See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/349144767
A Study of C/C++ Code Weaknesses on Stack Overflow

Article in IEEE Transactions on Software Engineering - February 2021

CITATIONS READS

0 52

5 authors, including:

Haoxiang Zhang Shaowei Wang

Queen's University : Mississippi State University

16 PUBLICATIONS 55 CITATIONS 42 PUBLICATIONS 1,041 CITATIONS
SEE PROFILE SEE PROFILE

Heng Li Tse-Hsun Peter Chen

' Polytechnique Montréal Concordia University Montreal

19 PUBLICATIONS 113 CITATIONS 34 PUBLICATIONS 477 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject Continuous Integration & Continuous Delivery View project

ot SoOftware Quality View project

All content following this page was uploaded by Haoxiang Zhang on 10 February 2021.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/349144767_A_Study_of_CC_Code_Weaknesses_on_Stack_Overflow?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/349144767_A_Study_of_CC_Code_Weaknesses_on_Stack_Overflow?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Continuous-Integration-Continuous-Delivery?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Quality-19?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoxiang_Zhang8?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoxiang_Zhang8?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Queens-University?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoxiang_Zhang8?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaowei_Wang4?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaowei_Wang4?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Mississippi-State-University?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaowei_Wang4?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Heng-Li-4?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Heng-Li-4?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Polytechnique_Montreal?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Heng-Li-4?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tse_Hsun_Peter_Chen?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tse_Hsun_Peter_Chen?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tse_Hsun_Peter_Chen?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoxiang_Zhang8?enrichId=rgreq-b8b0275dcd278e09424250662d4e6311-XXX&enrichSource=Y292ZXJQYWdlOzM0OTE0NDc2NztBUzo5ODk2Nzk0MTEyNzc4MjRAMTYxMjk2OTM2NzA5MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Study of C/C++ Code Weaknesses on Stack

Overflow

Haoxiang Zhang, Shaowei Wang, Heng Li, Tse-Hsun (Peter) Chen, and Ahmed E. Hassan, Fellow, IEEE

Abstract—Stack Overflow hosts millions of solutions that aim to solve developers’ programming issues. In this crowdsourced question
answering process, Stack Overflow becomes a code hosting website where developers actively share its code. However, code snippets
on Stack Overflow may contain security vulnerabilities, and if shared carelessly, such snippets can introduce security problems in
software systems. In this paper, we empirically study the prevalence of the Common Weakness Enumeration — CWE, in code snippets
of C/C++ related answers. We explore the characteristics of Code, i.e., code snippets that have CWE instances, in terms of the types
of weaknesses, the evolution of Code,,, and who contributed such code snippets. We find that: 1) 36% (i.e., 32 out of 89) CWE types
are detected in Code,, on Stack Overflow. Particularly, CWE-119, i.e., improper restriction of operations within the bounds of a memory
buffer, is common in both answer code snippets and real-world software systems. Furthermore, the proportion of Code,, doubled from
2008 to 2018 after normalizing by the total number of C/C++ snippets in each year. 2) In general, code revisions are associated with a

reduction in the number of code weaknesses. However, the majority of Code,, had weaknesses introduced in the first version of the
code, and these Code,, were never revised since then. Only 7.5% of users who contributed C/C++ code snippets posted or edited
code with weaknesses. Users contributed less code with CWE weakness when they were more active (i.e., they either revised more
code snippets or had a higher reputation). We also find that some users tended to have the same CWE type repeatedly in their various
code snippets. Our empirical study provides insights to users who share code snippets on Stack Overflow so that they are aware of the
potential security issues. To understand the community feedback about improving code weaknesses by answer revisions, we also
conduct a qualitative study and find that 62.5% of our suggested revisions are adopted by the community. Stack Overflow can perform
CWE scanning for all the code that is hosted on its platform. Further research is needed to improve the quality of the crowdsourced

knowledge on Stack Overflow.

Index Terms—Code Security, C/C++, Empirical Software Engineering, Crowdsourced Knowledge Sharing and Management, Stack

Overflow

1 INTRODUCTION

Stack Overflow is the world’s most popular Q&A web-
site for programming questions. Since its launch in 2008,
Stack Overflow has accumulated millions of questions and
answers related to programming. When answering ques-
tions on Stack Overflow, it is common for developers to
attach code snippets within their answers as part of the
solutions. Wu et al. observe that 75% of the answers contain
code snippets [1]. The large collection of code snippets
within these answers becomes a code repository for solving
programming problems among developers. Prior studies
show that the code snippets on Stack Overflow are widely
shared by developers [1], [2].

Security is a critical property in any code repository.
ISO 27005 defines vulnerability as a weakness that can be

o H. Zhang is with the Centre for Software Excellence at Huawei, Canada.
E-mail: hzhang@cs.queensu.ca

e S. Wang is with the Department of Computer Science, University of
Manitoba, Canada.
E-mail: shaowei@cs.umanitoba.ca

e H. Li is with the Department of Computer Engineering and Software
Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.
E-mail: heng.li@polymtl.ca

o T. Chen is with the Software PErformance, Analysis, and Reliability
(SPEAR) lab, Concordia University, Montreal, Quebec, Canada.
E-mail: peterc@encs.concordia.ca

e A. E. Hassan is with the Software Analysis and Intelligence Lab (SAIL),
Queen’s University, Kingston, Ontario, Canada.
E-mail: ahmed@cs.queensi.ca

o Shaowei Wang is the corresponding author.

exploited [3]. Code with weaknesses — C'ode,,, can be risky
to share or reuse among developers. As the world’s most
successful crowdsourced knowledge sharing platform in
programming, Stack Overflow has hosted a very large code
base. The activities of code sharing lead to code snippets
propagating quickly across software systems. Prior studies
observe that code snippets in various programming lan-
guages on Stack Overflow can be insecure. For example,
Meng et al. identified security vulnerabilities, e.g., bypass-
ing certificate validation and using insecure cryptographic
hash functions, in the suggested code snippets of accepted
answers on Stack Overflow [4]. Rahman et al. observed that
7.1% of the Python answers contain at least one insecure
coding practice, e.g., code injection [5]. Fischer et al. ob-
served that 15.4% of the 1.3 million Android applications
contain security-related code snippets from Stack Overflow,
and 97.9% of such code snippets contain at least one insecure
code snippet [2]. Furthermore, on Meta Stack Overflow,
which is the part of Stack Overflow where users discuss the
inner workings and policies of Stack Overflow, we observe
that users are concerned about the vulnerable code that is
shared on Stack Overflow!2:34:5.6,

1 https:/ /meta.stackoverflow.com/q/318722/
thtps: / /meta.stackexchange.com/q/9460/

Shttps:/ /meta.stackoverflow.com/q/373629/
*https:/ /meta.stackoverflow.com/q/266180/
5https: / /meta.stackoverflow.com/q/266339/
6ht’rps: / /meta.stackoverflow.com/q/273058/

https://meta.stackoverflow.com/q/318722/
https://meta.stackexchange.com/q/9460/
https://meta.stackoverflow.com/q/373629/
https://meta.stackoverflow.com/q/266180/
https://meta.stackoverflow.com/q/266339/
https://meta.stackoverflow.com/q/273058/

For instance, a user posted the following C code snippet

in the first version of an answer’:
system ("' sudo rm ——no—preserve—root —rf /”);

This code snippet would wipe the entire hard drive. Within
4 minutes, another user removed the insecure code with a
revision note saying “some person may actually try your code
without fully understanding it first.” In another example®, a
user proposed an answer to print a message by initializing
a variable string[100]. Within 5 minutes, another user com-
mented that “the biggest flaw here is the glaring security hole
(buffer overrun!).” More than two months later, the answerer
revised the answer to fix the issue. However, the answer
exposed a security vulnerability for more than two months.

In this paper, we focus on studying the weaknesses of
C/C++ code snippets on Stack Overflow because C/C++
are widely used in different types of software systems [6].
In order to study code weaknesses, we use the Common
Weakness Enumeration — CWE, a community-developed col-
lection of common software security weaknesses’. C/C++
have the most reported CWE types of all the programming
languages that contain CWE [7], [8], and have the most
security vulnerabilities [9], [10]. In particular, our study aims
to answer the following three research questions (RQs):

e RQ1: What are the types of code weaknesses that are
detected in C/C++ code snippets on Stack Overflow?

e RQ2: How does code with weaknesses evolve through
revisions?

e RQ3: What are the characteristics of the users who con-
tributed to code with weaknesses?

In summary, this paper makes the following contribu-
tions:

e We scan 646,716 C/C++ code snippets from Stack Over-
flow answers. We observe that code weaknesses are de-
tected in 2% of the C/C++ answers with code snippets;
more specifically, there are 12,998 detected code weaknesses
that fall into 36% (i.e., 32 out of 89) of all the existing
C/C++ CWE types. Especially, we observe that CWE-
119/416/190/476/415 are commonly detected in Stack
Overflow as well as CVE instances in real-world software
systems. We suggest that Stack Overflow can perform CWE
scanning for all the code that is hosted on its platform.

e We analyze the trend of code weaknesses, and find that
the proportion of Code,, grew year by year doubling from
2008 to 2018 after normalizing by the total C/C++ code
snippets that are posted in the corresponding years.

« We examine the code evolution history of all the posted
C/C++ code snippets on Stack Overflow. We find that in
general, code revisions are associated with a reduction in
the number of code weaknesses. However, the majority of
Code,, have weaknesses in the first version of the code, and
they are never revised.

o We conduct a study with users who contribute Code,,.
We encourage Stack Overflow to improve the code review
mechanism since users tended to commit the same weak-
nesses repeatedly. We observe that only 7.5% of users who
posted C/C++ code contributed code weaknesses, and more
active users contributed fewer weaknesses.

"https:/ /stackoverflow.com /revisions/35926150/1/
8https: / /stackoverflow.com/posts /52633163 /revisions
https:/ /cwe.mitre.org/

2

e Acar et al. analyzed how Stack Overflow threads are used
by Android developers, and observed that developers can
copy and paste insecure solutions [11]. Similarly, our study
of mining C/C++ code snippets on Stack Overflow wishes
to gain a better understanding of the impact of the Stack
Overflow information source in terms of code security. The
recommendations based on our findings can be used to
improve the quality of Stack Overflow as an information
source. The building of crowdsourced knowledge while
managing any security risks can benefit Stack Overflow as
an information resource provider, can benefit the software
engineering community in sharing code, and can benefit
developers in fixing their security issues.

Paper Organization: The rest of this paper is organized
as follows. Section 2 introduces the background of code
security on Stack Overflow. Section 3 describes our stud-
ied code snippets and our approach to detect weaknesses
in these code snippets. Section 4 details the results from
our case study. Section 5 discusses our findings and their
implications. Section 6 discusses the potential threats to the
validity of our findings. Section 7 surveys relevant work to
our study. Finally, Section 8 concludes our study.

2 BACKGROUND

2.1 Code shippets and their security weaknesses on
Stack Overflow

Many software systems are written in C/C++, or rely on
system components that have been written in C/C++. A
survey of sourceforge.com in September 2004 notes that
a substantial percentage of open source projects are using
C (14,0%) and C++ (14,2%). By October 2019, the TIOBE
index — an indicator of the popularity of programming lan-
guages, ranked C and C++ as No. 2 and 4, respectively [12].
Furthermore, out of the 839 CWE types, the programming
language with the most reported CWE types is C/C++.
There are 89 types of weaknesses, i.e., CWE types, that can
be found in the C/C++ programming language. C contains
80 CWE types [7], and C++ contains 84 CWE types [8]. For
comparison, Java contains 73 CWE types, and PHP contains
23 CWE types.

Therefore, in this empirical study, we wish to gain a
deeper understanding of the weaknesses in code snippets
on Stack Overflow by analyzing C/C++ code snippets —
which is the programming language with the most CWE
types out of all programming languages, within answers on
Stack Overflow in RQ1. We refer to code snippets on Stack
Overflow as the code snippets that are displayed within
answers on Stack Overflow in the rest of the paper, if not
otherwise specified. We offer actionable suggestions based
on our empirical observations to improve the quality of the
crowdsourced code knowledge on Stack Overflow.

2.2 The evolution of code shippets on Stack Overflow

Stack Overflow encourages the community to revise the
content of answers, including both textual description and
code snippets, to maintain the quality of such answers.
Any code snippet in answers can be revised, and new
code snippets can be introduced to the answer at either
the answer creation phase or revision phase. To illustrate

https://stackoverflow.com/revisions/35926150/1/
https://stackoverflow.com/posts/52633163/revisions
https://cwe.mitre.org/
sourceforge.com

the evolution of code snippets on Stack Overflow, we show
both the answer evolution timeline and the two possible
code snippet evolution timelines in Fig. 1.

Answer creation phase Answer revision phase

' >

(Initial code]—)[Hevised code #1]—)[Revised code #2]—)(Revised code #3]

[Initial code HRevised code #1]—)(Revised code #2]

Fig. 1: Possible timelines for code snippet evolution during
the answer creation and revision phases.

