
Improving the Testing Efficiency of
Selenium-based Load Tests

Shahnaz M. Shariff⇤, Heng Li⇤, Cor-Paul Bezemer†,
Ahmed E. Hassan⇤, Thanh H.D. Nguyen‡, Parminder Flora‡
⇤Queen’s University, †University of Alberta, ‡BlackBerry, Canada
⇤{sharrif, hengli, ahmed}@cs.queensu.ca, †bezemer@ualberta.ca

Abstract—Web applications must be load tested to analyze
their behavior under various load conditions. Typically, these
load tests are automated using protocol-level HTTP requests
(e.g., using JMETER). However, there are several disadvantages
to using protocol-level requests for load tests. For example,
protocol-level requests are only partially representative of the
true usage of a web application, as the web application is not
actually executed in a browser. It can be difficult to abstract
complex behavior, such as a login sequence, into requests without
executing the application. Browser-based load testing can be used
as an alternative to protocol-level requests. Using a browser-based
testing framework, such as SELENIUM, tests can be executed
more realistically — inside a browser. Unfortunately, because a
browser instance must be started to conduct a test, browser-
based testing has a high performance overhead which limits its
applicability for load tests. In this paper, we propose an approach
for reducing the performance overhead of running SELENIUM-
based load tests. Our approach shares browser instances between
test user instances, thereby reducing the performance overhead
that is introduced by launching many browser instances during
the execution of a test. Our experimental results show that our
approach can significantly increase the number of user instances
that can be tested on a test machine without overloading the load
driver. Our approach and the experiences that we share in this
paper can help software practitioners improve the efficiency of
their own SELENIUM-based load tests.

I. INTRODUCTION

Modern web applications typically have many users that
send many concurrent requests. To ensure that an application
can handle the number of concurrent requests (i.e., the load)
it is supposed to, the system must be thoroughly load tested.
Load testing is performed to determine an application’s behav-
ior under various load conditions [7]. Neglecting a load test
can have catastrophic consequences. For example, in 2016 a
Statistics Canada website was broken for three hours because
it could not handle the traffic [2].

Typically, to conduct a load test, practitioners use a tool
such as JMETER that sends varying numbers of protocol-
level HTTP requests to the Application Under Test (AUT).
The performance of the AUT (e.g., the response time or
resource utilization) is then measured throughout the test and
analyzed to understand how the AUT responds to the various
levels of load. However, many modern web applications rely
on complex interactions within the browser, making them
difficult to be abstracted into a sequence of HTTP requests
without rendering the application’s responses. For example, the

requests that are necessary to execute a secure login sequence
are hard to generate without using the application’s logic.

One way to overcome this disadvantage is by using a
browser-based testing framework, such as SELENIUM. SELE-
NIUM is widely used to automate functional tests of web appli-
cations by simulating user behavior in a web browser [3, 4, 6].
Browser-based load tests have several advantages over request-
based load tests. For example, the aforementioned secure
login sequence can be executed easily with SELENIUM by
loading the login page, filling out and submitting the form.
Because the application is actually rendered inside the browser,
the application logic and the browser will take care of the
rest of the login sequence. Hence, as there is no need to
simulate complex dynamic behavior of the web application,
SELENIUM-based tests give a more realistic view on the end-
to-end behavior of an application under load.

Unfortunately, there are several limitations when using a
browser-based test framework for load tests. The most impor-
tant limitation is the requirement of having to start a browser
for each test user, which causes a considerable amount of
overhead compared to request-based load tests.

In this paper, we take the first important step towards
improving the efficiency of load testing using SELENIUM. We
share our experiences of using SELENIUM for load testing,
and we propose an approach to improve the efficiency of
SELENIUM-based load testing. Our approach shares browser
resources among the test users in a load test, thereby reducing
the required resources per test user. The main contributions of
this paper are:

• An approach that increases the number of test users in
a SELENIUM-based load test by at least 20% using the
same amount of hardware resources.

