all well-known open-source
software applications that have been developed for at least 5 years, (2) These
contain sufficient logging code for our research, (3) These subjects are under
the control of professional development teams for production and testing, (4)
They have been selected as studied subjects by the prior study (Chen and
Jiang, 2017c).

Table 1 presents an overview of our studied subjects. In total, we analyzed
21 open-source projects with ∼8 million sources lines of code. Column KLOC
is the thousands of source lines of code, ranging from ∼10K for Rat to ∼1754K
for Hadoop. Column Files denotes the number of Java files at the analysis time.
The total number of files in the study is ∼89K, while each file has an average
of ∼87 source lines of code. Column Commits indicates the number of the
analyzed commits. During the analyzed commit histories, 214,763 commits
were pushed, while Rat had the least commits at 1,043, and Hadoop had the
most commits at 24,083. The average age of these subjects at the time of
analysis is ∼14 years old, with a minimum age of ∼5 years for Openmeetings

and a maximum age of ∼22 years old for Jmeter.

https://github.com/apache/creadur-rat
https://github.com/apache/hadoop
https://github.com/apache/creadur-rat
https://github.com/apache/hadoop
https://github.com/apache/openmeetings
https://github.com/apache/jmeter
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2.2 Data extraction

Fig. 1: Overview of the research workflow.

Figure 1 illustrates the overview of our research workflow. In each analyzed
subject, we examined the logging practice in its latest version and all commit
histories. The workflow mainly consists of three phases: Extracting logging
statements (marked by ‘yellow’ color), Classifying logging code changes
(marked by ‘turquoise’ color), and Executing tests (marked by ‘red’ color).

Extracting logging statements

We first use GitPython (GitPython-Developers, 2021), an open-source tool for
accessing and processing Git commits, to identify source code changes from
Git histories. In order to identify logging statements from source code changes,
we use srcML (Collard et al., 2013), a free tool for analyzing source code, to
transform the source code to XML format. A similar data extraction strategy
was used in a previous study (Zeng et al., 2019) as well. Through XPath,
we can extract all method invocations from these XML documents, and then
we can search these method invocations for logging statements using Regular
Expression with logging-related keywords, such as log and logger. To increase
the detection accuracy, we remove method invocations whose names include
the logging-related keywords, but they are not logging-related, for example,
the method invocations with name logo, logic, and logdir. We further filter the
remaining method invocations using logging-level related keywords like info,
warn, and error, etc. Following the identification of these logging statements,
they are labeled as test logging statements or production logging statements,
depending on whether they are from test or production files.
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Classifying logging code changes

In order to characterize logging practices, we measure how many logging state-
ments have been added, deleted, or updated during development histories.
We first sort the source code files with logging code changes extracted from
GitPython into three categories: file additions, file deletions, and file updates.
Our goal is then to convert the logging code changes made in these three types
of files into three types of logging code changes (i.e., added/deleted/updated
logging statements). Changes in the logging statements in the added/deleted
files could be regarded as added/deleted logging statements respectively. If the
insertion and deletion of a logging statement in the Git revision of a revised
file occur in the same method and they seem to be very similar, the logging
statement is considered updated. This can help us find the logging statement
additions/deletions among the remaining logging code changes in this file’s
revision.

Executing tests

To study the relationship between test and production logs, we execute the
unit tests in our studied subjects and analyze the generated logs (including
both test and production logs) from these tests. We first clone the source code
of the head commit (when the study is conducted) for each research subject
from GitHub and then execute unit tests on our local Linux machine (Ubuntu
18.04, 4-Core Intel i5-2400 CPU, 8GB memory). If a failure occurs during the
testing, we ignore the failure and let the tests continue executing.

3 Case study result

In this section, we present the study results of our research questions. We
describe the motivation for each research question, as well as the approaches
proposed to address the research questions and the experimental results.

RQ1: What is the difference between the characteristics of test logging state-
ments and production logging statements?

Motivation

Many research studies have been conducted to characterize logging practices.
On the one hand, previous research has investigated the logging statements in
production code (Li et al., 2017a,b) and disclosed the logging characteristics
in various programming languages and platforms (Yuan et al., 2012b; Chen
and Jiang, 2017c; Zeng et al., 2019). On the other hand, prior research has
not provided insights into the distinctions between logging statements in test
and production code. Investigating the logging characteristics in test and pro-
duction code could help developers write more effective logs and improve the

https://github.com/gitpython-developers/gitpython
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state of logging practice (e.g., by improving bug detection). Therefore, in this
research question, we explore the differences between the logging statements
characteristics in test and production code. At the time of analysis, the study
is conducted on the most recent version of the subjects. Table 1 provides an
overview of the subjects.

Approach

To understand the differences between the logging statements in test and pro-
duction code, we extract the following three dimensions of metrics from the
studied subjects, and we investigate the relationship between the distributions
of test and production logging density. Table 2 presents a list of metrics for
each of the three dimensions with further description.

Table 2: Metrics used to characterize logging statements in production and
test files.

Dimension Metric Description

Log quantity
metrics

Log quantity
The number of logging statements in produc-
tion/test files.

Log quantity per file
The average number of logging statements per
production/test file.

Log density
Log density of logging statements in produc-
tion/test files.

Logging level
metrics

Log level number
The number of log levels in production/test
files.

Logging
information
metrics

Text length
The average length of static texts per logging
statement in production/test files.

Variable number
The average variable numbers per logging
statement in production/test files.

– Log quantity metrics are used to measure the number of logging state-
ments in varying kinds of source code files, such as total logging statements,
logging statements per file, and log density. Similar metrics regarding log
quantity were also used by Yuan et al. (2012b). To calculate the logging
density, we first use CLOC (Danial, 2021), a widely used open-source tool,
to count the number of source code lines (SLOC) in test and production
files, then use srcML2 and regular expressions to count the number of log-
ging statements in these files. The log densities defined by prior work (Yuan
et al., 2012b) are then computed by dividing the SLOC of test and produc-
tion files by the number of logging statements in each type of file separately.

– Logging level metrics measure the logging level distributions in test
files and production files (i.e. the proportions of each logging level in test
and production files). Same metrics regarding logging level number were
also studied by Zeng et al. (2019). The logging level is a component of

2 https://www.srcml.org/

https://www.srcml.org/
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a logging statement, and learning more about it can help us understand
the differences in logging statement characteristics between production and
test files. After logging statements are identified, we use XPath to identify
logging levels. Existing literature that studies logging in Java projects typ-
ically considers five log levels (Zeng et al., 2019) (i.e., the log levels that we
consider in our paper) or six log levels (Li et al., 2021) (with an additional
fatal level). However, major logging frameworks (e.g. SLF4J (2021)) have
recently stopped supporting the fatal level as it is considered redundant.
Therefore, we consider the five log levels as commonly done in prior studies.

– Logging information metrics quantify the information volume supplied
by logging statements. A logging statement consists of two types of infor-
mation: static texts and dynamic variables. We calculate the length of the
static texts and the number of dynamic variables to estimate logging infor-
mation volume (the same measurement method was adopted by Li et al.
(2017b)). This dimension could be used to identify the differences between
test and production files in terms of logging information types.

Statistical test. We have introduced the three dimensions above in order
to investigate the difference between test and production logging statements.
Such difference is summarized by our plain statistics. We then leverage two
popular statistical methodologies named Mann-Whitney U test (Nachar, 2008)
and Chi-squared test (McHugh, 2013) to further measure the differences be-
tween test and production logging statements.

Mann-Whitney U test: We choose the Mann-Whitney U test because
it does not enforce any assumptions about the distribution of analyzed data.
Mann-Whitney U test is applied to distributions of reciprocals for logging
densities (since there is no logging statement in some files, logging densities for
these files cannot be calculated) in test and production files (related to Finding
1), distributions of logging variable numbers as well as distributions of lengths
of logging static texts (related to Finding 5) in test and production logging
statements respectively for each subject. Before the Mann-Whitney U test, we
propose two hypotheses (i.e, null hypothesis and alternative hypothesis):

H0: The distributions under test are the same.
H1: The distributions under test are different.

The test is executed at the 5% level of significance, which implies that
if p-value ≤ 0.05, the H0 is rejected but H1 is supported, and vice versa.
Reporting only the statistical significance may lead to erroneous results (i.e.,
if the sample size is very large, the p-value can be small even if the difference
is trivial (Laaber et al., 2019).) Hence, we use Cliff’s delta effect size (Cliff,
1996) to quantify the magnitude of difference between the two distributions
under the Mann-Whitney U test. In the case of positive effect size, the higher
its value, the greater the significance of difference. The thresholds of Cliff’s
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delta is defined as follows (Romano et al., 2006):

effect size =


negligible if Cliff’s d ≤ 0.147

small if 0.147 < Cliff’s d ≤ 0.33

medium if 0.33 < Cliff’s d ≤ 0.474

large if Cliff’s d > 0.474

(1)

Chi-squared test: The Chi-squared test is chosen to examine the inde-
pendence between two categorical variables (Franke et al., 2012). In this study,
we use the Chi-squared test to determine the independence between the dis-
tributions of logging levels and the classifications regarding whether they are
production or test logging statements (related to Finding 2 and 3), as well as
the independence between the distributions of logging information types and
the classifications with regard to whether they are test logging statements or
not (related to Finding 4). We propose two hypotheses regarding the result of
the Chi-squared test (i.e, null hypothesis and alternative hypothesis):

H0: The distributions under test are independent of whether the logging
statements are in test files or not.
H1: The distributions under test are not independent of whether the log-
ging statements are in test files or not.

As with the Mann-Whitney U test, the Chi-squared test is also executed
at the 5% level of significance, which implies that if p-value ≤ 0.05, the H0

is rejected but H1 is supported, and vice versa. To avoid erroneous results
that could be induced by merely reporting the statistical significance, we use
Cramér’s V effect size (Cramér, 2016) to measure the magnitude of association
between the two distributions with p-value ≤ 0.05 under the Chi-squared test.
Table 3 is the Cramér’s V interpretation table, which was firstly introduced
by Cohen (2013) and provides a list of intervals for the statistical significance
of the association degree between two distributions. Column df refers to de-
grees of freedom (Fisher, 1922), which is used to interpret Cramér’s V. The
calculation of df is based on the characteristics of the examined data sample.
In the case of a two-dimensional table used to compute Cramér’s V, the df is
df = min (r − 1, c− 1), where r is the number of rows and c is the number
of columns observed in the table. For example, the relevant data describing
logging level distributions shown in Figure 2 can be treated as a table with 5
columns (logging levels) and 2 rows (production and test logging statements),
therefore its degrees of freedom is 1 (i.e., min (5 − 1, 2 − 1)).

Results

By analyzing the three dimensions of metrics we obtained, we discover five
findings regarding the differences between the logging statement characteristics
in test files and production files. We find that logging in test files is as common
as in production files and that the distributions of logging densities in test and
production files are almost the same. Conversely, test logging statements and
production logging statements present notable differences in their logging level
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Table 3: Thresholds of Cramér’s V effect size and the strength of the relation-
ship between the analyzed distributions under Chi-squared test.

df negligible small medium large

1 [0, 0.10) [0.10, 0.30) [0.30, 0.50) [0.50, 1.00]
2 [0, 0.07) [0.07, 0.21) [0.21, 0.35) [0.35, 1.00]
3 [0, 0.06) [0.06, 0.17) [0.17, 0.29) [0.29, 1.00]
4 [0, 0.05) [0.05, 0.15) [0.15, 0.25) [0.25, 1.00]
5 [0, 0.05) [0.05, 0.13) [0.13, 0.22) [0.22, 1.00]

distributions, and their logging information types and sizes. However, such
differences are often disregarded by prior studies which suggest general rules
to help developers choose proper log levels (Li et al., 2017b, 2021) or useful
information to log (Liu et al., 2019). Consequently, our findings may inspire
researchers to further explore how logging can be facilitated for developers by
considering logging separately for test files and production files.