Code weaknesses might be introduced at the creation of
a code snippet or during the revision phase. Code weak-
nesses could also be removed during the revision phase.
It is interesting to understand if such revisions help in
improving the quality of code snippets in terms of their se-
curity weaknesses. Therefore, we study how Code,, evolve
through revisions in RQ2, e.g., when are the code weak-
nesses introduced, and whether the code revision helps in
reducing code weaknesses? In addition, the activity level
of contributors may have an impact on the quality of code
snippets that they create or revise. For example, whether
less active users are more likely to introduce weaknesses
compared to more active users. Therefore, we wish to inves-
tigate the characteristics of contributors of code weaknesses
and their relationship with code weaknesses in RQ3.

3 STUuDY DESIGN

Our study aims to gain a deep understanding of code weak-
nesses in Stack Overflow C/C++ answers. In this section,
we first describe the process to create our datasets. Then
we describe the motivation and approach of our study to
answer the research questions. Fig. 2 illustrates the research
approaches that we follow to conduct our study.

[CVE, CVSS] [SO users]
/
. RQ1: RQ3:
Research questions | |\ ocs types weakness contributor:

Qualitative study:
community response

Fig. 2: Overview of our research approaches.

Code snippets in

Data collection SO C/C++ answers

N

)

RQ2:
weakness evolution

3.1 Data Collection

This subsection describes how we collect and construct our
studied datasets. We first collect C/C++ code snippets from
Stack Overflow answers. Then we detect code weaknesses
in these collected code snippets by performing static code
analysis. We elaborate on the details of each step below.

3

3.1.1

On Stack Overflow, developers post answers to specific
questions that other developers ask. In addition to textual
content, questions and answers may contain code snip-
pets. Code snippets are segments of source code that are
displayed with a gray background color embedded in the
<code>...</code> HTML tags on Stack Overflow. Users
can learn from such code snippets that are posted by others,
and might even reuse such code snippets [13]-[15]. For
example, in Fig. 3, a user posted a vulnerable C/C++
code snippet in a Stack Overflow answer!?. The answerer
posted the code snippet that used the string functions strl-
cpy/strlcat. A commenter pointed out that these functions
were not safe and provided an alternative secure solution.

Collecting Code Snippets in Stack Overflow Answers

There are two strategies for safe string manipulation. The Linux / glibc maintainers refuse to add
safe functions, arguing that you should keep the length of your strings at hand and use memcpy .

11

On the other hand, Mac OSX includes strlcpy and strlcat from BSD. snprintf and
asprintf can be used on both platforms to much the same effect:

size_t strlcpy(char xd, char const *s, size_t n)

return snprintf(d, n, "%s", s);

}
size_t strlcat(char xd, char const xs, size_t n)
return snprintf(d, n, "%s%s", d, s);

}

Your replacements are insecure garbage. WTF??? Also, the safer string functions are available on
Linux. You only need to install the 1ibbsd package. The Debian package is libbsd-dev , and the
Fedora package is libbsd-devel .- Jun 26 17 at 23:10

Fig. 3: An example of an accepted answer with a comment
which flags the unsafe use of the string functions in the
posted code snippet.

We analyze the SOTorrent dataset to study the weak-
nesses of shared code measured by the identified CWE types
in such snippets. The SOTorrent dataset provides the version
history of Stack Overflow at both the post level and the code
snippet/text level within a post — question/answer [16].
Each code snippet has at least one version, i.e., the original
version, or multiple versions, i.e., developers made revisions
to the original version of the code. To understand security
weaknesses in code snippets and their evolution on Stack
Overflow, we leverage the version history of code snippets,
i.e., code versions.

In this paper, we focus on studying code snippets in
answers that are associated with the C/C++ tags because
C/C++ are the languages that have the most security
vulnerabilities [10]. More specifically, from the SOTorrent
dataset'! that is published in December 2018, we collect
all the code snippets from answers that are associated with
the C/C++ tags and their associated code versions. In SO-
Torrent, code version history is reconstructed by mapping
a code block to its predecessors in prior post versions
through syntax-based similarity metrics. As shown in Ta-
ble 1, from the 1,598,646 answers in the C/C++ tags, we
study the 867,734 (i.e., 54.3%) answers that have code snip-
pets. From these answers, there are 1,561,550 code snippets,
i.e., 14,194,563 lines of code in their latest version, with
1,833,449 code versions in total.

Ohttps:/ /stackoverflow.com/a/48032218/
Uhttps:/ /zenodo.org/record /2273117#.XZt TyEFKjmE

https://stackoverflow.com/a/48032218/
https://zenodo.org/record/2273117#.XZtTyEFKjmE

TABLE 1: The statistics of the studied code snippets with
weaknesses, i.e., Code,,.

Answer # | Code Snippet # | Code Version #
SOTorrent 867,734 1,561,550 1,833,449
LOC >=5 527,932 724,784 919,947
Guesslang 490,778 646,716 826,520
Codey 11,235 11,748 14,934

Many code snippets on Stack Overflow are pseudo code
or command line functions, which may introduce bias to
our study. To mitigate such bias, we further remove code
snippets with less than five lines of code from the above-
mentioned dataset by following prior studies [16], [17].
Baltes et al. observed that the median line count of code
blocks on Stack Overflow is five [16]. We use the median line
count (i.e., five lines of code) as a cutoff value to remove triv-
ial code snippets and to ensure our studied code snippets
are meaningful. As a result, we obtain 724,784 code snippets
(with 919,947 code versions) from 527,932 answers. We also
observe that code snippets in answers that are associated
with the C/C++ tags are not necessarily C/C++ code. For
example, users may tag a question as C/C++, but may put
none-code text within the HTML <code>...</code> tags.
Therefore, we use a tool called Guesslang'? to determine
whether a code snippet is actually written in C/C++. Guess-
lang generates a probability of a code snippet being one of
20 pre-defined programming languages, including C and
C++, with a guessing accuracy higher than 90% according
to its website!>. We check the top five language guesses to
see if any of them is C or C++ because we notice that this
simple criterion gives high accuracy. We manually check
the languages predicted by Gueslang using 100 randomly
sampled code snippets, which ensure that we can reach a
confidence level of 95% and a confidence interval of 10%. We
find that the programming language of 91 (i.e., 91%) of these
code snippets is correctly determined. By using Guesslang,
we obtain 646,716 C/C++ code snippets (with 826,520 code
versions) from 490,778 answers.

3.1.2 Detecting Weaknesses in Code Snippets

Common Weakness Enumeration, i.e., CWE, is a community-
developed list of common software security weaknesses'*.
In order to detect C/C++ code snippets with weaknesses,
i.e., Code,,, we use a static C/C++ code analysis tool called
Cppcheck’® to scan all of the 826,520 code versions of the
resulting C/C++ code snippets. Cppcheck is a static analysis
tool for C/C++ that supports various source code level
checks, e.g., memory/resource leaks, automatic variable
checking, and bounds checking [18]-[20]. It supports static
checks that may not be covered by the compiler itself [21].
Cppcheck is widely used in error analysis for software
systems, such as OpenOffice.org!®, and Debian!”. From prior
studies, Cppcheck is observed to be highly precise. For
example, Pomorova et al. observed that Cppcheck has a

Zhttps:/ /pypi.org/project/guesslang

3https:/ /github.com/yoeo/ guesslang

4https:/ /cwe.mitre.org

5http:/ /cppcheck.sourceforge.net

6https:/ /wiki.documentfoundation.org/Development/Cppcheck
https:/ /lwn.net/ Articles /420252 /

4

precision of 89% [22]. Arusoaie et al. observed that all
the reported errors by Cppcheck were accurate in their
experiment [23]. Note that Cppcheck can identify 59 out of
the 89 types of code weaknesses in C/C++18.

The accuracy of Cppcheck is subject to a rigorous eval-
uation. Three raters, i.e., the first three authors, constructed
an oracle dataset of 100 C/C++ code weaknesses — CWE in-
stances, on Stack Overflow that were detected by Cppcheck.
Each CWE instance was manually examined by at least two
raters to determine whether it is a true CWE instance or
not. We observe that Cppcheck achieves an accuracy of 0.85
— 85 out of the 100 detected CWE instances are labelled
as true CWEs. Note that any disagreement was discussed
until consensus was reached among the three raters. We also
observe that the agreement among the raters is substantial
with a Cohen’s Kappa of 0.68 [24].

We observe that 682,588 code versions have no weakness
- no CWE is reported for the scanned code snippets, and
143,932 code versions have at least one weakness, i.e., a
CWE instance that is reported by Cppcheck). In addition, we
collect all the 154,198 CWE instances. Among all the CWE
instances, Cppcheck reports that 129,395 CWE instances are
related to syntax errors. Such syntax errors are usually due
to the incomplete nature of Stack Overflow code snippets.
We remove these instances from our analysis and focus on
the resulting 24,803 CWE instances in our following study,
which come from 11,748 Code,, in 11,235 answers. Note
that a code snippet with weaknesses can be from either the
latest version of an answer or the earlier versions. From
these 11,748 Code,,, we collect 14,934 code versions with
weaknesses, i.e., Version,,, out of the 17,591 code versions.
Note that these 11,235 answers with code weaknesses —
Answer,,, are associated with 10,634 questions, indicating
that a question can have more than one answer with code
weaknesses. In the rest of this paper, we further study these
CWE instances and their evolution in Stack Overflow code
snippets. In RQ1 (Section 4.1), we analyze Code,, and their
associated CWE instances from the latest version of answers
in order to capture the current state of C/C++ security
weaknesses from Stack Overflow. In RQ2 (Section 4.2) and
RQ3 (Section 4.3), we analyze the evolution of these C'ode,,
in order to capture the evolution of C/C++ security weak-
nesses and the user aspects of such weaknesses.

3.2 Study Approach

This subsection discusses the approaches of our empirical
study.

3.2.1 RQ1: What are the types of code weaknesses that
are detected in C/C++ code snippets on Stack Overflow?

Motivation: Stack Overflow has a large number of C/C++
code snippets. Code with weaknesses can lead to security
vulnerabilities if it is carelessly shared among developers.
To gain first-hand insights of C/C++ security weaknesses
on Stack Overflow, in this RQ, we analyze all the C/C++
code snippets in answers and investigate the characteristics
of CWE instances that are detected in these code snippets.
We wish to find out how commonly each CWE type is

18We examined the source code of the Cppcheck version that we
used and observed that it supports 59 CWE types.

https://pypi.org/project/guesslang
https://github.com/yoeo/guesslang
https://cwe.mitre.org
http://cppcheck.sourceforge.net
https://wiki.documentfoundation.org/Development/Cppcheck
https://lwn.net/Articles/420252/

detected in the C/C++ code snippets on Stack Overflow,
and the impact of these CWE types on real-world software
systems. By answering this RQ, we wish to provide insights
to developers on potential security risks when reusing Stack
Overflow code snippets, and to inform Stack Overflow
about potential security risks together with their trends over
time, thus further action can be proposed to enhance the
quality of crowdsourced code snippets on Stack Overflow.
Approach: To understand how common different types of
security weaknesses are detected on Stack Overflow, we
first analyze the CWE instances and their types as reported
by Cppcheck in the code snippets of the latest versions
of C/C++ answers. After identifying the types of CWE
instances, we analyze the characteristics of different CWE
types, e.g., the proportion of each CWE type among all CWE
instances and the trend of different CWE types in terms of
their number of instances over time, that is, from September
2008 to Dec 2018.

Furthermore, to evaluate the impact of our detected
security weaknesses of each CWE type, we map each
CWE type to its associated vulnerabilities in the Common
Vulnerabilities and Exposures — CVE, which is a database
containing vulnerabilities that are exposed in real-world
software systems [25]. While a CWE instance represents
common patterns of vulnerabilities in source code, a CVE in-
stance represents actually vulnerable instances within real-
world software products or systems. For example, CVE-
2019-15916" is a denial of service overflow vulnerability
reported in the Linux kernel. That CVE is associated with
CWE-119%, i.e., improper restriction of operations within the
bounds of a memory buffer. We wish to characterize the impact
of different CWE types by examining the number of CVE
instances that are related to each CWE type. A CWE type
with a larger number of CVE instances indicates that this
CWE type has a more practical impact in terms of security
vulnerabilities on real-world software systems. We also use
the median score of the Common Vulnerability Scoring System
- CVSS?!, of all the CVE instances within a CWE type to
represent the severity of a CWE type. In this study, we are
specifically interested in the security impact of each code
weakness, i.e., CWE, and cvedetails.com enables us to count
the number of CVE instances for each CWE type directly. On
the other hand, nvd.nist.gov only lists CVE instances with
their associated CWE types. Hence, we collect the vulner-
ability data from cvedetails.com. To evaluate the impact of
different CWE types, we also refer to the 2019 CWE top 25
list that is made by the CWE team [26], [27]. The list ranks
weaknesses based on both their prevalence and the severity
of their associated CVEs. The list is a demonstration of the
most widespread and critical weaknesses with potentially
serious vulnerabilities. Weaknesses that are both popular
and severe can rank high in the CWE top 25 list.