• A systematic exploration of various testing scenarios for
SELENIUM-based load testing.

Our approach and shared experience can help software
practitioners improve the efficiency of their own SELENIUM-
based load tests.

The paper is organized as follows: Section II gives back-
ground information about SELENIUM. Section III presents our
experimental design. Section IV presents our experimental
results. Section V presents the threats to validity of our study.
Section VI presents the related work and Section VII presents
our conclusion.

launch browser using Chromedriver

driver = webdriver.Chrome("/path/to/chromedriver")

go to URL

driver.get("http://example.com/")

locate element using XPATH

more_information_link = driver.\

find_element_by_xpath("/html/body/div/p[2]/a")

click on the element

more_information_link.click()

Code Listing 1: A SELENIUM test example.

II. LOAD TESTING USING SELENIUM

SELENIUM1 is a browser automation tool that is used to
test the functionality of a web application by simulating the
user’s interactions with an actual browser. SELENIUM provides
an API with which a tester can specify and replay a test
scenario automatically in a modern web browser (such as
Google Chrome, Mozilla Firefox or Safari). To allow for
automated testing in command line-based environments (e.g.,
for continuous integration environments), SELENIUM supports
headless browsers which provide the same functionality as
regular browsers without a graphical user interface.

Listing 1 shows an example of a SELENIUM test scenario.
First, a browser is opened by the SELENIUM WebDriver, the
SELENIUM component that controls the browser. Second, the
web application is loaded and an element on the page (a link)
is located using an XPath query. Finally, the WebDriver clicks
on the link.

Although SELENIUM is predominantly used for functional
testing of web applications, it can be used for load tests as
well. To use SELENIUM for load tests, multiple browsers are
launched simultaneously (one for each user in the test). Unfor-
tunately, this introduces considerable performance overhead,
limiting the applicability of SELENIUM for load tests. In this
paper, we investigate how we can improve the efficiency of
executing a SELENIUM test, thereby taking an important step
towards making SELENIUM more appealing for conducting
load tests.

III. EXPERIMENTAL SETUP

In this section, we describe the experimental setup that we
used to investigate how we can improve the efficiency of
executing a test in SELENIUM. In particular, we describe our
AUT, the test environment, the design of our load test, and the
way in which we monitor the resource usage during the test.

A. Application Under Test
We use RoundCube2 version 1.3.4 as our AUT. RoundCube

is an open-source email client of which the front-end runs in
a browser while providing an application-like user interface.
It provides features such as MIME support, address book,
folder manipulation, message searching and spell checking.
We chose RoundCube because its front-end makes extensive
use of the AJAX technology (i.e., dynamic loading of web

1https://www.seleniumhq.org/
2https://roundcube.net/

Load driver

AUT
(RoundCube)

Workload

Response

Selenium
 +

Browser

AUT Server

Fig. 1: Our test environment.

page content) for its user interface, for example, for its drag-
and-drop message management.

B. Test Environment

Figure 1 shows our test environment. Our test environment
consisted of two dedicated desktop machines: a load driver and
an AUT server. SELENIUM and the front-end of RoundCube
(i.e., inside of a web browser) were executed from the same
machine (i.e., the load driver), as SELENIUM must interact
with the browser instances. The load driver consisted of an
AMD Phenom desktop with 6 cores (2.70 GHz) and 8GB of
RAM running Ubuntu 16.04. We ran SELENIUM tests using
Google Chrome version 69 and the Chrome WebDriver version
2.37. We deployed RoundCube’s back-end on the second
machine (i.e., the AUT server) running Ubuntu Linux version
14.04, Nginx version 1.4.6, MySQL version 5.5.47 and PHP
version 7.0.27. We used Postfix and Dovecot as our SMTP and
IMAP servers. The back-end was installed on an Intel Core i7
(3.6 GHz) desktop with 8 cores and 16GB of RAM.