Table 4: Overview of the logging statement numbers. Columns LOG and
LOG/F denote the number of logging statements and the number of logging
statements per file respectively. Column Density is the number of source code
lines per logging statement.

Subject
Production Test

KLOC LOG LOG/F Density KLOC LOG LOG/F Density

Hadoop 986.75 13,059 1.83 75 767.19 6,088 1.59 126
Hbase 472.71 6,364 2.74 73 303.41 3,506 1.78 85
Hive 1205.66 7,602 1.40 155 274.81 1,352 0.80 202
Zookeeper 61.09 1,365 2.89 44 47.76 684 1.85 70
Tomcat 261.74 2,373 1.29 106 77.25 461 0.73 167
Lucene 740.02 3,179 0.59 234 545.18 2,996 0.96 182
ActiveMQ 212.73 2,499 1.10 83 202.01 4,112 1.89 48
Maven 69.40 317 0.42 218 20.18 47 0.18 429
Ant 111.54 1,313 1.45 85 32.21 73 0.18 441
Empire-DB 52.96 813 1.78 64 2.27 18 0.60 134
Karaf 103.00 1,308 1.03 77 21.84 283 0.94 77
Log4j 21.59 725 3.36 30 8.70 355 3.81 25
Mahout 82.44 622 0.67 132 27.75 223 0.71 124
Mina 16.49 212 1.01 78 7.15 48 0.44 149
Pig 166.37 1,437 1.13 116 103.62 644 1.24 161
Pivot 99.35 183 0.23 534 7.12 236 1.57 30
Struts 111.96 1,104 0.81 101 54.27 43 0.07 1,262
Openmts∗ 49.36 500 1.03 100 5.80 66 0.74 88
Fop 185.27 1,337 0.82 139 30.17 76 0.18 397
Jmeter 110.99 1,694 1.66 64 32.15 317 0.91 101
Rat 5.71 24 0.21 238 4.02 11 0.18 365

Total 5,127.11 48,030 1.32 105 2574.85 21,639 1.24 118

∗ Openmts is Openmeetings.
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Log quantity metrics. Table 4 summarizes the results of Log quantity
metrics to measure log numbers for the subjects. Each subject is presented
in terms of thousands of lines of code, the number of logging statements,
logging statements per file, and logging statement densities in the production
and test files separately.

Finding 1 : Logging statements in test code are as pervasive as those in
production code.

Descriptive statistics: As illustrated in Table 4, there are 48,030 produc-
tion logging statements in production code, which is about twice as many as
the logging statements counted in test files (21,639). However, it should be
noted that source code lines are almost double in production files (5,127.11K)
in comparison to test files (2574.85K). As such, more logging statements in
production files does not imply that logging is more pervasive in production
files than in test files.

Table 4 reveals that test and production files have similar logging den-
sities (118 vs. 105). Furthermore, on average, there is at least one logging
statement in each test file (1.24) and each production file (1.32). Specifically,
there are at least two logging statements per file for certain subjects, such
as Hbase, Zookeeper, and Log4j. Therefore, logging appears to be widespread in
both production and test files. We then perform the statistical test to assess
this observation.

Statistical test: The column Log density of Table 6 demonstrates the
results of a Mann-Whitney U test on the distributions of logging densities
in test and production files. There are three sub-columns below this column
for p-value, cliff’s d (only calculated with p-values ≤ 0.05) and effect size.
In the column eff size, the abbreviations NEGL, SM, MED, and LG refer to
negligible, small, medium, and large effect size respectively. In Table 6, there is
no significant difference (i.e., p-value ≥ 0.05) in log density between test and
production files for half of the studied subjects (11/21). For the remaining 10
subjects, 7 subjects have negligible effect sizes while only 2 subjects have small
effect sizes and 1 subject has a medium effect size. Based on these findings, we
can conclude that there are no significant differences in log density between
test and production files for half of the studied subjects, and the effect sizes
of those differences are limited for the other half of the subjects.

Discussion: According to the descriptive statistics and statistical test re-
sults above, although there are many more production logging statements
than test logging statements in real-world projects, both are equally preva-
lent (Finding 1), which implies that logging in test files is as important as in
production files.

Despite the similarity between test and production logging revealed by
Finding 1, we should not treat them as a whole. On one hand, in real-world
software development, software development and software testing are often
performed by separate teams (Grechanik et al., 2010), resulting in production
code and test code rarely evolving synchronously (Wang et al., 2021). As a

https://github.com/apache/hbase
https://github.com/apache/zookeeper
https://github.com/apache/log4j
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result, test and production files may have distinct logging practices. On the
other hand, test logging statements are overlooked by prior studies (e.g. Li
et al. (2017b) and Li et al. (2018)) and even though there exist several stud-
ies that take the logging statements both in test and production files into
consideration, they treat the logging statements in test files the same as that
in production files (more details regarding the focuses of prior studies are
presented in section 5). Considering that logging statements in test files are
as pervasive as in production files, exploring similarities and differences may
assist developers in better logging in test and production files.

Logging level metrics. Figure 2 illustrates the results on the subjects’ log-
ging level measurements — a proportional distribution of log levels in test and
production files.

Fig. 2: Distributions of the logging statement levels.

Finding 2 : In test and production logging statements, INFO is the most
commonly used logging level and is the dominating one for test logging
statements, while TRACE is the least commonly used.

Descriptive statistics: Test files and production files use the INFO level in
the majority of logging statements, accounting for 77.81% and 31.74%, respec-
tively, of all logging statements. The TRACE level is seldom used either in test or
production files: their ratios are 0.48% and 4.15% separately. The statistical
test specific to log levels can be found below Finding 3.

Discussion: Based on the descriptive statistics above, we can deduce our
Finding 2. Such results imply that in both test and production files, logging is
most frequently used to record necessary informational data (e.g., encounter
a status or an event) and is rarely used to trace the code. It should be noted
that He et al. (2018) and Li et al. (2020a) made similar observations about
developers logging for understanding normal system behaviors.
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A possible reason for why the info level is considered as a most prevalent
logging level in the real-world logging practice could be that it is a fairly com-
mon default verbosity logging level for software logging (i.e., only the logging
statements with logging levels greater than or equal to this level could emit
logs during software run-time). For example, based on the documentation of
Apache Commons Logging (Apache Common Logging, 2021), info is the low-
est logging level that makes logs visible to developers at run-time. According
to prior studies (Li et al., 2017b; Zhi et al., 2019), developers often struggle
to assign appropriate levels for the logging statements. As there are no rig-
orous logging specifications to follow (Zhu et al., 2015), developers may tend
to choose the default verbosity logging level as the logging level of logging
statements in such cases.

In the test code, there could be one more reason for the dominance of
the info logging level. Chen and Jiang (2017a) and Li et al. (2019) discover
that in many cases, developers do not adhere to current logging guidelines and
instead use info and warn levels for debugging purposes. Given that test files
are used to verify the functionalities of production code and have no impact on
user experience in most cases, developers are more likely to adopt a moderate
level (i.e. info) for test logging statements rather than spending more time
considering the appropriateness of the logging levels.

Figure 2 also reveals an interesting finding: Debug is the second most preva-
lent log level in production and test logging statements. The potential reason
for this could be the intention of developers’ use of logging statements. Ac-
cording to Zeng et al. (2019); Li et al. (2020a), developers often use logging
statements as a debugger in addition to logging normal system events. In ad-
dition, we also observe that production code has a higher proportion of Debug

levels than test code. The possible reason behind this, as supported by a prior
study conducted by Zeng et al. (2019), is that rather than removing the debug-
ging logging statements in production code after debugging, some developers
prefer to leave the debugging logging statements to help them diagnose the
production code instantaneously in case some errors occur in the future.

Finding 3 : The distribution of logging levels in production logging state-
ments is more evenly distributed than in test logging statements.

Descriptive statistics: Apart from the INFO level, the remaining four log-
ging levels account for less than a quarter (22.19%) of logging statements in
test files, but they account for 68.26% in production code. Furthermore, the
standard deviations for the distributions of logging level proportions in test
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and production files are 29.10% and 9.44% separately. This indicates logging
levels in production code are distributed more evenly than in test files.

Table 5: Chi-squared test results regarding the dependence between test and
production logging metrics related to Finding 2, Finding 3 and Finding 4.

Subjects
Log level Log information type

p-val Cramér’s V eff size p-val Cramér’s V eff size

Hadoop 0 0.446 MED 0 0.148 SM
Hbase 0 0.448 MED 0 0.223 SM
Hive 0 0.269 SM 0 0.183 SM
Zookeeper 0 0.430 MED 0 0.127 SM
Tomcat 0 0.551 LG 0 0.405 MED
Lucene 0 0.556 LG 0 0.081 NEGL
ActiveMQ 0 0.511 LG 0 0.155 MED
Maven 0 0.502 LG 0.080 N/A N/A
Ant 0.001 0.116 SM 0 0.291 SM
Empire-DB 0 0.178 SM 0 0.172 SM
Karaf 0 0.254 SM 0 0.291 SM
Log4j 0 0.457 MED 0 0.227 SM
Mahout 0 0.394 MED 0.002 0.121 SM
Mina 0 0.610 LG 0.387 N/A N/A
Pig 0 0.490 MED 0 0.317 MED
Pivot 0 N/A† N/A† 0 0.261 SM
Struts 0 0.440 MED 0 0.230 SM
Openmts∗ 0 0.353 MED 0.824 N/A N/A
Fop 0 0.227 SM 0.018 0.075 NEGL
Jmeter 0 0.183 SM 0.059 N/A N/A
Rat 0.041 0.564 LG 0.234 N/A N/A

* Openmts is Openmeetings.
† The Cramér’s V is inapplicable for this subject since the statistical test requires at least

three data categories and this subject only has two logging levels.

Statistical test: We perform a Chi-squared test to examine whether the
distributions of logging levels are associated with the types of logging state-
ments (i.e., test or production logging statements). The df used for interpreting
Cramér’s V is 1 because the relevant data describing logging level distribu-
tions shown in Figure 2 can be treated as a table with 5 columns (logging
levels) and 2 rows (production and test logging statements) and min(5-1, 2-
1)=1. The results are presented in column Log level of Table 5. There are
three sub-columns below this column: p-val (for p-value), Cramér’s V (only
calculated with p-values ≤0.05), and eff size (for effect size). As we can see,
all subjects (except one unavailable for calculating Cramér’s V ) have statisti-
cal significance for the association between log level distributions and logging
statement types. In the column eff size, the abbreviations SM, MED, and
LG refer to small, medium, and large effect size respectively. According to the
table, there exists a strong (LG in the column eff size) association between the
distributions of logging levels and logging statement types in 6/21 subjects. In
the remaining subjects, 8/21 subjects have a medium effect size and 6/21 sub-

https://github.com/apache/openmeetings
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jects display a small effect size. Overall, there exists a significant association
between the distributions of logging levels and logging statement types.