Lastly, to understand how answers with code weak-
nesses are recognized by the community, i.e., through vote
or acceptance of an answer, we analyze the distribution of
answer scores across the latest code snippets with different
numbers of CWE instances, and calculate the Spearman’s

19https: / /www.cvedetails.com/cve/CVE-2019-15916/
https:/ /cwe.mitre.org/data/definitions/119.html
2lhttps:/ /nvd.nist.gov/vuln-metrics/cvss

5

rank-order correlation to understand whether answers con-
taining more weaknesses are less likely to be upvoted. We
also calculate the proportion of answers with weaknesses
that are accepted by the askers to understand whether
answers can still contain weaknesses even though they are
accepted.

3.2.2 RQ2: How does code with weaknesses evolve
through revisions?

Motivation: Stack Overflow answers, including their as-
sociated code snippets, can be revised through revisions
as an effort to maintain the quality of the crowdsourced
knowledge [28]. Security weaknesses might be introduced
or eliminated through the evolution of such code snippets.
To gain a deeper understanding of when such Code,, are
introduced and how they evolve, we study the evolution of
Version,,. We wish to provide insights into the impact of
code revisions on the security weaknesses of code snippets,
e.g., whether the revision mechanism helps improve the
quality of code snippets in terms of their security weak-
nesses.

Approach: We first investigate when security weaknesses
are introduced throughout the evolution of Code,,, ie.,
which versions of code snippets start to contain weaknesses.
To do so, we collect all the versions of C/C++ code snippets,
i.e., including the initial and revised code, in Stack Overflow
answers, and scan them with Cppcheck to identify CWE
instances and their corresponding types. More specifically,
we examine all code snippets that have ever been revised
and analyze whether revisions help improve such snippets
in terms of security weaknesses. We compare the first and
last versions of a code snippet and aim to identify the
patterns of the evolution, i.e., whether the last version of
a code snippet has an additional, a reduced, or an equal
number of weaknesses compared to the first version of a
code snippet. Furthermore, we exam these patterns within
different CWE types. We also analyze code revisions by
comparing all the consecutive code versions to understand
the evolution of code quality over time.

We define the code snippets whose last version has more
CWE instances than their first version as deteriorated Code,,,
while code snippets whose last version has less CWE in-
stances than their first version as improved Code,,, and code
snippets whose last version has the same number of CWE
instances as their first version as unchanged C'ode,,. If a code
snippet is identified as improved Code,,, we consider that
revisions to this code snippet improve it in terms of reducing
security weaknesses.

We observe that users can point out the security issues of
a code snippet in comments. Therefore, it is also interesting
to investigate the relationship between the number of com-
ments of an answer and the quality of C'ode,,, i.e., whether
the associated answer of C'ode,, that has more comments is
more likely to be improved eventually.

3.2.3 RQ3: What are the characteristics of the users who
contributed to code with weaknesses?

Motivation: During the creation or revision of a code snip-
pet, users may introduce CWE instances in the code snippet
as shown in Section 4.2. In this RQ, we study the users
who introduce CWE instances, i.e., by either posting or

https://www.cvedetails.com/cve/CVE-2019-15916/
https://cwe.mitre.org/data/definitions/119.html
https://nvd.nist.gov/vuln-metrics/cvss

editing code, during the evolution of Code,,. Furthermore,
we explore the characteristics when they contribute C'ode,,.
A better understanding of such users who participate in the
evolution of code snippets can provide insights for Stack
Overflow to improve their current mechanism, e.g., code
revision, for better code security practices.

Approach: We first identify those users who contributed
Version,,. We examine whether the majority of Version,,
were contributed by a small group of the users. Next, we
examine whether the activity level of a user on Stack Over-
flow is associated with the likelihood of their involvement
in Version,,. To do so, we estimate a user’s activity level
through two aspects: the number of code versions that were
performed by a user and the reputation of the user. It
is challenging to measure a user’s activity level on Stack
Overflow. In our study, we use both code revision count in
C/C++ posts and reputation points as proxies to measure
user activity level. The reputation of a user is a common
proxy to measure user activity level in prior studies [5], [29]-
[31]. However, the reputation of a user is not directly related
to his/her activity level on Stack Overflow. For example, a
user can have a high reputation even if he/she only asks
popular questions and never posts any answer. Therefore,
reputation can be biased to the types of activities, i.e., asking
or answering, or activities in other programming languages.
To alleviate bias from reputation points, we also use the
number of code revisions made by a user to measure their
activity level in maintaining code snippets on Stack Over-
flow. Furthermore, we only consider the number of C/C++
code revisions, which directly reflects a user’s activity level
with regard to C/C++.

We analyze the correlation between the number of con-
tributed code versions by a user, including both Version,,
and code versions without weaknesses, and the code weak-
ness density, i.e., the proportion of Version,, in all the
posted code versions by the same user. Second, we study
the characteristics of those involved users who contribute
any code version, including both Version, and code ver-
sions without weaknesses, using their gained reputation
points, as a proxy for user activity/involvement on Stack
Overflow [29], [31]. We examine whether the number of
CWE instances within the contributed Version,, by a user
is correlated with the gained reputation points by the same
user. More specifically, we wish to examine whether or not
active users in terms of reputation points are more likely to
post secure code snippets. Finally, we wish to understand
if users repeatedly contribute the same type of weaknesses,
i.e., the same CWE type. We calculate the number of CWE
instances by a user across different CWE types. For users
who repeatedly post the same CWE type, we measure the
timespan of the CWE instances between the first and last
CWE instance.

Measurement of user reputation: The Stack Overflow plat-
form only provides the current reputation points of a user.
In order to measure the reputation points of a user when
he/she posts or edits a code version, we first crawled®
the information of all users who posted/edited C/C++
code snippets, including C'ode,, and code snippets without
weaknesses, about their daily gain of reputation points. To

22We crawled the data on May 12, 2019.

6

calculate the reputation points when a user posted/edited a
code snippet, we sum up the daily gain of reputation points
before the date of the specific code version.

3.2.4 Qualitative study: How does the Stack Overflow com-
munity respond to security issues of C/C++ code snippets?

By the quantitative analyses described in Section 3.2.2, we
aim to understand whether code revisions have an impact
on the security weaknesses of Stack Overflow code snippets.
To better explain the impact of code revisions in code weak-
nesses reduction [32], we conducted a qualitative study to
find out the community feedback about the improvement to
code weaknesses. More specifically, we randomly selected
40 Answer,, from which Cppcheck detected code weak-
nesses and manually suggested revisions to the correspond-
ing Code,, to fix these CWE instances. Then we collected
the feedback towards our suggested answer revisions, e.g.,
approving our suggested edit, or rejecting our suggestion to
revise the answer.

4 EVALUATION RESULTS

This section provides the detailed results of our empirical
study for analyzing the characteristics of code with weak-
nesses — Code,,, in terms of the types of weaknesses in Sec-
tion 4.1 (RQ1), the evolution of Code,, in Section 4.2 (RQ2),
and the contributors of such code snippets in Section 4.3

(RQ3B).

4.1 RQ1: What are the types of code weaknesses that
are detected in C/C++ code snippets on Stack Overflow?

36% (i.e., 32 out of 89) of all the C/C++ CWE types are
identified in the C/C++ code snippets on Stack Overflow.
12,998 CWE instances are identified within the latest
versions of the 7,481 answers. Fig. 4 shows the number of
CWE instances in each of the 32 CWE types. The definition
of our detected CWE types can be found in Appendix A.
The top six most frequent CWE types are:

o CWE-908, i.e., the use of an uninitialized resource, with
7,041 (54.2%) instances: The resource is not properly initial-
ized, and the program can change in an unintended way.

o CWE-401, i.e., improper release of memory before remov-
ing last reference, with 1,820 (14%) instances: Memory is
not properly released, and an attacker may take advantage
of the program in a low memory condition or even launch
a denial of service attack.

o CWE-775, i.e., missing release of file descriptor or handle
after effective lifetime, with 672 (5.2%) instances: A file
handler is not explicitly closed after it is used, and an
attacker can prevent other processes from accessing the
resource.

o CWE-562, i.e., return of stack variable address, with 612
(4.7%) instances: A function call returns an address on the
stack, and the value referenced by the address can change
unexpectedly.

o CWE-119, i.e., improper restriction of operations within
the Bounds of a Memory Buffer, with 518 (4%) instances:
A program can read from or write to a memory location
outside of a buffer, and arbitrary code may be executed by
redirecting a function pointer to malicious code.

o CWE-758, i.e., reliance on undefined, unspecified, or
implementation-defined behavior, with 482 (3.7%) in-
stances: A property may change its behavior when the
software is ported to a different platform.

10000
= B CWE: 119, CVE #: 12328 (7.5)
& B CWE: 416, CVE #: 1256 (6.8)
< B CWE: 190, CVE #: 1113 (5)
» o] m CWE: 476, CVE #: 900 (4.9)
] S I CWE: 772, CVE #: 306 (4.3)
o S|(S m CWE: 415, CVE #: 173 (6.8)
= 1000 4 &Y m CWE: 369, CVE #: 111 (4.3)
] g’@ = O CWE: 404, CVE #:59 (7.2)
7] 21 O CWE: 665, CVE #: 47 (5.8)
£ ol & O CWE: 682, CVE #: 26 (7.2)
N N O CWE: 131, CVE #: 5 (7.6)
w ey IS
te b i) O CWE: 664/672, CVE #: 2 (8.05/8.25)|
= 100 A SERIRIEE O CWE: 775/398, CVE #: 1 (7.2/7.5)
@) Rl S S B O CWE: the rest, CVE #: 0
- S ol Sl @SS e
o RN EECEEEESSN
= SRS
= |l < [[S S ISR
[s e e S SRS 5
o o| ([~ S1=1 Sl s) SIS
1S 10 1 MES SR ERE
163|312 ol ldl || S
=} ~N ol[S o
z Silel| S
RERES
)
ﬂﬁ
1- moom 00 (OLH0 LN OO —ANDONOONIONONONT i
OCONOAINONOONONDOORNV 0 HRAN—TANNOMN
OINDANOTONNOOANNMMNODN~O DM 0O F IO

Fig. 4: The number of detected CWE instances in the latest
versions of answers on Stack Overflow, and the number of
CVE instances that are related to each CWE type. The inten-
sity level of the color, e.g., red, indicates the frequency of the
reported CVE instances in real-world software systems. A
darker red indicates that more CVE instances were reported
in real-world software systems. The median CVSS score of
CVE instances in each CWE type is shown in parentheses
within the legend box.

Certain CWE types, e.g., CWE-119/416/190/476/415, are
associated with more security risks in real-world software
systems. More specifically, CWE-119/416/190/476/415
have a larger number of related CVE instances, with
12,285/1,073/996/803/151 CVE instances, respectively.
Fig. 4 shows the number of the reported CVE instances®
that are related to each CWE type. A CWE type with a larger
number of CVE instances indicates that this CWE type has a
more practical impact in terms of the security vulnerability
on real-world software systems. For example, 12,328 CVE
instances®* related to CWE-119 - improper restriction of
operations within the bounds of a memory buffer, were
reported, e.g., by companies who found CWE instances in
their code, while only one CVE instance® related to CWE-
775 — missing release of file descriptor or handle after ef-
fective lifetime, was reported. Such C'ode,, with CWE types
that are labeled in red in Fig. 4 probably should be tagged
with potential security risks since such CWE types have
higher potential impact on real-world software systems.

In addition, we calculate the viewcount of
question threads that are associated with CWE-
119/416/190/476/415, and find that it is higher than
the viewcount for question threads associated with other
CWE types — see Appendix B. Therefore, the former case
attracts significantly more traffic, and are more likely to be
used by developers. Neglecting the security weaknesses

BThe data was obtained on June 28, 2019.

24https: / /www.cvedetails.com/vulnerability-list/cweid-119/
vulnerabilities.html

Zhttps:/ /www.cvedetails.com/vulnerability-list/cweid-775/
vulnerabilities.html

7

that are associated with CWE types with a large number of
CVE instances can expose crowdsourced code snippets with
weaknesses and even potentially lead to harmful situations.

Although CWE-908/401 are detected frequently (.e.,
54.2%/14% instances, respectively), no CVE instance is
ever reported for these CWE types. In total, there are
20 CWE types with no reported CVE instance. One pos-
sible explanation is that these CWE types are either non-
critical in real-world software systems or are easy to detect
using security analysis tools during in-house testing, in
turn minimizing their security risks in real-world software
systems. It is also possible that the CVE database only
documents certain types of vulnerabilities, while it does not
cover vulnerabilities related to such CWE types. We observe
that CWE-908 is the most frequently-detected CWE type in
our studied code snippets. In a world of code searching
and sharing activities on Stack Overflow, developers can
post/share a code snippet in which the variables are not
properly initialized, making themselves exposed to poten-
tial vulnerabilities. For instance, the uninitialized resource,
such as a variable, may contain random values or content
that are not properly cleared, which may alter the expected
program behavior. Therefore, we suggest that developers
pay special attention to the missing initialization when
reusing C/C++ code snippets from Stack Overflow.