C. Load Test Design

Test Suite. In order to test our AUT, we created a test suite
that consists of eight tasks covering the typical actions that are
performed in an email client: composing an email, replying
to an email, replying to everyone in an email, forwarding
an email, viewing an email, browsing contacts, deleting an
email and permanently deleting an email. Login and logout
actions are added to the beginning and the end of each task,
respectively.

In our load test, we simulate the scenario in which multiple
users connect to an email server and perform email tasks
through their web browsers. We initialized the mailbox and
contacts of each user with 250 emails and 5 contacts to have
a fully functioning email service.
Test Schedule. We based our test schedule on the MMB3
benchmark (Messaging Application Programming Interface
Messaging Benchmark), which was designed by Microsoft for
measuring the performance of Microsoft Exchange installa-
tions. Although the benchmark itself was retired in 2008 [11],
the test schedule provides a realistic mix of tasks that are
performed by users of an email application. The MMB3
benchmark specifies the number of times that each task is
performed during a day, modelled around a typical user’s
working day of eight hours. According to the benchmark, 295
tasks are scheduled to run in an 8-hour period ([5]). In our
study, we reduce the overall execution time while keeping the

 T2: Delete Email T3: Browse Contacts ... T19

T1: Reply All T2: View Emails T3: Delete Email ... T19

T1: Browse Contacts T2: Reply T3: Forward Email ... T19

30 mins

 T1: Send Email

Fig. 2: The one-user-per-browser setting.

same intensity of tasks as performed in the MMB3 schedule.
Specifically, we run 19 tasks in a 30-minute period. Each of
these 19 tasks is randomly chosen (with repetition) from the
8 email tasks as specified by MMB3. Each of the tasks is
randomly scheduled within the testing period using a uniform
distribution. In a purely random schedule, one task might
be scheduled immediately after another. However, in realistic
usage, users always finish one task before starting another.
Therefore, we set a minimum gap of 30 seconds between the
scheduled time of two consecutive tasks. Prior to starting a
load test, every user’s mailbox is cleared and loaded with new
emails. This initialization step is done to ensure that all emails
in the mailboxes have the same status (i.e., “unread”) when
starting the test.

D. Configurations for Executing a Load Test
As explained in Section II, SELENIUM employs browsers

to test a web application.Traditionally, one dedicated browser
instance is opened for each user instance (e.g., each user of the
email application in our load test). However, this approach is
very resource-heavy. In this paper, we experiment with several
configurations for executing a load test. In particular, we vary
(1) the number of users per browser instance and (2) the type
of browser instance that is used. Table I gives an overview of
the configuration settings that we used in our study. Below we
describe each setting.

1) The number of users per browser instance: We use two
settings for the number of users per browser instance. In the
one-user-per-browser setting, which is traditionally used in
SELENIUM load tests, there is one dedicated browser instance
for each user that remains open while there are still tasks left
for the user to execute. This setting is depicted by Figure 2.

In this paper, we propose the many-users-per-browser set-
ting, in which a browser instance is shared between users in the
load test. In this setting, a scheduler is employed that selects
the next task to execute and assigns it to a browser instance
from a pool of available browser instances. The scheduler has
a separate thread for each browser instance in the pool. The
rationale behind this setting is that in the one-user-per-browser
setting, there is a considerable amount of idle time in which
a browser is not used (and hence is wasting resources). In
the many-users-per-browser setting, a user can execute a task
during the idle time of other users of the browser.
Sharing browsers between users. To share browsers between
user instances, we first combine the schedules of all the user

57 102 120

Time in seconds

T1

T2

T1 T2

57

65 102

120

U1T1 U2T1 U2T2 U1T2

65

T1

 72 140

T2

U3T1

 72

U3T2

140

User 1 (U1)

User 2 (U2)

User 3 (U3)

Common
List of
Tasks

Fig. 3: Merging the scheduled tasks of two user instances into
a common list of tasks.