Discussion: According to descriptive statistics, there exist differences in
distributions of test and production logging levels. The results of statistical
tests further prove that the distributions of logging levels are closely associated
with logging statement types. These observations support our Finding 3.

The more evenly distributed logging levels in production logging statements
may imply that the purposes for which developers log in production files are
more diverse than those in test files, which could be due to differences between
the natures of production and test code. On one hand, as production code is
released to users, developers may log in production code for customer support,
system performance monitoring, etc. (Li et al., 2020a). On the other hand, test
code is used to verify the functionalities of production code, so developers may
primarily focus on debugging and observing system behaviors in testing.

Logging information metrics. The purpose of these metrics is to determine
whether there are differences in logging information content between test and
production log files based on the distribution of argument types and quantities
in test and production logging statements.

Finding 4 : For both test and production logging, developers prefer log-
ging with a combination of static texts and variables rather than exclu-
sively static texts or variables.

Fig. 3: Distributions of the logging information types.

Descriptive statistics: Figure 3 plots the distribution of logging statement ar-
gument types in test files and production files. According to Figure 3, the
majority of logging statements use a combination of static texts and vari-
ables to log information in production files (71.70%) and test files (62.25%).
In test files, there are more logging statements with static text (27.98%) than
in production code (17.20%). Production and test files contain very similar
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proportions of logging statements that only log variable information, 11.10%,
and 9.77% respectively. Such results indicate that developers prefer logging
with a combination of static texts and variables rather than exclusively static
texts or variables (i.e., Finding 4).

Statistical test: Following the same procedure as we used to examine the
distributions of logging levels in test and production logging statements, we
leverage the Chi-squared test to determine whether the distributions of logging
information types are associated with logging statement types. The df for
interpreting Cramér’s V is 1 because the relevant data describing logging
information types distributions shown in Figure 3 can be treated as a table
with 3 columns (logging information types) and 2 rows (production and test
logging statements) and min(3-1, 2-1)=1. As it shows in Table 5 (the column
Log information type), there is no statistical significance of the association
between the distributions of logging information types and logging statement
types in 5/21 subjects. Among the remaining 16 subjects, 3/16 subjects exhibit
medium effect size while the others (13/16) display either small or negligible
effect size. To summarize, the Chi-squared test proves that the distribution
of logging information types has an association with logging statement types,
but such association is weak according to the interpretation of Cramér’s V
values.

Discussion: Although our descriptive statistics reveal a similar tendency
for developers to use logging information types, statistical tests indicate that
this tendency slightly depends on the type of logging statements (i.e., test-
ing/production). The existence of dependency reinforces our claim that test
and production logging statements should not be studied together. In addi-
tion, the preservation of these complicated logging content compositions could
exacerbate the dilemma of “what to log”, which has already sparked a lot of
research (more details in section 5).

Fu et al. (2014) point out there is no existing work to assist developers
in making informed decisions to avoid over-logging and under-logging. It is
essential to provide developers with the appropriate amount of logging infor-
mation, which can also facilitate testing. Therefore, we investigate the logging
information volume in the studied subjects and hope that our findings would
provide developers with further insight into logging information content.

Finding 5 : On average, production logging statements contain more
information than test logging statements.

Descriptive statistics: Figure 4 portrays the distribution of static logging
text lengths and dynamic variable numbers at the logging statement level. The
sub-figures (a) and (c) display the original box-plot charts used for analyzing
text lengths and variable numbers respectively, while sub-figures (b) and (d)
display their magnified versions used for subsequent analysis.Sub-figures (a)
and (b) compare the distributions of the static text length in test and pro-
duction logging statements. Sub-figures (c) and (d) compare the distributions
of the number of the dynamic logging variables in test and production log-
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Fig. 4: Distribution of static logging texts lengths and variable numbers in
each logging statement.

ging statements. In Figure 4, the mean variable number in each production
logging statement is 1.33 which is approximately 25% greater than it in each
test logging statement (1.06). The average length of the static texts captured
by developers in the production logging statements is 37.81, while the mean
length of logging static texts for each test logging statement is 25.16. It should
be noted that a value of 0 indicates that the logging messages only contain vari-
ables or static text. For example, the variable number of LOG.info("Initializing
DS Client") is 0, and the static text length of LOG.info(outputDirPathForEntity)

is 0. The implication behind these differences is that on average, developers
log more information in each production logging statement than in each test
logging statement.

Statistical test: We leverage the Mann-Whitney U test to test the difference
between the distributions of static logging text lengths in test and production
logging statements as well as the difference between the distribution of logging
variable numbers. The results are presented in Table 6.
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Table 6: Mann-Whitney U test results for comparing test and production
logging metrics related to Finding 1 and Finding 5.

Subjects
Log density Variable numbers Static text length

p-val cliff’s d eff size p-val cliff’s d eff size p-val cliff’s d eff size

Hadoop 0 0.062 NEGL 0 0.215 SM 0 0.319 SM
Hbase 0 0.053 NEGL 0 0.220 SM 0 0.371 MED
Hive 0.104 N/A N/A 0 0.141 NEGL 0 0.447 MED
Zookeeper 0.356 N/A N/A 0 0.127 NEGL 0.002 0.079 NEGL
Tomcat 0.316 N/A N/A 0 0.135 NEGL 0 0.414 MED
Lucene 0 0.087 NEGL 0 0.071 NEGL 0 0.372 MED
ActiveMQ 0 0.205 SM 0 0.210 SM 0 0.347 MED
Maven 0.206 N/A N/A 0.182 N/A N/A 0.055 N/A N/A
Ant 0 0.163 SM 0 0.492 LG 0 0.328 SM
Empire-DB 0.146 N/A N/A 0.031 0.243 SM 0 0.541 LG
Karaf 0.066 N/A N/A 0 0.118 NEGL 0 0.598 LG
Log4j 0.212 N/A N/A 0 0.394 MED 0 0.743 LG
Mahout 0.461 N/A N/A 0.048 0.069 NEGL 0 0.378 MED
Mina 0.434 N/A N/A 0.464 N/A N/A 0.007 0.226 SM
Pig 0.021 0.048 NEGL 0 0.156 SM 0 0.304 SM
Pivot 0 0.365 MED 0.118 N/A N/A 0.096 N/A N/A
Struts 0 0.145 NEGL 0.235 N/A N/A 0 0.414 MED
Openmts∗ 0.193 N/A N/A 0.377 N/A N/A 0 0.463 MED
Fop 0 0.099 NEGL 0.031 0.120 NEGL 0 0.326 SM
Jmeter 0 0.124 NEGL 0.015 0.073 NEGL 0 0.293 SM
Rat 0.428 N/A N/A 0.130 N/A N/A 0.149 N/A N/A

∗ Openmts is Openmeetings.

In terms of variable numbers, there is no significant difference between
test and production logging statements in 6/21 subjects, which is lower than
what it is for log density. In the 15 remaining subjects, 8 exhibit negligible
effect sizes, 5 small effect sizes, 1 medium effect size, and 1 large effect size.
We can draw the conclusion from this result that there are no significant dif-
ferences in variable number distributions between test and production logging
statements for more than one-fourth of the studied subjects, and the effect
sizes of those differences are almost limited for the remaining subjects.

As for static text length, only 3/21 subjects have no significant difference
between test and production logging statements. Among the remaining 18
subjects, only 1 has a negligible effect size, while 6 have small effect sizes, 8
have medium effect sizes, and 3 have large effect sizes. This indicates that only
a small subset of the studied subjects has no significant difference of static text
length between test and production logging statements, while the effect sizes
of those differences in the remaining subjects are substantial.

Discussion: The descriptive statistics show that the average variable num-
bers in each test logging statement and each production logging statement are
comparable. Meanwhile, the average static text length is significantly larger in
each production logging statement than in each test logging statement. The
statistical test results with regard to the variable numbers demonstrate that
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there is no significant difference between the distributions, which confirms the
observation about the comparable average variable numbers in each test and
production logging statement. The statistical test results related to the static
text length show that there exist notable differences between the distributions
under test, which confirms the observation regarding the larger average static
text length in each production logging statement. Therefore, based on the de-
scriptive statistics and the results of statistical tests we can infer Finding 5.
Logging statements with longer text length and more variables are desirable
for debugging purposes (Li et al., 2017b). Therefore such results may imply
there are more logging statements for debugging purposes in production files
than in test files. This also confirms the situation we observed in Figure 2 that
Debug level is more common in production logging statements. Future research
can further explore the difference between the rationales that developers log
in test and production files.

RQ2: What is the difference between developers’ maintenance efforts for test
and production logging statements?

Motivation

The maintenance effort of the logging statements is the effort developers spend
to modify the logging statements, which includes adding, deleting, or updat-
ing logging statements. A prior study by Yuan et al. (2012b) examines the
maintenance of logging statements in four C and C++ projects, finding that
logging statements are unstable and that developers expend significant effort to
maintain them. As software development and testing involve separate software
teams (Grechanik et al., 2010), test and production code rarely evolve simul-
taneously (Wang et al., 2021), which may lead to different logging practices
in test and production code. Nevertheless, prior studies ignore the differences
between the maintenance efforts of test logging statements and production log-
ging statements. For example, Chen and Jiang (2017c) quantify the efforts (i.e.
code churn rates) developers spent on maintaining the logging statements in
Java; Zeng et al. (2019) investigate the maintenance efforts developers spent on
maintaining logging statements in mobile applications without distinguishing
between them. To fill this knowledge gap, we study the differences between the
maintenance efforts of test logging statements and production logging state-
ments. Our findings disclose that there exist notable differences between the
maintenance efforts of test and production logging statements and we should
treat test and production logging statements separately.

Approach

To recognize the differences between the maintenance efforts of test logging
statements and production logging statements, we extract the following met-
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rics in two dimensions from the studied subjects. Table 7 presents a list of
metrics for each of the two dimensions with further description.

Table 7: Metrics used to characterize logging statements maintenance efforts.

Dimension Metric Description

Log change
metrics

Log churn
The number of changed production/test log-
ging statements.

Log churn rate
The change rate of production/test logging
statements in each subject.

Commits with change
The number of commits with production/test
logging statements changed.

Component
metrics

Components modified
The number of the changed components for the
updated production/test logging statements.

– Log change metrics measure the efforts developers spend on maintaining
the logging statements as the projects evolve. Similar metrics with respect
to log change were adopted by Yuan et al. (2012b) and Kabinna et al.
(2018). We identify logging statements and classify their changes by ex-
ploiting the techniques introduced in section 2.2. Log churn refers to the
amount of logging statement changes. It is measured by counting the num-
ber of logging statements that have been changed, including adding/delet-
ing/updating logging statements (Nagappan and Ball, 2005). In our study,
the log churn rate for a subject is the average log churn rate of all the com-
mits in that subject, which is calculated by the following formula (Yuan
et al., 2012b):

Log Churn Rate =

∑Commits
i=1

Log Churn of Commiti
LOG in Commiti

Commits

In this formula, Commits indicate the number of all commits in the ana-
lyzed subject and LOG refers to the total number of logging statements.

– Component metrics are used to gauge how developers modify the com-
ponents of logging statements. Similar metrics were also used by Zeng et al.
(2019). Given a list of updated logging statements from the prior study re-
garding log churn, we still use srcML and XPath to extract the components
from this list and analyze them individually. For example, we use an XPath

query ./src:expr/src:literal to extract the static texts from logging state-
ments and then disclose the characteristics of static texts in logging state-
ments. As presented in Table 8 (we use Hadoop as an example), the logging
statement changes could be classified into five categories: whitespace format
change, text change, variable change, logging level change, and logging ob-
ject change. Similar categories have been uncovered in prior research (Zeng
et al., 2019) as well.

https://www.srcml.org/
https://github.com/apache/hadoop
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Table 8: Various change types of logging statement components in Hadoop.