We observe that of the top 10 CWE types on Stack
Overflow in terms of the CWE instance count, CWE-119 and
CWE-476 are also in the 2019 CWE top 25 list, with a rank
of 1 and 14, respectively. In addition, the top 5 CWE types
on Stack Overflow, i.e., CWE-119/416/190/476/772, which
are associated with the largest CVE instance count, are all in
the 2019 CWE top 25 list, with a rank of 1, 7, 8, 14, and 21,
respectively. This finding suggests that the abovementioned
CWE types that are prevalent in terms of either CWE count
or CVE count have a large security impact.

Furthermore, we observe that CWE-119 that is as-
sociated with more than 10K CVE instances contains
high severity vulnerabilities with a median CVSS score
in the 7.0 — 89 range®®. The CWE types, i.e, CWE-
416/190/476/772/415/369, that are associated with 111 —
1256 CVE instances contain medium severity vulnerabilities
with a median CVSS score in the 4.0 — 6.9 range. Surpris-
ingly, the CWE types that are associated with fewer than 100
CVE instances contain high severity vulnerabilities, except
for CWE-665 that has a median severity score of 5.8.

Overall, the proportion of C'ode,, doubled from 2008
to 2018. Furthermore, C'ode,, in certain CWE types, e.g.,
CWE-119, has increased in recent years. The growth trend
of Code,, and CWE instance count in each individual CWE
type are shown in Appendix C. To further understand the
impact of such growing CWE types, we analyze the trend of
CWE-119, which is the CWE type with the largest number
of CVE instances in real-world software systems, and its
related CVE instances?”’. We observe that the number of
CWE-119 instances dropped from 2008 to 2011 and since
then had a rising trend, although in both 2014 and 2017
the number of CWE instances dropped from the preceding

Zhttps:/ /nvd.nist.gov/vuln-metrics/cvss

ZThe data is collected by crawling the CVE information website
on October 9, 2019 at https:/ /www.cvedetails.com/vulnerability-list/
cweid-119/vulnerabilities.html

https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-775/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-775/vulnerabilities.html
https://nvd.nist.gov/vuln-metrics/cvss
https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html

years, respectively. The corresponding CVE instances were
increasing until 2017 as shown in Fig. 5. In particular, the
severity level of CWE-119 is considerably higher than other
CWE types. Therefore, we suggest that developers be cau-
tious about these CWE types when reusing code snippets
from Stack Overflow answers, especially paying attention
to the boundary of memory buffers when reusing C/C++
code snippets on Stack Overflow.

[}
= - 2500 @
[} o CWE-119 o
o E 0.0012 7 5 Gy refated to cwe-119 /° 2000 s
| = _ r 2
U’ 0.0010 o\o/o/‘\../ 2
5 5 0.0008 o 1500 W
5 < 000064 e 5
55 O \° - 1000 o
g § 0.0004 - N °
~, |-

ES 00002 - ° 500 é
Z £ 0.0000 - o =
T T T T T T T T T T T z

[o0) [e2] o — N [32] < n [{e} N~ [ee]

o o - - - - - - - - -

o o o o o o o o o o o

N N N N N N N N N N N

Fig. 5: The growth of the number of CWE-119 instances
normalized by the number of C/C++ code snippets in each
year. The growth of CVE instances related to CWE-119 is
also shown.

We observe that the median score of answers with differ-
ent numbers of CWE instances is either zero or one. There
is no significant correlation between the answer scores and
the number of associated CWE instances (p-value = 0.01).
Thus, there is no difference in the scores of answers that
contain more or less weakness. In addition, out of the 12,998
CWE instances in the latest version of code snippets with
weaknesses, 9,535 (i.e., 73.4%) are in non-accepted answers,
showing that the majority of the code weaknesses are in
non-accepted answers.

We identify 36% (i.e., 32 out of 89) CWE types in
Stack Overflow answers. CWE-908 — use of uninitialized
resource, accounts for 54.2% of all the CWE instances.
In particular, some types of the detected CWEs, such
as CWE-119 — improper restriction of operations within the
bounds of a memory buffer, are common in code snippets
and are common weaknesses in real-world software
systems. We also observe that the proportion of Code,,
doubled from 2008 to 2018, and that the number of
instances in some CWE types, e.g.,, CWE-775/119/685,
is rising in recent years.

4.2 RQ2: How does code with weaknesses evolve
through revisions?

92.6% (i.e., 10,884) of the 11,748 Code,, has weaknesses
introduced when their code snippets were initially created
on Stack Overflow, and 69% (i.e., 8,103 out of 11,748) of the
Code,, has never been revised, as shown in Table 2. For
example, an answer?® recommended the use of the strcpy
function to solve an error when checking if words in an
array of pointers to char are the same as words in a function,
although a comment pointed out that “this is bad, it uses scanf

Bhttps:/ /stackoverflow.com/a/52807726/

8

and strcpy unsafely, which causes buffer overflows, a very serious
security vulnerability”, the answer was never revised.

In general, more rounds of code revisions are more
likely to reduce code weaknesses. In 31% (i.e., 3,645) of
Code,,, there are 6,831 Version,,, thatis, code versions with
weaknesses. In these 3,645 code snippets with weaknesses,
there are a total number of 9,488 code versions. Table 2 lists
the number of Code,, with different revision numbers. Note
that a code snippet with zero revision has one version in
its history. The proportion of improved C'ode,, increases as
the number of revisions increases, indicating that having
more code revisions is beneficial in reducing security
weaknesses. More specifically, as the number of revisions
increases from one to > three, the proportion of improved
Code,, increases from 30.1% to 41.8%. We also perform a
Mann-Whitney test for both the improved and deteriorated
Code,, with different revision numbers, and find that for
each case the last code version is significantly different
from the first code version in terms of the number of CWE
instances for each Code,, (p-value < 0.05). To illustrate
how users revised their code snippets leading to a reduce
of weaknesses, we observe an accepted answer? that was
revised five times. The initial code snippet in the answer
contained CWE-562 — return of stack variable address, while
the latest code snippet no longer contained any weakness.
The answerer also posted two comments under the question
to explain that “I had to fix my answer so dest wasn’t statically
allocated ...”, and to further warn that “... to reduce risk of
misuse and memory leaks. A common problem is that people may
come back later to make changes ‘borrow” a function for quick use
in another feature of the program or another solution and miss that
fact and introduce a leak. So it’s a good precautionary action.”

TABLE 2: The number/proportion of Code,, versus differ-
ent number of code revisions.

#Revisions| #Code,, | #Unchanged #lmproved | #Deteriorated
0 8,103 NA NA NA
ST | 3,645 | 1,886 (51.7%) | 1,218 (334%) | 541 (14.8%)
1 2,369 | 1,340 (56.6%) 714 (30.1%) 315 (13.3%)
2 774 | 349 (45.1%) 294 (38.0%) | 131 (16.9%)
>3 502 197 (39.2%) 210 (41.8%) 95 (18.9%)

In Code,, with different rounds of code revisions, a
larger proportion of code snippets have reduced rather
than increased the number of their associated security
weaknesses. To illustrate, an answer® created a file but
never closed it. Later, another user edited the code to prop-
erly close the file in order to release the file handler. Table 2
shows that the improved C'ode,, are at least twice more than
the deteriorated Code,, for different numbers of code revi-
sions. In the circumstances when code revisions introduce
more weaknesses, i.e., deteriorated Code,,, the proportion of
deteriorated Code,, slightly increases from 13.3% to 18.9%
as the number of code revisions increases from one to >
three. Compared with the improved Code,,, the deteriorated
Code,, have more CWE instances that are possibly related to
the addition of more LOC to existing code snippets. To test
this assumption, we investigate the relationship between the
change of lines of code and the change of number of CWE

Phttps:/ /stackoverflow.com/a/41971294/
3Ohttps:/ /stackoverflow.com/revisions/18637122/3/

https://stackoverflow.com/a/52807726/
https://stackoverflow.com/a/41971294/
https://stackoverflow.com/revisions/18637122/3/

instances from the first to the last version of a code snippet.
We calculate the LOC change ratio using the following
equation:

LOC/(last) — LOC(first)
LOC(first)

where LOC(first) and LOC (last) present the LOC in the
first and last versions, respectively. We calculate the change
of the CWE instance number as the change of CWE instances
from the first code version to the last code version:

CWE count(last) — CWE count(first)

We find that the higher the proportion of LOC change
ratio, the more the number of CWE instances changes,
suggesting that there is a positive correlation between the
LOC change ratio and the CWE change. The distribution
of the change of CWE instances number in Code,, with
different ranges of LOC change ratio is shown in Fig. 6.
Code weaknesses are more likely to be detected and a Stack
Overflow user is exposed to a higher security risk, especially
after revising an answer by adding more code. We cannot
make any data-supported conclusion of the reasons for this
observation, but one possible explanation is that the user
is not aware of the security consequences of the provided
content, and the chance of having risk increases when more
code is given.

LOC change ratio =

10 +

CWE change
o
I

-5

-10 4

Q) 0
080 EE) o ,of OO

- A > M ’ o K
\/\» \/Q?’ \/0 [\} @'.3 N
LOC change ratio

Fig. 6: The distribution of the change of CWE instances
number across different ranges of LOC change ratio. The
negative CWE change occurs within the improved Code,,.
The zero CWE change occurs within the unchanged Code,.
The positive CWE change occurs within the deteriorated
Code,,.

We compare Code,, and code snippets without weak-
nesses in terms of their revision number to exam whether
Code,, are more likely to be revised. Among all the 646,716
code snippets that are scanned by Cppcheck, 20.1% (i.e.,
130,100) have been revised, while a larger proportion, that
is, 31% (i.e., 3,645 out of 11,748) of Code,, have been revised,
indicating that C'ode,, are more likely (54.2%) to be revised.
The rest 69% of the C'ode,, have never been revised. Weak-
nesses are present in these code snippets as they are created
and no further action is ever performed. Khandelwal et
al. conducted a survey to understand whether gamification
helps in peer code review activity, and found that 54% of
the correspondents were in strong favour of gamification
in code review [33]. Therefore, future research may study
whether a gamification mechanism can encourage code
review and thus alleviate the risk of code weaknesses on
Stack Overflow.

9

We calculate the change of CWE instances in two consec-
utive versions in the 3,645 code snippets with at least two
code versions (i.e., 5,843 code revisions in total). In the 5,843
code revisions, 3,728 (i.e., 63.8%) of them have the same
number of CWE instances compared with the preceding
code version. 1,400 (i.e., 24.0%) of the revisions have fewer
CWE instances compared with the preceding code version.
715 (i.e., 12.2%) of the revisions have more CWE instances
compared with the preceding code version. Therefore, the
majority of the consecutive code revisions (i.e., 63.8%) do
not change code weakness. In the rest (i.e., 36.2%) of the
code revisions, revisions are more likely to decrease the
code weakness than to increase the code weakness. Among
all the consecutive code revisions, 24% correct code weak-
nesses, while after multiple code revisions, i.e., comparing
the last version with the first version, 33.4% eventually
correct code weaknesses. Therefore, more weaknesses are
eventually fixed even though they were not fixed in earlier
revisions. Fig. 7 shows the distributions of code revisions
with different numbers of CWE instances. We observe that
the time between the first and last version with weaknesses
is much shorter than the time from the last version with
weaknesses to present time®!, as shown in Appendix D. In
other words, users do not see much of the earlier versions
compared to the latest version, and the latest version is the
final version that is presented to users.

2000~
S = 1500-
2E

<3 1000-
& © 500-

0- = N ; ; ?

0 5 10 15 20

Number of CWE instances in an unchanged revision

2000~
S = 1500-
2 5 1500-
=3 1000
& © 500-

0- = v ; 7

0 5 10 15 20

Number of CWE instances in an improved revision

2000~
S = 1500-
SE]
23 1000
@ © 500-

0- =
0 5 10 15 20
Number of CWE instances in a deteriodated revision

Fig. 7: The distribution of code revisions with different
number of CWE instances in an unchanged, improved, and
deteriodated revision, respectively.

We further examine the impact of code revisions on the
number of CWE instances within each CWE type. For each
specific CWE type, we extract the number of CWE instances
in the last code version, i.e., Cjus:, the number of CWE
instances in the first code version, i.e., C'¢;rs¢, and calculate
the change of CWE instances as: (Cigst — Clrirst)/Crirst-

For the majority of CWE types, revisions of C'ode,, re-
duce the number of CWE instances. For each CWE type, we
extract all the Code,, that contain such CWE instances, and
compare the number of CWE instances in this CWE type
between the first and last version of the same Code,,. As
shown in Fig. 8, we observe that the CWE instances increase
for only 6 CWE types, i.e., 404/672/682/786/825/910, while

31 As of December 2018, when our data was collected.

it drops for 24 CWE types. To test if the difference is statisti-
cally significant, we perform a Wilcoxon signed-rank test for
each CWE type by comparing the number of CWE instances
between the first and last version (i.e., paired comparisons).
In Fig. 8, we label the change of CWE instances with a *
sign when the difference is statistically significant (i.e., p-
value < 0.05). Note that none of the increases in the num-
ber of CWE instances for CWE-404/672/682/786/825/910
is statistically significant, indicating that the revisions of
Code,, do not increase the number of CWE instances sig-
nificantly. On the other hand, the improved Code,, have
a statistically significant drop in their number of CWE-
119/401/562/664/665/685/687/758/762/775/788/908, in-
dicating the revision of such Code,, leads to a decrease in
the security weaknesses. Note that for the rest of CWE types
with a drop in their last code versions, the revision does
not lead to a decrease in the security weaknesses, possibly
due to the small number of CWE instances in such cases,
i.e., a median value of 20, and a maximum value of 78. We
encourage users to pay extra attention to the rest of these
CWE types.