U1T1 U3T1 U2T1 U3T2

U1T2 U2T2

U1T1 U2T1 U1T2

U3T1 U3T2

U2T2

Common
list

of tasks

B1

B2

Fig. 4: The many-users-per-browser setting.

instances in a common list of tasks. The tasks in the common
list are sorted based on their scheduled starting time (starting
from the earliest task). Figure 3 shows how the tasks are
gathered from three user instances to form a common list of
tasks.

The scheduler selects the next task from the common list,
and executes it in an available browser instance (as illustrated
in Figure 4). Figure 5 shows how a task is selected and
assigned to a browser. While a browser is executing a task,
it is removed from the pool of available browsers. Once the
task is finished, the browser is added back to the pool. One
can experiment with the size of the pool of available browsers
to make optimal use of the available resources. The process
of assigning tasks to available browsers are running in multi
threads (the number of threads is equal to the number of
available browsers), such that all the browsers are continually
running the tasks in parallel until all the tasks in the common
list are executed.

To avoid conflicts between user tasks (e.g., when reading
and deleting an email at the same time for a user), the
scheduler also maintains a pool of available users. When a user
task is assigned to a browser instance, that user is removed
from the available pool. When the user for a scheduled task is
not available, the scheduler selects the next task from the task
list. The current task is not ignored; it is selected later when
the user for the task becomes available.

2) The type of browser instance: As shown in Table I,
we use three settings for the type of browser instances in
our experiments. In the regular browser setting, we use the

TABLE I: The configuration settings for executing a load test that are used in our study.

Concept Definition

Number of users
per browser instance

One per browser A dedicated browser instance is started for each user instance

Many per browser (our proposed approach) Browsers are shared among several user instances

Regular browser A regular browser (e.g., Google Chrome)

Type of browser Headless browser A simplified browser without a graphical user interface

XVFB browser A regular browser with its display transferred to an in-memory display

Begin

Are all tasks
assigned?

Assign the current
task to the current

browser

Remove the current
user/browser from

the availabe
user/browser pool

Wait till the scheduled
time & execute the task

Add the current
user/browser back to

the available
user/browser pool

Do

End

Does the task
belong to an

available user?

No

Yes

No

Yes

Mark the current task
as assigned

Yes

No

Is there an
available browser?

 Read the next
unassigned task from

the common list of
tasks

Wait Wait

Yes

NoAny other
unassigned task?

Fig. 5: Our process of assigning a task from the common task list to an available browser. The process is running in multi
threads (the number of threads is equal to the number of available browsers).

Chrome browser. In the headless browser setting, we use the
headless version of the Chrome browser. As not all modern
browsers have headless versions, we also consider the XVFB
browser setting in our experiments, which is considered an
alternative to the headless approach [1]. In the XVFB browser
setting, we use a regular Chrome browser of which the
display is transferred to an in-memory display using the XVFB
application.

E. Performance Metrics for Monitoring the Resource Usage
To compare the aforementioned configurations for executing

a load test, we use the following metrics.
• The CPU & memory usage. The combined CPU and

memory usage of the load testing processes (SELENIUM,
Chrome, ChromeDriver, and XVFB when using XVFB
browsers) running on our load driver machine. We monitor
the CPU and memory using the pidstat

3 application. We
calculate the median and the 95th percentile values of the CPU
and memory usage recorded at every second. The median
resource usage values give an overall estimate of the used
resources during a load test, while the 95th percentile values
show the spikes of resource usage (or peak usage). We also
monitor the overall system CPU and memory usage, using the
sar

4 application, to understand the overall status of the load
driver system.

3https://linux.die.net/man/1/pidstat
4https://linux.die.net/man/1/sar

• Error ratio. The error ratio is the proportion of tasks
with execution errors. We assume that the implementation of
the load test tasks is functionally correct for one user. Hence,
if errors occur during the execution of a task during the load
test, it is likely that these errors are caused by the load. We
use the error ratio as the primary metric for determining the
maximum number of user instances that can run on a load
driver.