Change Example

Whitespace
format

- LOG.trace("Issued delegation token -> expiryTime:{},tokenId:{}",

+ LOG.trace("Issued delegation token -> expiryTime:{}, tokenId:{}",

expiryTime, tokenId);

(a) OzoneBlockTokenSecretManager.java (Commit: a031388)

Static
texts

- LOG.debug("Acquired {} lock on resource {} and {}",

+ LOG.debug("Acquired Write {} lock on resource {} and {}",

resource.name, firstUser, secondUser);

(b) OzoneManagerLock.java (Commit: 87d9f36)

Dynamic
variables

- logger.debug(DISABLED_LOG_MSG, bucket);

+ logger.debug(text);

(c) S3Guard.java (Commit: 93b662d)

Logging
level

- LOG.info("Encountered ObserverRetryOnActiveException from {}." +

+ LOG.debug("Encountered ObserverRetryOnActiveException from {}." +

" Retry active namenode directly.", current.proxyInfo);

(d) ObserverReadProxyProvider.java (Commit: 74780c2)

Logging
object

- logger.error(message);

+ LOG.error(message);

(e) TestLog4jWarningErrorMetricsAppender.java (Commit: bd8d299)

Statistical test. As with RQ1, we perform statistical tests pertaining to the
distributions of logging statement change types (Chi-squared test; related to
Finding 6), the distributions of the updated logging components (Chi-squared
test; related to Finding 8 and 9) as well as the efforts developers spend on
maintaining test and production logging statements (Mann-Whitney U test;
related to Finding 7).

Results

By analyzing the two dimensions of metrics we obtained and performing the
statistical test on the maintenance efforts (i.e. logging churn rates), we iden-
tify four findings with respect to the variations in maintenance efforts of test
and production logging statements. We find that, although overall, the log-
ging statements are less likely to be updated in test files compared to that in
production files, the average efforts developers spent on maintaining a logging
statement are comparable. Furthermore, we identify the difference between
logging components in updated logging statements for test and production
files.

Log change metrics. In this dimension, we analyze the numbers of the
added, deleted, and updated logging statements (during the analyzed histo-

https://github.com/apache/hadoop
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ries) in each subject, as presented in Table 9. To further investigate the dif-
ference between test log churn and production log churn, we created Figure 5
(complements Table 9) below, which demonstrates the proportions of added,
deleted, and updated logging statements in each subject. Table 10 shows the
thousand percentages of the updated, added and deleted logging statements,
normalizing based on the totally updated, added and deleted source code re-
spectively.

Table 9: Overview of the logging statement changes.

Subject
Production Files Test Files

Updated Added Deleted Updated Added Deleted

Hadoop 7,702 25,889 12,658 595 9,510 3,403
Hbase 6,665 17,944 11,721 1,003 7,009 3,527
Hive 3,870 16,842 9,225 208 3,903 2,501
Zookeeper 1,385 2,668 1,256 504 1,206 519
Tomcat 1,808 6,186 3,711 97 719 249
Lucene 4,037 8,625 5,430 1,360 6,362 3,354
ActiveMQ 2,875 5,239 2,711 871 5,559 1,445
Maven 623 1,809 1,451 346 439 392
Ant 2,313 4,872 3,505 56 640 568
Empire-DB 207 1,131 315 1 19 1
Karaf 756 3,405 1,841 40 689 398
Log4j 656 2,325 1,705 167 953 347
Mahout 1,699 1,999 1,392 235 704 480
Mina 480 1,254 1,041 44 233 185
Pig 556 2,876 1,296 259 3,058 2,279
Pivot 86 410 226 68 585 340
Struts 998 3,134 2,007 1 75 32
Openmts∗ 511 1,747 1,261 14 133 68
Fop 1,584 4,084 2,969 32 131 45
Jmeter 2,809 6,167 4,330 343 852 517
Rat 8 59 30 10 24 5

Total 41,628 118,665 70,081 6,254 42,803 20,655

∗ Openmts is Openmeetings.

Finding 6 : Overall, production logging statements are more likely to be
updated than test logging statements.

Descriptive statistics: According to Table 9 and Figure 5, during the stud-
ied commit histories of the subjects, the total proportion of logging statements
that are updated in the production code is 18.07% which is roughly twice as
much as it is in the test code (8.97%). Exceptionally, in Maven and Rat, the
logging statements in the test code are more likely to be updated. The per-
centage of the logging statements added in the test code is 61.40%, which is
about 10% higher than that in the production code (51.51%). The proportion

https://github.com/apache/maven
https://github.com/apache/creadur-rat
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Fig. 5: Distributions of the change types of logging statements.

Table 10: Overview of the logging statement changes normalized based on the
proportion (‰) of source code changes.

Subject
Production Files (‰) Test Files (‰)

Updated Added Deleted Updated Added Deleted

Hadoop 31.19 15.16 17.63 4.47 8.79 10.91
Hbase 18.39 7.63 6.24 7.87 13.52 16.41
Hive 9.15 7.60 9.07 3.09 6.52 7.76
Zookeeper 54.62 26.09 30.76 26.00 18.75 30.80
Tomcat 14.96 12.39 15.73 5.86 7.56 13.81
Lucene 6.70 5.33 6.20 6.38 7.05 9.56
ActiveMQ 31.55 13.57 15.67 30.24 21.65 26.21
Maven 11.33 6.38 6.87 32.00 7.27 9.98
Ant 17.11 12.10 12.04 2.43 8.02 12.04
Empire-DB 24.28 17.60 28.23 3.65 7.02 2.77
Karaf 22.18 17.15 19.55 7.19 19.64 30.38
Log4j 24.08 22.55 22.58 33.79 42.79 60.31
Mahout 15.80 7.64 7.93 11.34 10.19 11.65
Mina 14.95 9.04 8.62 6.70 8.10 7.96
Pig 10.26 9.55 10.50 7.06 14.97 23.71
Pivot 1.30 1.68 1.56 17.53 47.01 68.42
Struts 28.30 10.56 11.04 0.06 0.78 0.77
Openmts∗ 18.85 18.56 28.47 7.27 17.03 28.89
Fop 9.72 9.65 12.88 6.78 3.43 6.76
Jmeter 15.23 20.79 24.14 9.77 11.09 11.75
Rat 2.18 4.53 10.00 4.08 2.68 2.31

Total 14.84 9.89 10.27 8.03 10.05 12.46

∗ Openmts is Openmeetings.
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of the logging statements deleted in the test code (29.63%) and production
(30.42%) code are comparable.

To eliminate the biases induced by various proportions of source code
changes, we normalized logging statement changes to build Table 10. Every
data point in this table cell is the corresponding data point from Table 9 di-
vided by the number of lines of source code changes. According to row Total,
after excluding affection from proportions of source code changes, produc-
tion logging statements still have a higher chance of being updated than test
logging statements (14.84 vs. 8.03). However, both have a similar chance of
being added (9.89 vs. 10.05), while production logging statements have a lower
chance of being deleted than test logging statements (10.27 vs. 12.46).

Statistical test: The Chi-squared test results in column Log change types
of Table 12 demonstrates if and how logging statement change types (i.e.
Added, Deleted, and Updated) are associated with logging statement types. As
it shows in the table, only 1/21 subject does not have any association between
the logging statement change types and logging statement types. In the re-
maining 20 subjects, 8 exhibit negligible effect size and 12 display small effect
size. Such results indicate that although there exists an association between
logging statement change types and logging statement types, the association
is quite weak.

Discussion: The descriptive statistics uncover the differences in the pos-
sibility to be changed between test and production logging statements. Such
difference is more apparent for logging statement updates when compared to
the two other logging statement changes. Moreover, the statistical test uncov-
ered a slight association between logging statement change types and logging
statement types that supports the finding from descriptive statistics.

Finding 7 : The average effort expended by developers to maintain pro-
duction logging statements is slightly greater than that expended on test
logging statements.

Descriptive statistics: Table 11 presents an overview of the code churn rate
and log churn rate for the studied subjects. Column General indicates the
churn rate of code or logs that are not specific to test or production, while
the columns Test and Production indicate churn rates specific to test and
production, respectively. According to Table 11, production logging statements
have a total churn rate of 15.93‱ for all subjects, which is slightly higher
than test logging statements (13.27‱). In general, the churn rates of test
and production logging statements are higher than the churn rates of test and
production code separately, implying that developers actively maintain the
logging code, as revealed by prior studies (Yuan et al., 2012b; Chen and Jiang,
2017c; Zeng et al., 2019).

Statistical test: We first conducted Mann-Whitney U tests on test and pro-
duction log churn data at the commit level for each subject, which yielded that
p-values is 0 (<0.001) for 20 subjects and 0.032 for Rat, indicating there ex-
ist differences between developers’ maintenance effort (measured by log churn

https://github.com/apache/creadur-rat
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Table 11: Overview of the churn rates of each subject

Subject
Code Churn Rate (‱) Log Churn Rate (‱)

General Test Production General Test Production

Hadoop 3.47 3.99 3.31 4.56 3.39 4.92
Hbase 12.25 9.63 13.18 11.09 8.33 12.22
Hive 8.34 12.56 7.87 10.61 7.91 11.28
Zookeeper 33.84 40.73 30.78 51.22 47.88 52.15
Tomcat 2.37 3.37 2.30 2.14 2.59 2.18
Lucene 6.63 6.29 6.78 8.46 4.66 20.26
ActiveMQ 7.02 6.53 7.12 10.06 9.15 10.76
Maven 20.06 16.35 21.01 23.21 32.81 21.30
Ant 8.28 8.98 8.01 14.77 9.68 18.70
Empire-DB 16.91 30.60 16.62 26.28 47.83 26.18
Karaf 14.86 17.26 14.70 20.19 15.58 19.73
Log4j 29.63 31.06 29.35 34.17 35.04 33.60
Mahout 27.39 20.23 38.41 37.70 30.80 37.24
Mina 66.63 56.56 69.43 75.06 111.73 72.64
Pig 29.31 29.94 29.03 21.14 41.23 19.11
Pivot 17.60 27.66 17.42 39.68 43.37 38.46
Struts 21.11 16.98 22.85 24.34 11.15 24.69
Openmts∗ 14.21 14.73 14.13 19.26 10.80 20.21
Fop 16.80 18.54 16.68 22.61 17.27 22.85
Jmeter 8.35 8.90 8.25 7.64 16.85 7.55
Rat 55.94 56.03 55.71 84.72 71.63 89.97

Total 11.21 11.44 11.53 13.76 13.27 15.93

* Openmts is Openmeetings.

rates) regarding test and production logging statements. To further study the
effect size of these differences, Figure 6 presents Cliff’s delta between the distri-
butions of the maintenance efforts on production and test logging statements
for each subject. As illustrated in Figure 6, the differences in distributions of
the maintenance efforts on test and production logging statements are neg-
ligible in 19 subjects and are small in the remaining 2 subjects. This means
that, although there are differences in developers’ maintenance effort on test
and production logging across all subjects, almost all of these differences have
negligible magnitude.