15
15-

01 01
|

01
| -
lIIIZIEP i
020, 02+
0.2 -03
e -0.4*
-05 |

119 190 369 398 401 404 415 416 476 562 587 500 628 664 665 672 682 685 687 758 762 768 771 772 775 786 788 825 908 910
CWE type

Change of CWE instances

030303 8 | [T I
~05- -0.4% 4

0
0.0
- -
=n Y by T
0.1 E D

Fig. 8: The change of CWE instances for different CWE
types. * indicates that the change is statistically significant
(i.e., p-value < 0.05).

In summary, we observe that code revisions are associ-
ated with a reduction in the number of security weaknesses
in code snippets in general; however, some code revisions
can also introduce weaknesses. We suggest online weakness
detection tools to be used to identify C'ode,,. We find that
the majority of C'ode,, remain unchanged to the community:
they are never revised and may be reused by others. We also
observe that 4,271 (i.e., 36.4%) of Code,, are in an answer
revision, i.e., weaknesses still exist even after an answer is
revised. We suggest Stack Overflow to use better incentives
together with weakness detection tools to motivate users to
actively reduce code weaknesses through answer revisions,
in turn improving the crowdsourced code quality from a
security perspective.

We observe that C'ode,, without any revisions are less
likely to have comments in the associated answer, while
Code,, that are eventually improved have more comments
in the associated answer — see Appendix E. This finding
suggests the positive effect of discussions through com-
menting on improving the quality of code snippets. As
shown in Fig. 3, a comment pointed out that the strl-

10

cpy/strlcat functions are insecure in an answer although
the answer was never edited. Users are recommended to
read through the associated comments in an answer in case
security knowledge is added by the community through
commenting.

More rounds of code revisions are associated with
a reduction in the number of code weaknesses. A
larger proportion of Code, have reduced rather
than increased the number of security weaknesses.
There is a positive correlation between the LOC
change ratio and the CWE change number. In
the majority of CWE types, code revisions reduce
their associated CWE instances. Especially for CWE-
119/401/562/664/665/685/687/758/762/775/788 /908,
the number of weaknesses drops significantly. In
addition, C'ode,, are more likely (54.2%) to be revised
than code in general. However, the majority of C'ode,,
have weaknesses introduced in the first code version
and they are never revised.

4.3 RQ3: What are the characteristics of the users who
contributed to code with weaknesses?

The majority of the C/C++ Version,, were contributed by
a small number of users. 72.4% (i.e., 10,652) of Version,,
were posted by 36% (i.e., 2,292) of users, as shown in Fig. 9.
64.0% (i.e., 4,070) of the users who contribute Version,,
have contributed only one Version,,. Among all the 85,165
users who posted C/C++ code snippets, only 7.5% (.e.,
6,361) of them posted code snippets that have weaknesses.

§ 10 °

22 08 0.720/

58 06 —

g > ,O/

23 04 O

S8

% 5 0.2

Q 0.36 —— Code versions with weakness

< 00 - T T T ‘ T T T
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of users

Fig. 9: The accumulative proportion of Version,, that were
posted by the proportion of users.

More active users are less likely to introduce Code,,.
Fig. 10 illustrates the relationship between the number of
code revisions contributed by a user and the weakness
density of a user’s code. The figure shows that the weak-
ness density of a user’s code drops when the number
of contributed code revisions by the user increases. In
particular, 15.1% (i.e., 958) of the users contribute only one
code version ever and it is a Version,,, as shown by the top
left point in Fig. 10. In Fig. 11, we compare the reputation of
the contributor for a code version with different numbers of
CWE instances in the code version, which shows that users
with higher reputation tend to introduce fewer CWE in-
stances in their contributed code versions. As an example,
one user has only 6 Version,,, while the current reputation
of that user is more than 500K>?. In particular, we show the

32https:/ /stackoverflow.com /users /505088 /

https://stackoverflow.com/users/505088/

median user reputation for each group of contributors, and
the medium reputation of the contributors to code versions
without weaknesses are at least three times higher than
the medium reputation of the contributor to Version,,. We
run a Mann-Whitney test and observe that the difference
in contributors’ reputation between code versions without
weaknesses and Version,, is significant with a p-value <
0.05.

1.000-

0.100-

0.010-

Density of code with weakness

0.001-

0 10 100 1000 10000
Number of code revisions

Fig. 10: As the number of code revisions increases for a user,
the density of contributed Version,, by that user drops.

100000 ~

80000

60000

40000

User reputation

20000 - e

5358 i 1 i T
1735 ' —667
0| [T HAIey lzses [T064] potss) '] 80
T T T T T T T T T

0 1 2 3 4 5 6 7

>=8

Number of CWE instances in a code version

Fig. 11: The distribution of user reputation points for users
who contribute code versions both without and with differ-
ent numbers of CWE instances.

In total, 78.0% of users contribute code with only one
CWE type. Furthermore, 42.2% (i.e., 2,686) of the users
contribute only one CWE instance in all their Version,,
as shown in Fig. 12. 81.8% (i.e., 5,206) of the users contribute
less than five CWE instances in all their Version,,.

Users tend to commit the same types of CWE instances
repeatedly. For each CWE type, we show the distribution of
the number of contributed CWE instances by different users
in Fig. 13. The figure suggests that certain Stack Overflow
users repeatedly contribute code snippets with specific CWE
types. For example, we observe that in CWE-401/775/908
some users contribute code with such CWE types for more
than 10 times. In other words, users may not even realize
that they are posting code snippets with the same potential
security weaknesses repeatedly. For example, one user has

11

3000 12686 (42.29%)
2500

2000 +
1500 ~
1000

500 ~

1472 (23.1%)

90 (10.8%)

6
578 (9.1%) 470 (7.4%) 465 (7.3%)

Number of users

1 2 3 4 [5, 10)
Number of CWE instances by a user

>=10

Fig. 12: The number/proportion of users who contribute a
different number of CWE instances.

contributed CWE-775, i.e., missing release of file descriptor or
handle after effective lifetime, for 79 times®. Furthermore, we
observe that the timespan when users repeatedly post the
same CWE type is short for the majority of the CWE types,
i.e., a median value of less than one day except for CWE-562
- see Appendix F. Future tooling support to identify Stack
Overflow code vulnerability can actively support users who
repeatedly contribute the same code weakness type.

100

50

20 +

10

Number of CWE instances by a user

1 . ' 1 '
v v
1 Bt = = ot e

R I Do I
rrrrrrrrrrrrrrrr1rrr1rrr 111 11071 1T
NHONOV AT OONEHNOOITONNL N0 NN WL ®0O
ANDODOOATNONDVANOONDDVOOOONNSNNOONO
HAANNMIITITTIIOOOVINOOOOOOWONNNSNNNNNN-OO O

Fig. 13: The distribution of contributed CWE instances by
different users for different CWE types.

To better understand how users contribute different
CWE types, we analyze the users who actively contribute
code weaknesses, i.e., at least five CWE instances, in their
Version,,. To understand the CWE types that are con-
tributed by each user, we calculate the normalized entropy
of the CWE types from his/her posted C'ode,,. More specif-
ically, we wish to measure whether the CWE types that are
contributed by a user are concentrated on a small number
of CWE. We count the number of CWE instances for each
CWE type, and calculate the normalized entropy of the
resulting distribution. Fig. 14 shows the distribution of the
normalized entropy for 1,153 users who contributed at least
5 CWE instances. An entropy value of 0 indicates that the
user only contributed a single type of CWE in their code
snippets. We observe that 37.7% of users are likely to
introduce a single type of CWE instances in their posted
code versions.

3Bhttps:/ /stackoverflow.com/users/3422102/

https://stackoverflow.com/users/3422102/

0 500 435 (37.7%)
& 400
=}
‘5 300 233 (20.2%)
= 165 (14.3%)
L 200 65 (5.6%) 135(1L7%)
)
e 100 17 (1.5%) 64 (5.6%)
2 0(0%) 0 (0%) 8 (0.7%) 31 (2.7%)
0 (0%) 0(0%) _ ::]C]D
S 9 ¥ ®v ¥ 0O g K @ 9 9
(=] (=] (=] (=] o o =} =} =} o5
S 4 & o & 6§ & N o o
g 2 2 8 2 2 8 ¢
Entropy

Fig. 14: The distribution of entropy for CWE instances of
different types.

The majority (i.e., 72.4%) of Version,, were contributed
by 36% of the users who contributed Version,,. Only
7.5% of users who contributed C/C++ code snippets
had code weaknesses. Users contribute fewer Version,,
as their activities increase in terms of both the number
of contributed code versions and the gained reputation.
78.0% of the users contribute only one CWE type, and
users tend to have the same CWE type repeatedly in
their contributed code.

5 IMPLICATIONS OF OUR FINDINGS

5.1 How does the Stack Overflow community respond
to security issues of C/C++ code shippets?

In our qualitative study to understand how the Stack Over-
flow community responds to code weaknesses, we observe
that 25 out of our 40 (i.e., 62.5%) suggested revisions are
adopted by the Stack Overflow community, i.e., approved
by either the answerers themselves or the Stack Overflow
moderators. For example, we fixed a potential memory leak
caused by inappropriate use of realloc in an answer®*, which
has been adopted by the answerer. Note that no reason was
provided when a suggested revision was approved.

For the suggested revisions that were rejected, the rea-
sons for the rejections can be: “this edit was intended to
address the author of the post and makes no sense as an edit,
it should have been written as a comment or an answer.” For
example, our attempt® to fix a potential resource leak was
rejected by Stack Overflow moderators based on the above-
mentioned reason. Note that most of the rejected revisions
were done by Stack Overflow moderators. Although they
considered the revisions should have been contributed in a
different format, they agreed that the revisions addressed
security weaknesses. From our experiment, we do note that
the posting of a comment before suggesting the actual code
revisions can improve the chance of the suggested revisions
being adopted [28]. Our experiment indicates that the effort
of fixing the detected code weaknesses are acknowledged by
the Stack Overflow community; however, we observe that
even for the same code weakness, one suggested revision
in an associated answer can be approved while a suggested
revision in another answer can be rejected. Some moderators
may not be aware of the risk of weaknesses in code snippets,
and they are possibly rejecting code revisions that aim

34https: / /stackoverflow.com/review /suggested-edits /24247281
35ht’rps: / /stackoverflow.com/review /suggested-edits /24246951

12

to improve the security of the shared code snippets on
Stack Overflow. In the 15 out of our 40 suggested revisions
that were rejected, the different reasons are summarized in
Appendix G.

The feedback from the Stack Overflow community high-
lights the need of a tool to automatically detect and correct
Code,,, which can identify vulnerable C++ code snippets
and warn the user with both explanation and mitigation of
the vulnerability as proposed in [6].

5.2

Table 4 shows our major findings from empirically mining
the C/C++ Code,, on Stack Overflow and their implica-
tions.

We find that certain types of weaknesses, e.g.,, CWE-119,
are common on Stack Overflow while also popular in real-
world software systems. We suggest users to pay attention
to operations at the bounds of the memory buffer in their
code.

Overall, users should be cautious when reusing code
from Stack Overflow, since we find the proportion of Code,,
have doubled during 10 years, i.e., 2008 — 2018. Furthermore,
the frequency of CWE-775/119/685 is rising in recent years.
Certain users are repeatedly contributing the same type of
weaknesses. New mechanism can be designed to alert such
users about their security issues when they contribute Stack
Overflow code snippets. Based on our finding that code re-
visions are associated with a reduction in code weaknesses,
additional efforts are needed to better assist developers with
removing code weaknesses.

We observe that more active users on Stack Overflow
contribute fewer C'ode,,. Code revisions, especially the ones
that reduce code weaknesses, can be rewarded by extra
reputation points and/or badges to improve the quality of
the crowdsourced code snippets on Stack Overflow. Note
that prior work [5] observe that the user reputation does
not correlate with insecure Python code snippets on Stack
Overflow. One assumption is that different programming
languages may have different phenomenons. We encourage
future research to investigate the usage patterns of code
vulnerability across different programming languages.

Furthermore, the answerers who contributed more code
weaknesses are less active since we observe that more active
users contributed fewer Version,,. We suggest that Stack
Overflow can scan the code snippets online when users
post answers. Therefore, inactive users can be alerted about
their potentially insecure code before they contribute such
code in their answers. Our qualitative study of 40 C'ode,,
demonstrates the value of online code review to actively
improve the security quality of the code base on Stack
Overflow, together with commenting on code weaknesses.