Discussion: During our analysis, we discovered that the number of com-
mits with log changes differs significantly between test and production files.
To be more specific, the test logging statements are changed in 10,832 com-
mits for all analyzed subjects, while the production logging statements are
changed in 29,650 commits which more than doubles the number of commits
with test log changes. Because log churn rates of test and production logs are
only slightly different, we can conclude that, on average, developers prefer to
change a smaller proportion of production logging statements in a commit
and change them more frequently (i.e., more commits with production log
changes), whereas they prefer to change a larger proportion of test logging
statements in a commit but change them less often.
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Fig. 6: Statistical test results for comparing the distributions of the changed
logging components.

In conclusion, despite the fact that developers have different habits for
modifying production and test logging statements, the corresponding log churn
rates are only marginally different, implying that the effort expended by devel-
opers to maintain production logging statements is only slightly greater than
that expended on test logging statements (i.e., Finding 7).

Component metrics. Figure 7 depicts the proportions of the changed log-
ging components for all updated logging statements in test and production
files. In this dimension, we disclose two findings by comparing the changed
logging component proportions for test and production logging statements.

Fig. 7: Overview of the updated logging components.

In Figure 7, the ordinate (Y -axis) represents the proportions of logging
components in updated logging statements, while the abscissa (X -axis) repre-
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sents the various logging component types as introduced in Table 8. Several
components of a logging statement may be modified simultaneously when the
logging statement is updated. Our logging component proportion calculation
includes such overlapping, i.e., a logging statement with various component
changes could be counted multiple times for analysis.

Finding 8 : For both test and production logging statements, the most
commonly modified logging component is variable, while the least com-
monly modified component is logging level.

Descriptive statistics: According to Figure 7, the logging component vari-
able is the most commonly updated component in both test logging statements
(55.33%) and production logging statements (48.40%). Component static text
is the second most commonly modified logging component in test (27.53%)
and production (31.73%) logging statements. The proportion of component
logging level in test logging statements is 1.97%, compared to 5.54% in pro-
duction logging statements, which indicates that the least commonly modified
component is logging level. The relevant statistical test could be found below
Finding 9.

Discussion: Although prior studies have also revealed the proportions of
logging statements for various logging component change types, they examine
test and production logging statements as a whole rather than separately. For
example, Yuan et al. (2012b) discover that 27% of logging statement changes
in C and C++ applications are related to variable updates, while Zeng et al.
(2019) find that 45.6% of logging statement changes for it in mobile applica-
tions. Our study, however, is the first to disclose how different logging com-
ponent change types vary in test and production logging statements. The
statistical test below can provide further insights.

Finding 9 : Generally, the updated logging components are slightly as-
sociated with the logging statement types (i.e., test or production logging
statements).

Descriptive statistics: Based on Figure 7, we examine the differences be-
tween the components of updated logging statements in test and production
files. The component variable has the greatest difference (6.93%), whereas the
component logging object has the smallest difference (0.26%). It appears that
differences between logging components in test and production files are mod-
est, which requires statistical testing to reach a more conclusive conclusion.

Statistical test: We perform a Chi-squared test to examine whether the up-
dated logging components are associated with changed logging statement types
(i.e., test/production). The test results are presented in Table 12 (column Up-
dated log components). In Table 12, only one subject (i.e, Empire-DB) has a
p-value greater than 0.05, indicating that the updated logging components are
only independent of logging statement types in one subject. In the remaining
20 subjects whose updated logging components are associated with logging
statement types, only one has a large effect size and four have a medium effect

https://github.com/apache/empire-db
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Table 12: Chi-squared test results for comparing test and production logging
metrics related to Finding 6, Finding 8 and Finding 9.

Subjects
Log change types Updated log components

p-val Cramér’s V eff size p-val Cramér’s V eff size

Hadoop 0 0.159 SM 0 0.087 NEGL
Hbase 0 0.124 SM 0 0.142 SM
Hive 0 0.123 SM 0 0.095 NEGL
Zookeeper 0.002 0.040 NEGL 0 0.078 NEGL
Tomcat 0 0.082 NEGL 0 0.140 SM
Lucene 0 0.131 SM 0 0.185 SM
ActiveMQ 0 0.234 SM 0 0.234 SM
Maven 0 0.145 SM 0 0.473 MED
Ant 0 0.137 SM 0 0.076 NEGL
Empire-DB 0.095 N/A N/A 0.906 N/A N/A
Karaf 0 0.105 SM 0 0.175 SM
Log4j 0 0.133 SM 0 0.280 SM
Mahout 0 0.152 SM 0 0.307 MED
Mina 0 0.074 NEGL 0 0.218 SM
Pig 0 0.174 SM 0 0.406 MED
Pivot 0.001 0.088 NEGL 0 0.407 MED
Struts 0 0.061 NEGL 0 0.122 SM
Openmts∗ 0 0.066 NEGL 0 0.247 SM
Fop 0 0.049 NEGL 0 0.113 SM
Jmeter 0.027 0.022 NEGL 0 0.067 NEGL
Rat 0.007 0.270 SM 0.001 0.766 LG

∗ Openmts is Openmeetings.

size. Of the remaining 15 subjects, ten have small effect sizes, while five have
negligible effect sizes. The statistical test results indicate that although the
updated logging components are associated with changed logging statement
types, such association is rather minimal.

Discussion: Figure 7 shows a similar trend of updated logging component
distributions for test and production logging statement changes, and we derive
Finding 8 from this, which concerns the similarity of updated logging compo-
nents between test and production logging statement modifications. However,
after performing statistical tests, we discovered that updated logging com-
ponents are still related to the logging statement types, but the association
is weak. Because of this association, test and production logging statements
should be studied individually.

RQ3: Why do developers use test logging?

Motivation

In RQ1, we reveal the log level distributions in test and production files. We
have discussed how the number of INFO levels is (much) greater than other log
levels, particularly at higher log levels (i.e., ERROR and WARN), which contradicts
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our straightforward notion (i.e., the higher logging levels may account for the
major portion of test logging levels). Because of these discrepancies between
logging level distribution and our plain notation, a research question arises:
why do developers use test logs? By answering this question, we build a bridge
from log level usage to actual test log usage in this section. In order to answer
this question, we conduct a “firehouse email interview” (Murphy-Hill et al.,
2015) with the developers to find out why they recently added logging state-
ments to the test files. A similar approach is used by Zeng et al. (2019) as
well.

Approach

Our approach constitutes two phases. In the first phase, we collect data from
developers. Then in the second phase, we analyze developers’ response mes-
sages and identify the rationales.

– Data collection. During this phase, we survey developers by email to
find out why test logging statements are added. We first identify logging
statements newly added to test files of the studied subjects every week
from 2020-07-28 to 2021-01-14 by using our data extraction scripts, and
then we email developers to inquire about the reasons that they add those
logging statements in test files. In order to increase the survey response
rate, we try to provide as many details as possible (e.g. file URL, commit
ID, and line number) about the logging statements. In most instances, we
just ask developers one question regarding why they added a new logging
statement, such as if they can explain why they added the logging state-
ment briefly in a given context. In other instances, we inquire developers
about multiple logging statements since we observed that a commit could
contain numerous new logging statements (up to four to avoid bothering
developers). As surveying developers multiple times may lead to biased
results, we only survey each developer once. Finally, we have emailed 50
developers and received 22 replies regarding the addition of 43 test logging
statements.

– Data analysis. We perform a pair review (i.e., each reviewer examines the
same data individually and then merges their review results) to classify the
rationales that developers log in test files. Two reviewers first examine each
responded email separately to tag each logging statement with a label that
indicates the rationale behind it. After the first round of examination, re-
viewers combine the initial labels into new labels. During a second round,
the two reviewers then re-label the logging statements individually accord-
ing to the new labels and the contents of the emails. After these two rounds
of examination, we use Cohen’s kappa (McHugh, 2012) to measure the re-
liability of the agreements between two reviewers. Below is a formula from
McHugh (2012) that gives the relationship between the level of agreement
and the value of cohen’s kappa:
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Level of Agreement =



None if Cohen’s k ≤ 0.20

Minimal if 0.20 < Cohen’s k ≤ 0.39

Weak if 0.39 < Cohen’s k ≤ 0.59

Moderate if 0.59 < Cohen’s k ≤ 0.79

Strong if 0.79 < Cohen’s k ≤ 0.90

Almost perfect if Cohen’s k > 0.90

(2)

Results

During the research, we gathered the rationale for adding 43 logging statements
from 22 surveyed developers. The Cohen’s kappa regarding the agreement be-
tween the two reviewers after the first round is 0.69 this value increased to 1
after the second round review. This indicates that our classification is reliable.
As illustrated in Figure 8, our research results have revealed four reasons why
developers log in to test files.

Finding 10 : Developers use test logs for four reasons, the most common
of which is Debugging, followed by Recording Operational Information.
Two minor reasons for using test logging are Refactoring and Code Clone.

Fig. 8: Rationales for developers logging in test files.

Debugging (20/43). Debugging is the most typical reason for developers
to use test logging. Across these 20 Debugging cases, there are few minor
differences in the rationale for developers to use test logs. In 9/20 cases,
developers use logging statements to collect information for certain source
code lines that are prone to cause bugs. For example, in Hive with commit
077952f, one developer added the following logging statement:

+ LOG.info("+runStatementOnDriver(" + stmt + ")");

https://github.com/apache/hive
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The following is the developer’s response on why this logging statement was
added:

In this particular case, it was added mainly for debug/troubleshooting purposes to highlight
any changes to physical data representation after a certain query. This might give some
quick hints on a type of problem to QA/RelEng and help DEVs to pinpoint commit that
might have introduced the change (e.g., change in a dependent component (query executor)
especially when versioning is dynamic.

In 7/20 cases of Debugging, test logs are used to print the error message
directly to facilitate debugging. For example, in the commit 52db86b of Hadoop,
one of the developers we surveyed added the logging statement below:

+ System.err.print(err.toString());

The developer’s justification for adding this logging statement is as follows:

The test case testSupportedFs() aims to test the system error output when the FileSystem
doesn’t support concat. It first redirects the error output stream to collect the error mes-
sage. Then it prints the error message back to system.err so the user won’t lost the error
output. What the line 137 does is printing back the error message.

In the remaining four cases, developers responded that they added logging
statements for debugging on their local machine, but that they should have
eliminated them before committing or used assertions instead.

Recording operational information (18/43). The second most common
reason for developers to log in test files is Recording operational information in
order to monitor test behaviors and enhance printed log messages. In 13/18
cases, logging statements are used to check the results of certain operations.
For example, in the commit 4b62152 of Hbase , the developer added a logging
statement below:

+ LOG.info("The Master FS is pointing to: " + master2.getMasterFileSystem()
+ .getFileSystem().getUri());

The following is the developer’s response on the reason for the logging state-
ment addition:

In the said situation, the test was about checking the behavior of an operation(i.e., wal
splitting) in the case of different wal and root filesystem which is why the first log line.

In the rest 5/18 cases, the logging statements are introduced to enhance the
readability and comprehensiveness of the generated log messages. For example,
the following logging statement was added into Lucene-solr with commit 6bf5f4a:

+ log.info("Starting routeFieldTest");

The rationale explained by the developer is:

When analyzing logs produced by tests, Solr creates quite large output files. Sometimes it’s
difficult to know exactly where in one of those log files a test starts, so I added that line
when I happened to be looking at that code.

https://github.com/apache/hadoop
https://github.com/apache/hbase
https://github.com/apache/lucene-solr
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Refactoring (3/43). Some logging statements are introduced in test files as
a result of the refactoring of test code. For example, one developer added the
following logging statement into Hbase with commit b556343:

+ LOG.debug("row count duration (ms): " + duration);

The reason behind this logging addition is that the developer just rearranged
the code in that class and that logging statement was already there since the
creation of the test.

Code clone (2/43) Only a few logging statements were added due to the
clone of the test code. For example, in commit 2ffe00f of Hadoop, a developer
added a logging statement below:

+ LOG.info("Running {}", testMatrixEntry);

The following is how the developer justified the reason:

The main reason I added those logging statements is because I copied and pasted an existing
test, which I then modified for the new scenario. As the logging was there in the original,
I just kept it.

In conclusion, developers use test logs for four reasons, the most common
of which is Debugging, followed by Recording Operational Information. In con-
junction with the discovery of log level distribution, which reveals that INFO is
the most commonly used log level in test files, we can conclude that develop-
ers use a significant portion of INFO for debugging purposes. In other words, in
addition to the error messages printed by logging statements with higher log
levels, developers always use informational data (e.g., recording an event) to
debug.

RQ4: What is the relationship between test logging and production logging?

Motivation

During the software testing process, both production and test logs are printed.
A production log displays production information under testing while a test log
is generated by a test suite. RQ1 and RQ2 highlight some significant differences
and similarities in logging practices between test and production files, implying
that test logs may not be independent of production logs. In this case, the
question arises as to whether the log information contained in test logs could
be useful for production logging, for example, to leverage the information in
test logs to improve production logging statements. Therefore, to answer this
question, we conduct a manual study to explore the relationships between
test and production logging. Based on the results of the manual study, we
classify the test logs to determine whether the information in the test log is
useful for production logging. We would like to know, even though test logs are
generated by test files, if they are added to production logging, whether they
can help people better understand the runtime behavior of the system. To the
best of our knowledge, this is the first study to investigate the relationship

https://github.com/apache/hbase
https://github.com/apache/hadoop
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between test logging and production logging and classify test logs’ usefulness
for production logging.

Approach

As shown in Figure 9, our approach consists of three steps. In the first step,
we execute all of the unit tests for the subjects under investigation in order
to obtain test outputs3. The second step takes the test outputs from the first
step as input and uses regular expressions to identify the test logs from them.
In the final step, we randomly select a sample from the test logs identified
in the previous step and label each test log using a pair review. These labels
reflect the relationship between test logs and their corresponding production
logs, as well as whether the information supplied by the test logs is useful for
production logging and the test log’s classification.

Fig. 9: Overview of the research approach for RQ4.

– Tests outputs collection. We begin by cloning the research subjects onto
our local machine. Because all of the research subjects use automation build
tools, such as maven and ant, for software building and testing that publishes
logs through Terminal, we modify the test configuration files to redirect the
test outputs from Terminal into text files to facilitate further data analysis.
Finally, we execute the tests through the command line. For example, we
run all the tests of the subjects that use maven as their automation build
tool with mvn clean install -fn.

– Log messages identification. Each text file generated in the first step
contains test logs and production logs produced by the production code
covered by the test case involved in this text file. The goal of this step is to
identify test logs so that we can investigate the relationships between them
and the other logs (i.e., production logs) in the following step. A typical
test log would appear like this:

2021-01-27 17:19:13,973 INFO [pool-1-thread-4] amrmproxy.TestAMRMProxyService (TestAMRMProxy-
Service.java:invoke(402)) - Sucessfully registered application master with appId: 3

We first use regular expressions to match the time patterns to identify the
typical logs (atypical logs are worthless for subsequent analysis), and then
we use regular expressions and the search-keyword “test” to identify test
logs in the test outputs. Typical logs can specify which files generate the

3 In this work, we refer to test outputs as the log messages produced during the execution
of the unit tests.
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logs. In the example above, this log is generated by TestAMRMProxyService. c

java. The keyword “test” is always present in the name of a test file so that
we can use it to identify test logs. This approach has been proved to have
a high precision and an acceptable recall in identifying test and production
files (White et al., 2020).

– Log messages analysis. In this step, we manually analyze the log infor-
mation from test and production logs. The reason we adopt the manual
analysis method instead of checking the function calls is that checking
function calls is a coarse-grained approach. The presence of a production
method invocation in a test does not imply that the test logs generated
by this test can be helpful to the production logging. Finding the rela-
tionships between test and production logging requires the analysis of log
information, and human effort is needed to understand log information. We
first sample the test logs and then apply two rounds of labeling to the logs
samples. We randomly sample test logs with five confidence interval and
95% confidence level (Confidence Intervals/Levels, 2021). We obtained 385
different test log samples from the unit tests’ outputs that contain 691,310
instances in total, and selected 100 logs at random from this log sample
set to perform the first round of labeling. Our log samples are divided into
five batches, each of which is reviewed by two researchers individually, due
to the fact that there are five researchers involved in this study. Each test
log is provided with the context of the test output which includes all the
production and test logs produced during the execution of a unit test.
The first round of labeling only examines a subset of the log samples in
order to obtain an initial consensus and get some common knowledge. The
first round of labeling produces a preliminary set of labels used for the
second round. The labeling is based on log content analysis of test logs
and the surrounding production logs in the same log file, which necessi-
tates that the labelers comprehend the log information in test logs and the
surrounding production logs. The second round of labeling covers all log
samples and is based on the common understanding of the prior round. The
second round includes labeling the rest of the test logs as well as revisiting
the labeled logs to alter them if they are against the established knowledge
base. If the two researchers are unable to achieve an agreement, a third
researcher may be invited to reach the final agreement. After these two
rounds of labeling, the Cohen’s kappa of researcher agreement ranges from
0.91 to 1 for three labels, indicating that researchers attain a consistent
agreement on the test log labels. The final agreement was then reached
with the assistance of a third researcher.

Results

Each test log sample has three labels: (1) the relationships between it and
the relevant surrounding production logs, (2) the usefulness of test logs for
production, and (3) test log classifications. Below are the details of these three
labels:
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Relationship between the test logs and production logs. As shown in
Figure 10, our research has yielded four categories with regard to the relation-
ship between test and production logs: Test only, Overlap, Elaboration, and
Complementary. The definition of each category is provided below, along with
an example in table Table 13. The fonts of labeled test logs are in ‘blue color’,
while the fonts of associated production logs are in ‘orange color’. In every
category, we display not only the labeled test logs but also logs that surround
them to help readers understand the context of each test log.

Table 13: Relationships between test and production logs.

Relationship Example

Test only

2021-03-01 22:23:45,738 INFO [Time-limited test] wal.AbstractFSWAL(990): Closed
WAL: AsyncFSWAL hregion-45030200:(num 1614655425101)
2021-03-01 22:23:45,738 INFO [Time-limited test] hfile.TestScannerFromBucket
Cache(94): Cleaning test directory:/anonymous/hbase-master/hbase-server/target/
test-data/anonymous
2021-03-01 22:23:45,755 INFO [Time-limited test] hbase.ResourceChecker(179): af-
ter: io.hfile.TestScannerFromBucketCache#testBasicScanWithOffheapBucketCache
WithMBB Thread=39 (was 26) - Thread LEAK? -, OpenFileDescriptor=358 (was
310) - OpenFileDescriptor LEAK? -, MaxFileDescriptor=1048576 (was 1048576),
SystemLoadAverage=77 (was 77), ProcessCount=122 (was 122), AvailableMemo-
ryMB=1831 (was 2244)

(a) Generated by TestScannerFromBucketCache (subject: Hbase)

Overlap

2020-12-10 17:39:27,707 [main ] - INFO KahaDBDeleteLockTest - Lock
file /anonymous/activemq-master/activemq-unit-tests/target/activemq-
data/KahaDBDeleteLockTest/kahadb/lock, last mod at: Thu Dec 10 17:39:27
EST 2020
2020-12-10 17:39:30,078 [KeepAlive Timer] - INFO LockFile - Lock
file /anonymous/activemq-master/activemq-unit-tests/target/activemq-
data/KahaDBDeleteLockTest/kahadb/lock, locked at Thu Dec 10 17:39:27 EST
2020, has been modified at Thu Dec 10 17:39:29 EST 2020

(b) Generated by KahaDBDeleteLockTest (subject: ActiveMQ)

Elaboration

2021-01-27 17:17:17,627 INFO [main] scheduler.DistributedOpportunisticContainerA-
llocator (DistributedOpportunisticContainerAllocator.java:allocateContainersIntern-
al(227)) - Opportunistic container has already been allocated on h3.
2021-01-27 17:17:17,627 INFO [main] scheduler.TestDistributedOpportunisticConta-
inerAllocator (TestDistributedOpportunisticContainerAllocator.java:testMaxAlloca-
tionsPerAMHeartbeat(669)) - Containers: [Container: [ContainerId: container 0 0-
001 01 000002, AllocationRequestId: -1, Version: 0, NodeId: h3:1234, NodeHttpAd-
dress: h3:1234, Resource: <memory:1024, vCores:1>, Priority: 1, Token: Token
kind: ContainerToken, service: h3:1234 , ExecutionType: OPPORTUNISTIC, ],
Container: [ContainerId: container 0 0001 01 000003, AllocationRequestId: -1,
Version: 0, NodeId: h2:1234, NodeHttpAddress: h2:1234, Resource: <memory:1024,
vCores:1>, Priority: 1, Token: Token kind: ContainerToken, service: h2:1234 ,
ExecutionType: OPPORTUNISTIC, ]]

(c) Generated by TestDistributedOpportunisticContainerAllocator
(subject: Hadoop)

Complementary

2021-01-27 17:37:04,213 INFO [Container Monitor] monitor.ContainersMonitorImpl
(ContainersMonitorImpl.java:run(512)) - Skipping monitoring container con-
tainer 123456 0001 01 000001 since CPU usage is not yet available.
2021-01-27 17:37:04,233 INFO [main] monitor.TestContainersMonitorResourceChange
(TestContainersMonitorResourceChange.java:waitForContainerResourceUtilizationC-
hange(326)) - Monitor thread is waiting for resource utlization change.
2021-01-27 17:37:04,254 WARN [Container Monitor] monitor.Container- sMon-
itorImpl (ContainersMonitorImpl.java:run(561)) - org.apache.hadoop.yarn-
.server.nodemanager.containermanager.monitor.ContainersMonitorImpl is inter-
rupted. Exiting.

(d) Generated by TestContainersMonitorResourceChange (subject:
Hadoop)

– Test only (290/385). Test logs in this category only contain information
about the tests and do not include any relevant production logs in the same

https://github.com/apache/hbase
https://github.com/apache/activemq
https://github.com/apache/hadoop
https://github.com/apache/hadoop
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file. As illustrated in Table 13, the test log refers to cleaning up a directory
used for testing only during a test.

– Overlap (40/385). In this category, the information provided by test logs
is also reflected in production logs. For example, the test log (‘blue’ font)
and related production log (‘orange’ font) in Table 13 are both indicating
the same file is locked therefore this test log is overlapping with production
logs.

– Elaboration (29/385). Test logs in this category contain information
that somewhat overlaps with relevant production logs, but they elabo-
rate the production logs with additional details. In Table 13, although the
production log includes information about the opportunistic container, the
test log provides more details about the opportunistic container, such as
container ID and version.