Currently, it is up to the users themselves to decide
whether code snippets are secure enough to share and/or
reuse on Stack Overflow. To illustrate the current situa-
tion of code security on Stack Overflow, we show a Stack
Overflow META discussion®. In the question, the asker
cited that “Internet resources such as Stack Overflow are blamed
for promoting insecure solutions that are naively copypasted by
inexperienced developers”, and asked that “does this mean we

Implications for Stack Overflow users

36https:/ /meta.stackoverflow.com/q/356892/

https://stackoverflow.com/review/suggested-edits/24247281
https://stackoverflow.com/review/suggested-edits/24246951
https://meta.stackoverflow.com/q/356892/

13

TABLE 3: Our major findings from empirically mining the C/C++ Code,, on Stack Overflow and their implications.

Code weakness types — Section 4.1

Implications

Cppcheck, which is able to detect 59 out of all the 89 C/C++
CWE types, reports 32 C/C++ CWE types in Stack Overflow code
snippets. 12,998 CWE instances are detected in the latest versions of
7,481 answers.

Code weaknesses are detected in 2% of the C/C++ answers with
code snippets. Stack Overflow can perform CWE scanning for all
the code that is hosted on its platform.

CWE-119/416/190/476/415 are associated with security risks in
real-world software systems. The viewcount of question threads
with these CWE types are higher than question threads that are
associated with other CWE types.

Certain CWE types have higher risks, thus users should pay special
attention to such security issues.

The proportion of Code,, grows year by year and doubles from 2008
to 2018.

The security issue on Stack Overflow should be alerted since it is
growing over time.

Evolution of Code,, through code revisions — Section 4.2

Implications

92.6% of the 11,748 Code,, have weaknesses introduced when
initially created.

Developers should pay attention to the security aspects of their code
when they post answers.

More code revisions are associated with a reduction of code weak-
nesses. In the majority of CWE types, code revisions are associated
with a reduction in the number of CWE instances.

Stack Overflow should encourage better code review mechanisms
and motivate users to revise code with possible security vulnerabil-
ities.

31% of Code,, were revised, while 20.1% of C/C++ code snippets
were revised.

Users make revisions to C'ode., 54.2% more than code in general.

Clode,, contributor characteristics — Section 4.3

Implications

7.5% of the 85,165 users posted C/C++ code snippets have con-
tributed code weaknesses.

A small group of users contribute code weakness.

More active users contribute fewer weaknesses.

The Stack Overflow code snippets can leverage user activity level to
prioritize code reviewing activities.

Users tend to commit the same CWE types repeatedly.

Future tooling is needed to help users improve their code by alerting
them about weaknesses in their code contributions.

should do something about it or is it all the developers fault?”.
In the two associated answers within this question, one
answer starts with “no, we don’t have to change a thing”,
while the other starts with “I don’t think we have to change
anything systematically.” Thus, on Stack Overflow META, the
opinions of how code security should be maintained show
that both the community and the platform do not need to be
responsible for improving code security. Our study analyzes
how the improvement of code security is done in real-world
practices on Stack Overflow. We observe more than 10,000
code weaknesses in our experiment. Our qualitative study
demonstrates that actively tagging code with weaknesses is
accepted by the community, leading to an improvement of
the crowdsourced code quality.

6 THREATS TO VALIDITY

External validity: In this study, we focus on C/C++ code
snippets, while code snippets in other programming lan-
guages may have distinct characteristics from our findings
of C/C++ code snippets. We encourage future research
to investigate security weaknesses in other programming
languages.

Furthermore, we only investigate code snippets from
Stack Overflow answers. Note that code snippets from ques-
tions can also have weaknesses. Since questions are posted
by askers to seek solutions for their problems, the code
snippets in questions are probably problematic to start with.
However, code snippets in answers are posted by users who
aim to solve issues. Their code snippets are shared more
frequently. Therefore, we study code snippets in answers to
provide security related insights.

To mitigate the bias from pseudo code or command line
functions, we remove code snippets with less than five lines
of code. We may lose a portion of code snippets. However,
we do note that there is no standard way to determine the
threshold for removing such code snippets, and we follow

prior studies [16], [17] in using a threshold of five lines of
code. In addition, we use the Guesslang tool to determine
whether a code snippet is written in C/C++. Guesslang
is based on a deep learning model trained with source
code files. Although the accuracy of the tool is evaluated
to be 91% from our 100 randomly sampled code snippets,
around 10% of our collected C/C++ code snippets can be
false positives. Code snippets that are not in C/C++ can be
introduced in our study and may bias our understanding of
code weaknesses in Stack Overflow answers. We encourage
future research to develop more accurate techniques to
identify C/C++ code snippets.

We detect code snippets with weaknesses using Cp-

pcheck. Cppcheck can identify 59 out of the 89 types of
C/C++ code weaknesses. The results that are generated by
Cppcheck can contain false positives, which may bias our
results, although it aims to minimize false positives®”. In
order to understand the bias of studying the code snippets
with Cppcheck, we manually evaluated the accuracy of
Cppcheck in Section 3.1.2 and found that it has an accuracy
of 0.85.
Internal validity: When we scan code snippets with Cp-
pcheck, we skip any code snippet that returns syntax errors.
Such code snippets are probably code segments that miss
a substantial part of the compilable code, thus are not
included in our study. This approach may not capture all
types of security weaknesses in C/C++ code snippets on
Stack Overflow. We evaluate users’ activity level by their
reputation points on Stack Overflow. It is possible that a
user has gained reputation points by activities in other
tags. Thus, the gained reputation points may not accurately
reflect the activity level in C/C++ programming languages.
To complement this, we also consider the number of code
revisions that a user has done as the proxy of the activity
level of the user.

S7http:/ / cppcheck.sourceforge.net/ manual.pdf

http://cppcheck.sourceforge.net/manual.pdf

We note that there is no single approach that can fully

specify the impact of code weaknesses. To provide a thor-
ough view of the impact of code weaknesses, in this study
we evaluate the impact of different CWE types by referring
to both the CVSS scores and the 2019 CWE top 25 list to
provide an overview picture of the impact of CWEs in real
world projects. While the CVSS score assesses the severity
of a CVE instance, the 2019 CWE top 25 list characterizes
the impact of a code weakness that can potentially lead to
software vulnerabilities. The CWE top 25 list is provided by
the CWE team in evaluating the impact of each CWE type.
This approach uses vulnerabilities that have CVE records in
the National Vulnerability Database — NVD. However, even in
the same top 25 list, some CWE types may have a higher
severity score than others, and weaknesses that are not
included in the list can still have an impact while being
underrepresented in the CWE top 25 list. In addition, the
vulnerabilities that are reported by their vendors in the
CVE dataset may not represent all the security risks that
developers encounter. Last but not least, we use the CWE
top 25 list that was published in 2019, while the list itself
can evolve over time with their rankings changed or certain
CWE types added/removed in the future. Although the
majority (i.e., 22) of the CWE types in 2019 still remain as
the top 25 in 2020, the interpretation of our analysis reflects
the exposure of code weaknesses in 2019. We encourage
future work to evaluate the impact of code weaknesses on
Stack Overflow, for example, by considering an industry
standard third party independent list of security impact, or
conducting user surveys. Future work can also study the
evolution of code weaknesses over time.
Construct validity: Threats related to the construct valid-
ity is related to how we define a code snippet as un-
changed/improved/deteriorated in terms of its weakness.
In our study, we use the number of CWE instances that are
detected by Cppcheck as a proxy to measure the quality
of a code snippet. However, certain CWE types are more
severe than other CWE types. Thus, a quantitative measure,
e.g.,, CWE count, that indicates the quality of code may
be biased, as one CWE instance may be more severe than
multiple CWE instances combined. To evaluate the impact
of code weaknesses, we also show in Fig. 4 the median
CVSS score, i.e., a score to represent the severity of software
vulnerabilities, of CVE instances that are crawled from
cvedetails.com in July 2020 in each CWE type in Section 4.1.
According to NVD?38, a CVSS score of 4.0 to 6.9 is considered
medium severity, and a CVSS score of 7.0 to 10.0 is consid-
ered high severity. To further understand how code weak-
nesses are evolving, we also analyze the change of CWE
instances for different CWE types in Fig. 8. Furthermore,
in our experiment of reporting the results of our scanned
code weaknesses on Stack Overflow, 62.5% of the identified
weaknesses were acknowledged and addressed by users,
indicating that Cppcheck can detect code weaknesses that
are of concern by the Stack Overflow community.

Another threat to our construct validity is about how
we measure the activity level of a user. It is challenging to
measure a user’s activities on Stack Overflow. In our study,
we use both code revision count and reputation points

3Bhttps:/ /nvd.nist.gov/vuln-metrics/cvss

14

as proxies to measure user activities. Although these two
proxies may introduce bias, our results that are observed
based on them are aligned. Future research can explore
other metrics to characterize user activities and understand
how different users post insecure code snippets on Stack
Overflow.

In RQ3, we select the users that have contributed more
than five CWE instances. The threshold selection could be a
construction threat to our results. To mitigate the threat, we
set the threshold of at least two CWE instances from a user
and observed that our result still holds. For 3,666 users who
contributed at least two CWE instances, the majority (i.e.,
61.8%) of users are likely to introduce a single CWE type in
their posted code versions.

7 RELATED WORK
7.1 Security in Software Systems

Code security is a critical issue in software engineering.
Vulnerable code can undermine the quality of software
systems. A remarkable research effort has been invested in
the security issues of software systems. For example, Pletea
et al. found that 10% of discussions on GitHub are related
to security [34]. Acar et al. surveyed security guidance
resources on the web to inform developers about how to
write secure code [35]. Especially, C/C++ security issues are
commonly studied in the literature [36]-[43]. Alnaeli et al.
analyzed how vulnerable source code is used in 15 C/C++
software systems. They showed that vulnerable functions,
such as strcmp, strlen and memcpy, play a major roles in
unsafe code [42]. Mcheick et al. proposed a tool to detect
memory management and type errors in C/C++ based on
runtime information [40]. Yang et al. proposed an approach
in a commercial security analysis tool to assist developers
in fixing software vulnerabilities [44]. Different from prior
studies that focus on security at the system level, we focus
our study on code snippets.

7.2 Studying Code on Stack Overflow

For more than 10 years, Stack Overflow has accumulated
questions and answers related to programming, including
millions of code snippets. Stack Overflow code snippets are
valuable resources for developers. They have been actively
studied in the software engineering community. Yang et
al. studied the usability of code snippets across C#, Java,
JavaScript and Python [15]. They observed that Python and
JavaScript code snippets are more parsable/runnable than
Java/C#. An et al. analyzed 399 Android apps to inves-
tigate potential license violations when developers reuse
code snippets from Stack Overflow and from Android apps
into Stack Overflow [13]. Treude et al. surveyed how Stack
Overflow code snippets are self-explanatory [45]. Campos et
al. analyzed JavaScript code snippets on Stack Overflow and
flagged violations, such as errors and stylistic issues [46].
To better understand whether security issues exist and
how they are present in the crowdsourced knowledge of
Stack Overflow, prior studies investigated various secu-
rity aspects on Stack Overflow. For example, Yang et al.
investigated security-related questions on Stack Overflow.
They identified both popular and difficult topics related to

https://nvd.nist.gov/vuln-metrics/cvss

security that are asked on Stack Overflow [47]. Barua et
al. explored the discussion topics on Stack Overflow and
identified security as a diverse topic that crosses multiple
domains [48]. Fischer et al. analyzed insecure code snippets
related to Android on Stack Overflow, and found that 15%
of 1.3 million Android applications contained insecure code
snippets from Stack Overflow [2]. Meng et al. inspected
Stack Overflow threads that are related to Java security and
identified the root causes and solutions for Java secure cod-
ing [4]. Chen et al. extracted Stack Overflow code snippets
related to Java security and observed that at least 41% of
their inspected security-related answers are insecure [31].
Acar et al. surveyed the security quality of Stack Overflow
threads and observed that although Stack Overflow crowd-
sourced knowledge is accessible compared with official API
documentation it often leads to insecurity [49]. Lopez et al.
conducted a study to examine how users ask questions re-
lated to security on Stack Overflow. They found that security
conversations are rich, and some askers and commenters
are actively involved in such conversations [50]. Rahman
et al. analyzed Python code snippets on Stack Overflow and
found that they suffered from insecure coding practices such
as code injection [5].

Prior studies examined vulnerabilities on Stack Over-
flow for Android [2], Java [4], and Python [5]. Different from
these studies, our study focuses on C/C++ code snippets,
which is the programming language with the most CWE
types out of all programming languages — giving us a
much larger number of observations. We have a number
of observations. For instance, a prior study [5] notes that
the user reputation does not correlate with insecure Python
code snippets on Stack Overflow, which is the opposite of
our finding. In their study, user reputation is normalized
by the membership period of a user. We also calculated
the normalized user reputation and our findings still hold
in terms of the reputation points normalized by time —
more active users contribute fewer C/C++ code weaknesses.
Different programming language communities may have
different user contributions in terms of code weaknesses. In
addition, we studied how code weaknesses evolve through
revisions and the characteristics of the contributors of these
code weaknesses.