– Complementary (26/385). Test logs in this category complement the
information conveyed in the production logs. As shown in Table 13, the
test log indicates that the monitoring thread is waiting for the required
resource to be utilizable while the first production log indicates that CPU
usage is not yet available.

Fig. 10: Relationship between test and production logs.

Figure 10 presents proportions for each category of the relationship be-
tween production logs and test logs. Based on this figure, the most prevalent
relationship is Test only (75.3%). This number confirms developers’ intuition
that the vast majority of test logs are dedicated to testing rather than pro-
duction. However, there is quite a large number (around a quarter) of test logs
related to production. The second most prevalent relationship is the Overlap
relationship (10.4%), which signifies that either the test code developers are
not aware of the similar logging in production code, or the production logging
is not in a good format that facilitates testing. The least common relationships
between test logs and production logs are Elaboration (6.8%) and Complemen-
tary (7.5%), both of which have fairly comparable proportion numbers.
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The Elaboration and Complementary relationships suggest that the pro-
duction run-time information contained in the production logging is not suf-
ficient for understanding the testing results. Test logs that are labeled with
Overlap relationship with production logging provide the same information as
in production logs, hence we conjecture that such test logs may not be useful
to production logging. However, there is no existing evidence (to the best of
our knowledge) proving this. Thus, we also examine whether such test logging
could be useful and added to the production code.

Usefulness of test logs. In the subsequent analysis, we examined the use-
fulness (to production logging) of the 95 test logs that are not labeled with
Test only and assigned these logs three labels: Useful, Not useful, and Unclear.
Generally, we manually examine the contents of test logs and the production
logs that surround them. We would like to know, if the information contained
in the test logs is added to production logging statements, whether it can
improve production logging and help people better understand the runtime
behavior of the system (i.e., being useful). Table 14 presents some examples of
useful and useless test logs. As in the previous section, the analyzed test logs
are denoted by ‘blue’ font color. Figure 11 depicts the connections between
the usefulness of test logs and their relationship with production logs.

Table 14: Example of the usefulness of the test logs.

Usefulness Example

Useful

2021-01-27 19:43:18,394 INFO [Thread-179] webapp.RouterWebServices (Router-
WebServices.java:initializePipeline(267)) - Initializing request processing pipeline
for user: test1
2021-01-27 19:43:18,395 INFO [Thread-180] webapp.TestRouterWebServices (Te-
stRouterWebServices.java:run(309)) - init web interceptor success for usertest1

(a) Generated by TestRouterWebServices (subject: Hadoop)

Not useful

2021-01-27 17:55:54,353 INFO [main] distributed.CentralizedOpportunistic-
ContainerAllocator (CentralizedOpportunisticContainerAlloca-
tor.java:allocatePerSchedulerKey(167)) - Opportunistic allocation requested for
[priority=1, allocationRequestId=2, num containers=2, capability=<memory:1024,
vCores:1>] allocated = [<memory:1024, vCores:1>]
2021-01-27 17:55:54,353 INFO [main] distributed.TestCentralizedOpportunistic-
ContainerAllocator (TestCentralizedOpportunisticContainerAlloca-
tor.java:testAllocationLatencyMetrics(598)) - Containers: [Container: [ContainerId:
container 0 0001 01 000002, AllocationRequestId: 2, Version: 0, NodeId: h1:1234,
NodeHttpAddress: null, Resource: <memory:1024, vCores:1>, Priority: 1, Token:
Token kind: ContainerToken, service: h1:1234 , ExecutionType: OPPORTUNISTIC,
], Container: [ContainerId: container 0 0001 01 000003, AllocationRequestId: 2,
Version: 0, NodeId: h1:1234, NodeHttpAddress: null, Resource: <memory:1024,
vCores:1>, Priority: 1, Token: Token kind: ContainerToken, service: h1:1234 ,
ExecutionType: OPPORTUNISTIC, ]]

(c) Generated by TestCentralizedOpportunisticContainerAllocator
(subject: Hadoop)

– Useful (35/95). The information provided by test logs in this category is
useful to production logging. As the example shows in Table 14, the sur-
rounding log is describing the initialization of a requested resource from a
specific user, and the target test log is indicating the success of initializa-
tion.

https://github.com/apache/hadoop
https://github.com/apache/hadoop
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– Not useful (57/95). The information contained in test logs is useless to
production logging. For example, the surrounding log in Table 14 describes
the properties of an opportunistic container. Although the analyzed test
log contains more details about this container, it is useless for production
logging since this container is primarily used for testing, and details about
it are not required in production.

– Unclear (3/95). Finally, we have observed several test logs that are dif-
ficult to determine whether they are useful to production logging due to
the lack of related domain knowledge.

Fig. 11: Usefulness of non-Test-Only logs.

Figure 11 demonstrates the correlations between the usefulness of test logs
and their relationships with production logs. We find that the category Useful
consists of 20 cases of Complementary and 15 cases of Elaboration, with no
Overlap. The category Not useful is composed of 6 cases of Complementary,
12 cases of Elaboration, and 39 cases of Overlapping. The majority of Overlap
cases fall into the category of Not useful, which implies the test logs having an
Overlap relationship with production logging are almost useless to production
logging which is because such information is already available in the production
logging.

Classification of test logs. To further investigate what information makes
test logs useful, we then classify the information recorded in the 95 test logs
that are not labeled with Test only during our subsequent analysis. Our study
has revealed ten categories based on the information contained within these
logs which can be leveraged in future research with regard to how to identify
and utilize the useful information in test logs. These ten categories are defined
below, and examples are included in Table 15. Just as in the previous section,
the analyzed test logs are marked with a blue color.

– Production intermediate data (31/95). In this category, test logs con-
tain information regarding the properties of the software or production
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Table 15: Classifications of test logs.

Classification Example

Production
intermediate

data

2021-01-27 20:38:31,249 INFO [AsyncDispatcher event handler] impl.JobImpl (Jo-
bImpl.java:handle(1022)) - job 0 0000Job Transitioned from SETUP to RUNNING
2021-01-27 20:38:31,253 INFO [Listener at 0.0.0.0/46761] hs.TestJobHistoryEvents
(TestJobHistoryEvents.java:testHistoryEvents(61)) - JOBID is job 0 0000

(a) Generated by TestJobHistoryEvents (subject: Hadoop)

Test
intermediate

data

2021-01-27T12:25:02,674 WARN [main] ql.TestTxnNoBuckets: after compact
2021-01-27T12:25:02,674 WARN [main] ql.TestTxnNoBuckets:
{”writeid”: 0,”bucketid”:536870912,”rowid”:4} 1 4 file:/anonymous/hive-
master/ql/target/tmp/org.apache.hadoop.hive.ql.TestTxnNoBuckets-
1611779017548/warehouse/nonacidnonbucket/base 10000004 v0000023/bucket 00000
2021-01-27T12:25:02,674 WARN [main] ql.TestTxnNoBuckets:
{”writeid”: 0,”bucketid”:536870912,”rowid”:5} 1 5 file:/anonymous/hive-
master/ql/target/tmp/org.apache.hadoop.hive.ql.TestTxnNoBuckets-
1611779017548/warehouse/nonacidnonbucket/base 10000004 v0000023/bucket 00000

(b) Generated by TestTxnNoBuckets (subject: Hive)

Production
event

2021-01-27 17:19:13,973 INFO [pool-1-thread-4] amrmproxy.TestAMRMProxyService
(TestAMRMProxyService.java:invoke(402)) - Sucessfully registered application mas-
ter with appId: 3
2021-01-27 17:19:13,974 INFO [pool-1-thread-1] amrmproxy.BaseAMRMProxyTest
(BaseAMRMProxyTest.java:call(251)) - Successfully sent request for context: 0

(c) Generated by TestAMRMProxyService (subject: Hadoop)

Test event

Mar 03, 2021 12:48:26 AM org.apache.tomcat.websocket.server.TestClose$TestEndpo-
int onOpen INFO: Session opened
Mar 03, 2021 12:48:26 AM org.apache.tomcat.websocket.server.TestClose$TestEndpo-
int onMessage INFO: Message received: Test

(d) Generated by TestClose (subject: Tomcat)

Production
method call

2020-12-10 16:12:03,380 [main ] - INFO AMQ4636Test - *** createDurableCon-
sumer() called ...
2020-12-10 16:12:03,383 [ActiveMQ Task-1] - INFO FailoverTransport - Successfully
connected to tcp://anonymous:36205

(e) Generated by AMQ4636Test.java (subject: ActiveMQ)

Test setup

2021-01-27 12:46:11,576 [Listener at localhost/10990] INFO
ha.TestFailureToReadEdits (TestFailureToReadEdits.java:setUpCluster(130)) -
Set SHARED DIR HA cluster’s basePort to 13512
2021-01-27 12:46:11,576 [Listener at localhost/10990] INFO hdfs.MiniDFSCluster
(MiniDFSCluster.java:<init>(509)) - starting cluster: numNameNodes=2, num-
DataNodes=0

(f) Generated by TestFailureToReadEdits (subject: Hadoop)

Production
return

2021-01-27 16:40:18,119 [Time-limited test] DEBUG net.NetworkTopology (Network-
Topology.java:chooseRandom(539)) - chooseRandom returning 2.2.2.2:9866
2021-01-27 16:40:18,119 [Time-limited test] DEBUG net.NetworkTopology (Network-
Topology.java:chooseRandom(539)) - chooseRandom returning 9.9.9.9:9866
2021-01-27 16:40:18,119 [Time-limited test] INFO net.TestNetworkTopology
(TestNetworkTopology.java:pickNodesAtRandom(406)) - Result:{2.2.2.2:9866=4,
20.20.20.20:9866=3, 4.4.4.4:9866=3, 15.15.15.15:9866=7, 17.17.17.17:9866=6,
19.19.19.19:9866=8, 16.16.16.16:9866=9, 9.9.9.9:9866=4, 8.8.8.8:9866=9,
14.14.14.14:9866=2, 7.7.7.7:9866=5, 5.5.5.5:9866=4, 6.6.6.6:9866=5,
12.12.12.12:9866=9, 11.11.11.11:9866=4, 10.10.10.10:9866=5, 18.18.18.18:9866=2,
3.3.3.3:9866=3, 1.1.1.1:9866=0, 13.13.13.13:9866=8}

(g) Generated by TestNetworkTopology (subject: Hadoop)

Environmental
information

2021-03-02 00:36:13,370 [myid:] - INFO [main:ClientPortBindTest@79] - Using
[0:0:0:0:0:0:0:1%lo]:30073 as the host/port

(h) Generated by ClientPortBindTest (subject: Zookeeper)

Test assertion

2021-01-27 11:36:35,377 [Listener at localhost/35513] INFO blockmanage-
ment.TestNameNodePrunesMissingStorages (TestNameNodePrunesMissingStor-
ages.java:get(361)) - Expected blk 1073741825 to be in storage id DS-2ab551a0-7f03-
4b60-8102-ea222efeecbd, but it was in DS-6ab27eb6-9c23-4c21-89bc-cdca79ea996e.
Continuing to wait.

(i) Generated by TestNameNodePrunesMissingStorages (subject:
Hadoop)

https://github.com/apache/hadoop
https://github.com/apache/hive
https://github.com/apache/hadoop
https://github.com/apache/tomcat
https://github.com/apache/activemq
https://github.com/apache/hadoop
https://github.com/apache/hadoop
https://github.com/apache/zookeeper
https://github.com/apache/hadoop
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code that is being tested. For example, the test log in Table 15 depicts the
ID of an ongoing production event.