C/C++ code weaknesses on Stack Overflow have not
been extensively studied in prior work. In [6], Verdi et al.
observed that the number of both CWE and vulnerable an-
swers drops over the years®. Different from their study, we
observe that the proportion of code snippets with C/C++
weaknesses are increasing over the years from 2009 to 2018.
The difference in the research design may contribute to the
differences between the two findings. For example, Verdi et
al. studied answers with the C++ tag, while in our study
answers from both the C and C++ tags are examined. In
our qualitative study, we observe that users do care about
code weaknesses, i.e., Stack Overflow moderators/users
frequently fixed the code weaknesses that we reported. Our
study highlights the need for a better mechanism to improve
the management of C'ode,,, especially given that the number
of code weaknesses is increasing over time but weakness
maintenance efforts are not increasing proportionally, lead-

%Fig. 6 from https:/ /arxiv.org/abs/1910.01321

15

ing to Stack Overflow becoming a more and more insecure
platform for crowdsourced knowledge sharing.

In addition, Verdi et al. analyzed the prevalence of
the migration of vulnerable C++ code snippets from Stack
Overflow to GitHub [6], while our study focuses on all
C/C++ code snippets on Stack Overflow, including both
code snippets that are possibly migrated to GitHub and
code snippets that are not migrated to GitHub. Code snip-
pets with weaknesses may pose a risk even if they have
yet to migrate to GitHub. For example, code snippets may
be already in use by commercial systems or other open
source systems that are not hosted publicly on GitHub; in
addition, such vulnerable code may get migrated to GitHub
in the future. Besides analyzing the vulnerability types,
we also analyze the revision history of Code,, and users
that contribute such code snippets. We obtain insightful
observations, e.g., revisions do help reduce the number of
CWE instances, and some contributors repeat the same CWE
throughout their different contributions.

In this paper, we conduct a large-scale empirical study
to analyze all code snippets in Stack Overflow answers
tagged with C/C++. We are the first study that studies
the weaknesses of C/C++ code, which is known to have
the most security vulnerabilities [10]. We provide insights
to developers so their code sharing activities lead to fewer
security risks.

8 CONCLUSION

Code snippets on Stack Overflow are shared widely by
developers and code security is a critical condition for
reuse. In this study, we investigate the weakness of C/C++
code snippets on Stack Overflow by scanning 646,716
C/C++ code snippets in Stack Overflow answers using
Cppcheck. We identified 32 types of code weaknesses on
Stack Overflow, and observed that some CWE types, ie.,
CWE-119/416/190/476 /415, are also associated with many
vulnerabilities in real-world software systems. In order to
explore how Code,, evolve, we analyze the revision his-
tory of such Code,, and find that more code revisions
are associated with a reduction of code weaknesses. Our
analysis also shows that more active users contribute fewer
Version,,. Our findings can be leveraged by future studies
to improve the quality of Stack Overflow’s crowdsourced
code snippets.

REFERENCES

[1] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do develop-
ers utilize source code from Stack Overflow?” Empirical Software
Engineering, vol. 24, no. 2, pp. 637673, 2019.

[2] E Fischer, K. Béttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack Overflow considered harmful? The impact
of copy & paste on Android application security,” in 2017 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2017, pp. 121-136.

[3] Wikipedia, “Vulnerability (computing),” https://en.wikipedia.
org/wiki/Vulnerability_(computing), 2020, [Accessed: 01-Feb-
2020].

[4] N.Meng,S.Nagy, D.D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in Java: Challenges and vulnerabilities,” in Pro-
ceedings of the 40th International Conference on Software Engineering
(ICSE), 2018, pp. 372-383.

[5] A. Rahman, E. Farhana, and N. Imtiaz, “Snakes in paradise?:
Insecure Python-related coding practices in Stack Overflow,” in
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), May 2019, pp. 200-204.

https://arxiv.org/abs/1910.01321
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Vulnerability_(computing)

6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. K.
Motlagh, “An empirical study of C++ vulnerabilities in crowd-
sourced code examples,” 2019.

MITRE, “Weaknesses in Software Written in C,” https://cwe.
mitre.org/data/definitions/658.html, 2019, [Accessed: 01-Oct-
2019].

——, “Weaknesses in Software Written in C++,” https://cwe.
mitre.org/data/definitions/659.html, 2019, [Accessed: 01-Oct-
2019].

WhiteSource, “What are the most secure programming
languages?” https:/ /www.whitesourcesoftware.com/
most-secure-programming-languages/, 2019, [Accessed: 04-
Jan-2020].

Slashdot, “Which programming language has
the most security vulnerabilities?” https://

developers.slashdot.org/story/19/03/25/0322202/

[27]

[28]

[29]

[30]

[31]

which-programming-language-has-the-most-security-vulnerabilities,

2019, [Accessed: 04-Jan-2020].

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stran-
sky, “You get where you're looking for: The impact of information
sources on code security,” in 2016 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2016, pp. 289-305.

TIOBE, “Programming Language C awarded Programming Lan-
guage of the Year 2019,” https://www.tiobe.com/tiobe-index/,
2019, [Accessed: 01-Oct-2019].

L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack Overflow:
A code laundering platform?” in 2017 IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2017, pp. 283-293.

R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
StackOverflow: An exploratory study on android apps,” Informa-
tion and Software Technology, vol. 88, pp. 148 — 158, 2017.

D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
An analysis of Stack Overflow code snippets,” in Proceedings of the
13th International Conference on Mining Software Repositories (MSR).
New York, NY, USA: Association for Computing Machinery, 2016,
pp. 391-402.

S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent: Recon-
structing and analyzing the evolution of Stack Overflow posts,”
in Proceedings of the 15th International Conference on Mining Software
Repositories (MSR). New York, NY, USA: ACM, 2018, pp. 319-330.
I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code exam-
ples,” in Proceedings of the 36th International Conference on Software
Engineering (ICSE), 2014, pp. 664-675.

T. Liu and R. Huuck, “Case study: Static security analysis of
the android goldfish kernel,” in International Symposium on Formal
Methods. Springer, 2015, pp. 589-592.

A. Joshi, A. Tewari, V. Kumar, and D. Bordoloi, “Integrating static
analysis tools for improving operating system security,” Interna-
tional Journal of Computer Science and Mobile Computing, vol. 3, no. 4,
pp. 1251-1258, 2014.

S. V. Yulianto and I. Liem, “Automatic grader for programming
assignment using source code analyzer,” in 2014 International
Conference on Data and Software Engineering (ICODSE). 1EEE, 2014,
pp- 1-4.

D. Worth, C. Greenough, and L. Chin, “A survey of C and C++
software tools for computational science,” Science and Technologies
Facilities Council, pp. 1-38, 2009.

O. V. Pomorova and D. O. Ivanchyshyn, “Assessment of the source
code static analysis effectiveness for security requirements imple-
mentation into software developing process,” in 2013 IEEE 7th
International Conference on Intelligent Data Acquisition and Advanced
Computing Systems (IDAACS), vol. 2. 1EEE, 2013, pp. 640-645.

A. Arusoaie, t. Ciobacd, V. Craciun, D. Gavrilut, and D. Lucanu,
“A comparison of static analysis tools for vulnerability detection
in ¢/c++ code,” International Symposiumon Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’2017), 2017.

J.R. Landis and G. G. Koch, “An application of hierarchical kappa-
type statistics in the assessment of majority agreement among
multiple observers,” Biometrics, pp. 363-374, 1977.

Q. Chen, L. Bao, L. Li, X. Xia, and L. Cai, “Categorizing and
predicting invalid vulnerabilities on common vulnerabilities and
exposures,” in 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), Dec 2018, pp. 345-354.

MITRE, “2019 CWE Top 25 Most Dangerous Software
Errors,” https://cwe.mitre.org/top25/archive/2019/2019_cwe_
top25.html, 2019, [Accessed: 28-Jan-2021].

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

16

M. Howard, “Improving software security by eliminating the cwe
top 25 vulnerabilities,” IEEE Security & Privacy, vol. 7, no. 3, pp.
68-71, 2009.

S. Wang, T.-H. P. Chen, and A. E. Hassan, “How do users revise
answers on technical Q&A websites? A case study on Stack
Overflow,” IEEE Transactions on Software Engineering, 2018.

A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and
N. A. Kraft, “Building reputation in StackOverflow: An empirical
investigation,” in 2013 10th Working Conference on Mining Software
Repositories (MSR), May 2013, pp. 89-92.

D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, and
C. Faloutsos, “Analysis of the reputation system and user contri-
butions on a question answering website: Stackoverflow,” in 2013
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2013). IEEE, 2013, pp. 886-893.
M. Chen, F. Fischer, N. Meng, X. Wang, and]. Grossklags, “How
reliable is the crowdsourced knowledge of security implementa-
tion?” in Proceedings of the 41st International Conference on Software
Engineering (ICSE). 1EEE Press, 2019, pp. 536-547.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. ~ Springer, 2008, pp. 285—
311.

S. Khandelwal, S. K. Sripada, and Y. R. Reddy, “Impact of gam-
ification on code review process: An experimental study,” in
Proceedings of the 10th innovations in software engineering conference,
2017, pp. 122-126.

D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
Sentiment analysis of security discussions on GitHub,” in Proceed-
ings of the 11th Working Conference on Mining Software Repositories
(MSR). New York, NY, USA: Association for Computing Machin-
ery, 2014, p. 348-351.

Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and
S. Fahl, “Developers need support, too: A survey of security advice
for software developers,” in 2017 IEEE Cybersecurity Development
(SecDev), Sep. 2017, pp. 22-26.

R. C. Seacord, Secure Coding in C and C++. Addison-Wesley, 2013.
Y. Younan, W. Joosen, F. Piessens, and H. V. den Eynden, “Security
of memory allocators for C and C++,” ser. Technical Report CW
419, Department of Computer Science, Katholieke Universiteit
Leuven, Belgium, July 2005, available at http:/ /www.fort-knox.
org/system/files/CW419.pdf.

R. Seacord, “Secure coding in C and C++ of strings and integers,”
IEEE Security Privacy, vol. 4, no. 1, pp. 74-76, Jan 2006.

Y. Younan, W. Joosen, E. Piessens, and H. Van den Eynden,
“Improving memory management security for C and C++,” Inter-
national Journal of Secure Software Engineering (IJSSE), vol. 1, no. 2,
pp- 57-82, 2010.

H. Mcheick, H. Dhiab, M. Dbouk, and R. Mcheik, “Detecting type
errors and secure coding in C/C++ applications,” in ACS/IEEE
International Conference on Computer Systems and Applications -
AICCSA 2010, May 2010, pp. 1-9.

W. Dietz, P. Li,]J. Regehr, and V. Adve, “Understanding integer
overflow in C/C++,” ACM Trans. Softw. Eng. Methodol., vol. 25,
no. 1, pp. 2:1-2:29, Dec. 2015.

S. M. Alnaeli, M. Sarnowski, M. S. Aman, K. Yelamarthi, A. Ab-
delgawad, and H. Jiang, “On the evolution of mobile computing
software systems and C/C++ vulnerable code: Empirical investi-
gation,” in 2016 IEEE 7th Annual Ubiquitous Computing, Electronics
Mobile Communication Conference (UEMCON), Oct 2016, pp. 1-7.

S. M. Alnaeli, M. Sarnowski, M. S. Aman, A. Abdelgawad, and
K. Yelamarthi, “Vulnerable C/C++ code usage in IoT software
systems,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-
I0T), Dec 2016, pp. 348-352.

J. Yang, L. Tan, J. Peyton, and K. A. Duer, “Towards better utilizing
static application security testing,” in Proceedings of the 41st Inter-
national Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), 2019, p. 51-60.

C. Treude and M. P. Robillard, “Understanding Stack Overflow
code fragments,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 1EEE, 2017, pp. 509-513.

U. Campos, G. Smethurst, J. a. P. Moraes, R. Bonifacio, and
G. Pinto, “Mining rule violations in JavaScript code snippets,” in
Proceedings of the 16th International Conference on Mining Software
Repositories (MSR), 2019, pp. 195-199.

X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What secu-
rity questions do developers ask? A large-scale study of Stack
Overflow posts,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 910-924, Sep 2016.

https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/659.html
https://cwe.mitre.org/data/definitions/659.html
https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://developers.slashdot.org/story/19/03/25/0322202/which-programming-language-has-the-most-security-vulnerabilities
https://developers.slashdot.org/story/19/03/25/0322202/which-programming-language-has-the-most-security-vulnerabilities
https://developers.slashdot.org/story/19/03/25/0322202/which-programming-language-has-the-most-security-vulnerabilities
https://www.tiobe.com/tiobe-index/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
http://www.fort-knox.org/system/files/CW419.pdf
http://www.fort-knox.org/system/files/CW419.pdf

[48] A.Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in Stack Overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619-654, Jun 2014.

[49] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stran-
sky, “You get where you're looking for: The impact of information
sources on code security,” in 2016 IEEE Symposium on Security and
Privacy (SP), May 2016, pp. 289-305.