– Test intermediate data (6/95). Test logs in this category display the
intermediate status of the resource exclusively for testing or the temporary
values of variables in test code during test execution. In Table 15, the test
log is recording the temporary status of the resources only for testing.

– Production event (21/95). Test logs in this category depict the events
related to the production code under test. The example presented in Ta-
ble 15 is describing an event about the production code under test.

– Test event (15/95). Test logs in this category portray events that only
pertain to the tests rather than the tested production code. The example
in Table 15 displays the event of initiating a session, which is exclusively
relevant to the test.

– Production method call (1/95). Test logs describe the method invoca-
tions in production files for this category. An example in Table 15 obviously
mentions a production method createDurableConsumer() is invoked.

– Test setup (4/95). In this category, test logs describe the configuration
to set up tests. The test log in Table 15 describes how to set up the cluster’s
(SHARED_DIR_HA) port number for testing.

– Production return (5/95). Test logs in this category record the informa-
tion returned from the production code. As the example shown in Table 15,
the test log is displaying the node selection result for a network topology
which is the return result from production code regarding node selection
strategy.

– Environmental information (7/95). Test logs in this category display
the environmental information of the platform, host, or hardware that the
test is running on.

– Test assertion (2/95). In this category, test logs record the assertion
results, and always include both expected and actual test results. The
example in Table 15 represents the two types of test results in a single log.

– Others (3/95). In this category, we include those cases not covered by
any of the preceding categories.

Figure 12 demonstrates the proportion of each category for the test logs not
labeled with Test only. As it shows in this figure, the most common category
is Production intermediate data (32.6%), which indicates that the majority
of test logs are leveraged to record the intermediate status of the software or
resources under test. The second and the third most common categories are
Production Event (22.1%) and Test Event (15.8%) respectively, implying that
test logs are often utilized to record the events of production or tests. The
least common category is Production Method Call (1.1%).

4 Threats to validity

We discuss the threats to the validity of our research in this section.
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Fig. 12: Test log categories.

External validity

The subjects involved in this research are all open-source Java projects hosted
on GitHub and incubated by Apache Software Foundation (2021). The selec-
tion of the research subjects can lead to the following threats:

– Our research results may not be applicable to industry or non-free software
considering that the logging practice can be different in industrial environ-
ments. We attempt to reduce this issue by investigating multiple software
projects. However, this drawback can be further overcome through collab-
oration with developers from the industry and analyzing the closed-source
applications developed by them.

– Our findings may not be reproduced to software written in other pro-
gramming languages (e.g., C and C++) rather than Java since we only
investigated Java projects. Therefore, it necessitates a further exploration
of applications implemented in other languages. Although we only look at
Java projects, Java is a popular programming language and we believe that
our results can be useful to numerous software developers.

– As all of the studied subjects are developed and maintained by Apache
Software Foundation (2021), our findings may not be applicable to the
software systems developed by other foundations or organizations (e.g. Mi-
crosoft Developer (2021)) since the developers’ logging practices may vary
among them. However, our studied subjects are all well-known projects
that have been developed for many years by professional developer teams,
and we believe that our results can reflect the real-world logging practice
in software development.
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Internal and construct validity

The threats to the internal and construct validity of our research may result
from the way we gather the data:

– When extracting data from the studied subjects, we leveraged the Leven-
shtein Distance algorithm and set the threshold to 0.5 (Zhao et al., 2017)
to determine whether the change type of a logging statement is updated or
not. Actually, the threshold selection may have an impact on our research
results. However, a similar approach and the same threshold were utilized
in prior researches (Zeng et al., 2019; Zhao et al., 2017) and their results
were also found to be highly accurate.

– While collecting JUnit test outputs, we did not guarantee that all of the
tests passed. We allow projects to continue running even if a test fails.
The presence of failed tests can result in limited test coverage, which may
have an impact on our results. However, in real-world software testing, a
100% passing rate is not always promised. Moreover, by observing our test
outputs, we did not find many test failures, therefore the impact of these
test failures should not be significant to our research results.

– The classifications involved in RQ3 and RQ4 are determined by humans,
which could be affected by their knowledge, expertise, and bias. In addition,
our collected survey data in RQ3 may be impacted by the background of the
developers who participated in our survey. However, the developers polled
in RQ3 are professionals from well-known open-source projects, and five
participants in RQ4 are professional researchers specializing in Software
Engineering. Four of us hold Ph.D. degrees and one is a Master research
student. In RQ4, the categorization outcome is heavily influenced by how
the researchers engaged understand log content as well. To mitigate this,
we reviewed a large amount of documentation from the studied projects,
manually searched logging statements that generated the analyzed test
logs, and studied their code context to improve comprehension. Moreover,
this threat was also mitigated by assigning two researchers to analyze every
log. To resolve the disagreements between the two researchers, we invited
a third person to act as a tie-breaker.

5 Related work

This section introduces the related work. As shown in Table 16, these stud-
ies are primarily concerned with characterizing logging practices, as well as
determining what should be logged and where the logging statements should
be placed. However, these studies either only focus on production logging or
consider production logging and testing logging as a whole, ignoring the dif-
ferences between them and the significance of test logging.
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Table 16: Summary of related work regarding software logging.

Study type Production & test logging mixed Production logging only

Characterizing
logging practice

Yuan et al. (2012b); Shang et al.
(2015); Fu et al. (2014); Chen and
Jiang (2017c); Kabinna et al. (2018);
Zeng et al. (2019); He et al. (2018);
Chen and Jiang (2017b); Li et al.
(2020a); Tang et al. (2022)

Li et al. (2018); Li et al.
(2019)

Where to log Zhu et al. (2015); Li et al. (2020b)
Yuan et al. (2012a); Ding
et al. (2015); Zhao et al.
(2017); Yao et al. (2018)

What to log
Yuan et al. (2011); Shang et al.
(2014); Liu et al. (2019); He et al.
(2018); Ding et al. (2022)

Li et al. (2017b)

Characterizing logging practice

Several studies involve characterizing logging practice. The first study on log-
ging practices is performed by Yuan et al. (2012b), who analyze four open-
source C and C++ projects. Shang et al. (2015) study the relationship between
logging characteristics and code quality of platform software by characterizing
logging statements in Hadoop and JBoss. Fu et al. (2014) investigate two large
industrial C# software systems to better understand developers’ logging prac-
tices in the industry. Likewise, Chen and Jiang (2017c) conduct their study
on Java applications and compare logging practices in Java to those in C and
C++. Kabinna et al. (2018) explore the stability of logging statements in four
open source projects. Li et al. (2018) investigate the connections between log-
ging decisions and the topics of related code snippets. Hassani et al. (2018)
study the characteristics of log-related issues. Zeng et al. (2019) research the
logging practice in 1,444 F-Droid applications and compare the logging prac-
tices in server, desktop, and mobile applications. He et al. (2018) character-
ize the natural language descriptions in the logging statements in Java and
C# projects. Chen and Jiang (2017b) disclose six anti-patterns of the logging
statements in Hadoop, ActiveMQ, and Maven, and propose an approach to assist
developers in detecting the anti-patterns. Li et al. (2019) identify the dupli-
cate code smells in logging statements, categorize them into five patterns and
propose a static analysis approach to detect the duplicate logging code smells.
Li et al. (2020a) conduct a qualitative study to understand developers’ per-
spectives regarding the benefits and costs of logging practice. More recently,
Tang et al. (2022) study the logging practices specific to log levels and present
an automated tool (Tang et al., 2021) to help developers rejuvenate log levels.
In addition, metrics used in our study to measure logging characterises, such
as the density and churn rate of logging statements, are also adopted in many
prior studies (Yuan et al., 2012b; Shang et al., 2015; Chen and Jiang, 2017c;
Kabinna et al., 2018; Zeng et al., 2019). Although various studies have been
conducted to characterize logging practices, none of the aforementioned stud-
ies have taken into account the significant differences in logging characteristics

http://hadoop.apache.org
http://www.jboss.org/jbossas
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between production and test logging. Our study, on the other hand, fills this
knowledge gap between the differences between test logging and production
logging.

Where to log

The research field where to log is primarily concerned with where developers
should place logging statements. Yuan et al. (2012a) are the first to perform
a study into where to log, and they present an approach to help developers
record common error events. Zhu et al. (2015) propose a learning framework to
help developers make decisions on where to add logging statements. Ding et al.
(2015) propose a logging framework that is able to decide whether to place the
logging statements based on the logging overhead and effectiveness. Zhao et al.
(2017) present an approach named Log20 that is able to automatically add the
logging statements to record non-erroneous events. Yao et al. (2018) present
an automated logging tool aiming to assist developers in monitoring the web-
based system resource usages. More recently, Li et al. (2020b) introduce a
deep learning based approach to help developers decide where to place logging
statements at the block level. Nevertheless, as we stated in relation to the
related work concerning characterizing logging practices, these studies do not
take into account the differences in logging practices in test and production
files. Our findings reveal that there are considerable differences between test
logging and production logging such as the usage of the logging levels, therefore
these approaches may be further enhanced by taking such differences into
consideration.

What to log

The research topic of what to log is mostly concerned with what content de-
velopers should log. Yuan et al. (2011) investigate what information should
be recorded by logging statements and present an approach to enhance the
logging information for effective logging. Shang et al. (2014) conduct a study
regarding what kind of development knowledge can be used for software log-
ging. Likewise, Liu et al. (2019) propose a learning-based approach to assist
developers in choosing which variables to log when developing software. Ding
et al. (2022) propose a logging text generation tool by leveraging the neural
machine translation technology. He et al. (2018) utilize information retrieval
technology to automate the generation of logging descriptions. Li et al. (2017b)
present an ordinal regression model to help developers determine which logging
level to use when adding a new logging statement. Their research uses dynamic
variable numbers and static text length to measure logging information, which
we also included in our research. Again, studies should not overlook the dis-
tinctions between test and production logging, which necessitates additional
attention from developers.
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6 Conclusions

In this research, we have studied 21 open-source Java projects to characterize
the differences of logging practice in test and production files and answered
four research questions. Our research has yielded nine findings on the differ-
ences between test and production logging, four reasons why developers use
test logging, four relationships between test and production logging, and ten
classifications based on the information provided by test logs. The contribution
of this paper is as follows:

– To the best of our knowledge, this is the first study that quantitatively and
qualitatively analyzes the logging practice in test and production files.

– We revealed the significance of test logging and production logging and
filled the research gap between test and production logging.

– We surveyed developers and disclosed four reasons why developers log in
test files.

– For the first time, a study has revealed the relationship between test logging
and production logging.

Our findings highlight that test logging, to some extent, is different from
production logging and should be treated differently in future research. On
the other hand, test logging may contain useful information for the production
system and can be leveraged in future work to improve production logging.
Based on our findings, some opportunities for future research regarding test
logging can be:

– As test logging levels and content are different from that of production log-
ging, there is a need for automated tools specialized in helping developers
choose proper test logging levels or test logging content.

– Given that some test logging statements are introduced as a result of code
clone (revealed by RQ3), it would be interesting to explore whether there
are more code smells (e.g., duplicated code) in test logging statements than
in production logging statements.

– In light of a prior study (Li et al., 2020a) that investigates the benefits and
costs of software logging, future research could explore the differences in
benefits and costs of software logging between production and test code.

– Future work can leverage the useful information in test logging to improve
and enrich production logging.
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