[50] T. Lopez, T. T. Tun, A. Bandara, M. Levine, B. Nuseibeh, and
H. Sharp, “An investigation of security conversations in Stack
Overflow: Perceptions of security and community involvement,”
in Proceedings of the 1st International Workshop on Security Awareness
from Design to Deployment (SEAD). New York, NY, USA: Associ-
ation for Computing Machinery, 2018, p. 26-32.

Haoxiang Zhang is a Senior Researcher at
the Centre for Software Excellence at Huawei,
Canada. His research interests include em-
pirical software engineering, mining software
repositories, and intelligent software analytics.
He received a PhD in Computer Science from
Queen’s University, Canada. He received a PhD
in Physics and MSc in Electrical Engineering
from Lehigh University, and obtained his BSc in
Physics from the University of Science and Tech-
nology of China. Contact hzhang@cs.queensu.
ca. More information at: https://haoxianghz.github.io/.

Shaowei Wang is an assistant professor in the
Department of Computer Science at University
of Manitoba. He obtained his Ph.D. from Singa-
pore Management University and his BSc from
Zhejiang University. His research interests in-
clude software engineering, machine learning,
data analytics for software engineering, auto-
mated debugging, and secure software develop-
ment. He is one of four recipients of the 2018
distinguished reviewer award for the Springer
EMSE (SE’s highest impact journal). More infor-
mation at: https://sites.google.com/site/wswshaoweiwang/.

17

Heng Li is an Assistant Professor in the Depart-
ment of Computer Engineering and Software En-
gineering at Polytechnique Montreal, Montreal,
Canada, where he leads the Maintenance, Op-
erations and Observation of Software with intelli-
gencE (MOOSE) lab. He obtained his Ph.D. from
the School of Computing, Queen’s University
(Canada), M.Sc. from Fudan University (China),
and B.Eng. from Sun Yat-sen University (China).
He also worked at Synopsys as a software engi-
neer for two years and worked at BlackBerry as
a software performance engineer for another two years. His research
interests lie within Software Engineering, in particular, software observ-
ability, intelligent operations of software systems, software log mining,
software performance engineering, and mining software repositories.
Contact him at: heng.li@polymtl.ca; https://www.hengli.org.

Tse-Hsun (Peter) Chen is an Assistant Pro-
fessor in the Department of Computer Science
and Software Engineering at Concordia Univer-
sity, Montreal, Canada. He leads the Software
PErformance, Analysis, and Reliability (SPEAR)
Lab, which focuses on conducting research on
performance engineering, program analysis, log
analysis, production debugging, and mining soft-
ware repositories. His work has been published
in flagship conferences and journals such as
ICSE, FSE, TSE, EMSE, and MSR. He serves
regularly as a program committee member of international conferences
in the field of software engineering, such as ASE, ICSME, SANER,
and ICPC, and he is a regular reviewer for software engineering jour-
nals such as JSS, EMSE, and TSE. Dr. Chen obtained his BSc from
the University of British Columbia, and MSc and PhD from Queen’s
University. Besides his academic career, Dr. Chen also worked as a
software performance engineer at BlackBerry for over four years. Early
tools developed by Dr. Chen were integrated into industrial practice for
ensuring the quality of large-scale enterprise systems. More information
at: http://petertsehsun.github.io/.

Ahmed E. Hassan is an IEEE Fellow, an
ACM SIGSOFT Influential Educator, an NSERC
Steacie Fellow, the Canada Research Chair
(CRC) in Software Analytics, and the NSER-
C/BlackBerry Software Engineering Chair at the
School of Computing at Queen’s University,
Canada. His research interests include mining
software repositories, empirical software engi-
neering, load testing, and log mining. He re-
ceived a PhD in Computer Science from the
University of Waterloo. He spearheaded the cre-
ation of the Mining Software Repositories (MSR) conference and its
research community. He also serves/d on the editorial boards of IEEE
Transactions on Software Engineering, Springer Journal of Empirical
Software Engineering, and PeerJ Computer Science. Contact ahmed@
cs.queensu.ca. More information at: http://sail.cs.queensu.ca/.

hzhang@cs.queensu.ca
hzhang@cs.queensu.ca
https://haoxianghz.github.io/
https://sites.google.com/site/wswshaoweiwang/
heng.li@polymtl.ca
https://www.hengli.org
http://petertsehsun.github.io/
ahmed@cs.queensu.ca
ahmed@cs.queensu.ca
http://sail.cs.queensu.ca/

APPENDIX A

THE DEFINITION OF CWE TYPES DETECTED ON
STACK OVERFLOW

Table 4 shows the detected CWE types in C/C++ code

snippets on Stack Overflow and their associated definitions
from mitre.org®’.

TABLE 4: CWE types and their associated definitions

18

APPENDIX C
GROWTH TREND OF Code,, AND CWE INSTANCE
COUNT

Fig. 16 shows the trend of the proportion of Code,, over
the past 11 years, i.e., from 2008 to 2018. To alleviate the
effect that in the earlier years of Stack Overflow there was
a greater growth of activities, we normalize the number of
Code,, in each year by the total number of posted C/C++
code snippets in the same year. The proportion of Code,,

9C(;gl — 8;:1 g;t:;?niﬁahzed TeSOLICe grows and peaks by 2015, then slightly drops and remains
401 Missing release of memory after effective lifetime steady until 2018.
775 Missing release of file descriptor or handle after effec- We inspect the trend of each individual CWE type and
tive lifetime : observe that in recent years the number of CWE instances,
562 Return of stack variable address . . .
119 Improper restriction of operations within the bounds after normalized by the number of code snippets in the same
of a memory buffer year, in CWE-775/119/685/788/628/762/910 is increasing,
758 Reliance on undefined, unspecified, or as shown in Fig. 17.
implementation-defined behavior
664 Improper control of a resource through its lifetime
476 NULL pointer dereference APPENDIX D
685 Function call with incorrect number of arguments
768 Tncorrect short circuit evaluation TIME DIFFERENCE: FIRST, LAST, AND THE PRESENT
788 Access of memory location after end of buffer TIME
665 Improper initialization
678 Function call with incorrectly specified arguments The time from first to last code version with weaknesses is
190 Integer overflow or wraparound much shorter than the time from last version to the present
771 Missing reference to active allocated resource time, as shown in Fig. 18.
762 Mismatched memory management routines
369 Divide by zero
398 Indicator of poor code quality
682 Incorrect calculation O Viewcount in question threads with CWE-119/416/190/476/415
910 Use of expired file dESCI'ip’EOI' W Viewcount in question threads with other CWE types
786 Access of memory location before start of buffer
687 Function call with incorrectly specified argument
value
415 Double free
587 Assignment of a fixed address to a pointer
590 Free of memory not on the heap
772 Missing release of resource after effective lifetime
416 Use after free
825 Expired pointer dereference
672 Operation on a resource after expiration or release
404 Improper resource shutdown or release
131 Incorrect calculation of buffer size
571 Expression is always true N T
100 1000 10000 100000 1000000
Fig. 15: The distribution of viewcount for both the
APPENDIX B question threads that are associated with CWE-

VIEWCOUNT OF QUESTION THREADS ASSOCIATED
WITH DIFFERENT CWE TYPES

The median viewcount of the question threads that are
associated with CWE-119/416/190/476/415 is 463, com-
pared with a median viewcount of 295 for the question
threads associated with other CWE types. Fig. 15 shows the
distribution of viewcount for both the question threads that
are associated with CWE-119/416/190/476/415 as well as
the question threads that are associated with other CWE
types. We run the Mann-Whitney U test between their
distributions of viewcount and observe that the difference
is statistically significant (p-value < 0.05).

“Ohttps:/ /cwe.mitre.org/data/index.html

119/416/190/476/415 as well as the question threads
that are associated with other CWE types.

0.014 4
0.012 +
0.010
0.008
0.006 +
0.004 +
0.002 +
0.000 H

0. p—
° o —) '

aud
/0

Proportion of code snippets
with weakness

T T T T T T T T T T T
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 16: The growth of Code,, for 11 years after normalizing
by the number of code snippets posted in each year.

https://cwe.mitre.org/data/index.html

O,
=)
o) O,
UEJ 3 / °\ 7
[— 0= 7
O E pa——y LS P © °
=
© 9 /
= £ o
[} 0,
a9 /
E O ‘o\ °
S ¢ / o - o ce.
28 A < \0—0 L .'»‘-./.\8
2 T g ol s s
k=] \R/n\’:‘/ ~_8: ©F _‘\.__n

T T T T T T T T T T T
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 17: The ratio of the number of CWE instances to the
number of code snippets posted in each year for CWE Type
775/119/685/788/628/762/910.

From last version with _|
weaknesses to the present time

From first to last _| |
version with weaknesses |
T
0

0 @A 00 OW

T T
1000 2000
Number of days

T
3000 4000

Fig. 18: The distribution of the number of days between the
first and last version of code snippets with weaknesses, and
between the last version with weaknesses to the present.

APPENDIX E

RELATIONSHIP BETWEEN COMMENT COUNT AND
CODE REVISION TYPES

Fig. 19 shows the distribution of comment count in dif-
ferent code revision types. We perform a Mann-Whitney
test and observe that Code,, that are eventually improved
have statistically significant more comments (i.e., p-value <
0.05) in the associated answer compared to C'ode,, that are
eventually unchanged, deteriorated, or not revised at all.

15-

=
o

al

Number of comments

19

APPENDIX F
ANALYSIS OF THE USERS’ TIMESPAN OF CWE IN-
STANCES FOR DIFFERENT CWE TYPES

The CWE timespan is defined as the time difference between
the first and last instance of CWE by a user. Users who
only contribute one CWE instance are ignored when we
analyze the repeated patterns. Fig. 20 shows the distribution
of users’ timespan for each CWE type. For example, both
CWE-401 and CWE-119 have a median timespan of less than
one day. We also observe that certain CWE types, such as
CWE-775 and CWE-562, have a larger proportion of their
users with a longer timespan. Across the majority of CWE
types, there are outlier users with an extended timespan of
posting code weaknesses.

= 3000 —
% 2000 —
14
< 1000 | ;
£ 500 7 M
5 i
o 200 M T T
=} 1 T i
o 100 - T /
Y T |
o 50 — |
S -
o 20 4] z
0 i
CIE.) 10
=
= 5 - T
w 2
= 1
O
04 & ekt i) [RSPRSCN |5 M. [T | p— N
rrrrrrrrrrrrrrrrrrrr T T T T T T T
NHONDOV AT OONEHANOOFTUONANNONOANL OO 0O
THNODONOOAAN ON VDI NOONVOOOONNSN~00NO
AHAATOOITITTITIOODNDOOOOOOONNMNNSNNNNNNOO O
CWE

Fig. 20: The distribution of contributed CWE instances by
different users for different CWE types.

APPENDIX G

TYPES OF REASONS FOR THE REJECTED REVISION
SUGGESTIONS

Table 5 lists the five types of reasons among the 15 out of
our 40 suggested edits that were rejected. Note that multiple
moderators can review the same suggested revision, thus
multiple reasons can be provided to each rejected revision
suggestion.

TABLE 5: Reason types for the rejected revision suggestions

Rejection reason Count
Revision should be posted as comment or answer. 16
Revision deviates from the original post. 6
Breaks the algorithm. 1
Revision does not correct critical issues. 1

No reason. 1

-

N {

Revised (u‘nchanged) Revised (improved) Revised (déterioraled)

Not revised

Code revision types

Fig. 19: The distribution of comment count in answers with
different code revision types.

https://www.researchgate.net/publication/349144767

	Introduction
	Background
	Code snippets and their security weaknesses on Stack Overflow
	The evolution of code snippets on Stack Overflow

	Study Design
	Data Collection
	Collecting Code Snippets in Stack Overflow Answers
	Detecting Weaknesses in Code Snippets

	Study Approach
	RQ1: What are the types of code weaknesses that are detected in C/C++ code snippets on Stack Overflow?
	RQ2: How does code with weaknesses evolve through revisions?
	RQ3: What are the characteristics of the users who contributed to code with weaknesses?
	Qualitative study: How does the Stack Overflow community respond to security issues of C/C++ code snippets?

	Evaluation Results
	RQ1: What are the types of code weaknesses that are detected in C/C++ code snippets on Stack Overflow?
	RQ2: How does code with weaknesses evolve through revisions?
	RQ3: What are the characteristics of the users who contributed to code with weaknesses?

	Implications of our Findings
	How does the Stack Overflow community respond to security issues of C/C++ code snippets?
	Implications for Stack Overflow users

	Threats to Validity
	Related Work
	Security in Software Systems
	Studying Code on Stack Overflow

	Conclusion
	References
	Biographies
	Haoxiang Zhang
	Shaowei Wang
	Heng Li
	Tse-Hsun (Peter) Chen
	Ahmed E. Hassan

	Appendix A: The definition of CWE types detected on Stack Overflow
	Appendix B: Viewcount of question threads associated with different CWE types
	Appendix C: Growth trend of Codew and CWE instance count
	Appendix D: Time difference: first, last, and the present time
	Appendix E: Relationship between comment count and code revision types
	Appendix F: Analysis of the users' timespan of CWE instances for different CWE types
	Appendix G: Types of reasons for the rejected revision suggestions