• Delay ratio. The delay ratio captures the proportion of
tasks that missed their scheduled starting time. When the load
driver is overloaded, tasks may take longer to finish, which
could cause the next tasks to get delayed (i.e., miss their
scheduled starting time). In order to follow the test schedule,
we need to minimize the proportion of delayed tasks (i.e., less
than 5%).

• Maximum number of error-free user instances. The
maximum number of error-free user instances is the maximum
number of user instances that can run on the load driver
machine without overloading it. We increase the number of
user instances in the load test until these thresholds are reached
to identify the maximum number of error-free user instances.
We repeat the load test five times to reduce variation in the
measurements. We identify the maximum number of user
instances when the median error ratio is 0 and the median
delay ratio is less than 5% among the five repetitions. We
use a different random schedule for each repetition to ensure
that the results are not biased towards a certain task schedule.
The random schedules are recorded to ensure that the same

TABLE II: The resource usage of the load test for each
configuration setting for the type of browser instance.

Browser type Median CPU (%) Median memory (%)

Headless 49 5
Regular 121 12
XVFB 92 8

schedules are used across different experimental settings.

IV. STUDYING THE RESOURCE USAGE OF
SELENIUM-BASED LOAD TESTS

In this section we present our experimental results. First,
we study the resource usage of SELENIUM-based load tests
for each configuration setting for the type of browser instance.
Second, we study the resource usage of SELENIUM-based load
tests for each configuration setting for the number of users per
browser instance.

A. Studying the Resource Usage of Different Types of
Browsers

Approach: We run the load test discussed in Section III for
all three configuration settings for the type of browser instance.
To be able to compare the results across the settings, we fix the
number of user instances to ten in this experiment. We launch
a browser for each user instance. Hence, for each configuration
setting, we start ten browser instances.

In addition, we study the resource usage of a busy and an
idle browser for each browser type, to investigate how many
resources are wasted by having idle browser instances. In this
experiment, we run ten browser instances for ten minutes and
monitor the resource usage. During these ten minutes, the busy
browsers execute tasks one after another, and the idle browsers
execute no tasks.

Results: SELENIUM-based load tests with headless
browsers use the least resources in terms of CPU and
memory. Table II shows the CPU and memory usage for
each of the browser types. SELENIUM-based load tests with
regular browsers use the most resources in terms of CPU
and memory. Xfvb browsers use less resources than regular
browsers but more resources than headless browsers. Hence,
headless browsers are best suited for SELENIUM-based load
testing in terms of resource usage. As regular browsers require
considerably more resources, we focus the remainder of our
study on headless browsers and XVFB browsers.

The peak resource usage of idle browsers is non-
negligible compared to the peak resource usage of busy
browsers. Table III compares the results of running busy and
idle browsers. The median CPU and memory usage shows
that running an idle browser consumes significantly fewer
resources than running a busy browser. For example, running
busy headless browsers consumes a median value of 328%
CPU while running idle headless browsers consumes only a
median of 2% CPU. However, Table III also shows the 95th-
percentile CPU and memory usage, which can be considered
the peak resource usage. These peak numbers show that idle
XVFB browsers consume a 95th-percentile memory of 14%,

TABLE III: The resource usage of headless and XVFB
browsers in busy and idle status.

Browser type CPU usage (%) Memory usage (%)
Median 95th perc. Median 95th perc.

Headless (busy) 328 454 28 34
Headless (idle) 2 67 2 9
XVFB (busy) 513 547 46 51
XVFB (idle) 1 76 6 14

which is more than one-fourth of the 95th-percentile memory
(51%) of busy XVFB browsers. The high peak resource usage
of idle browsers suggests that sharing browsers could reduce
the peak resource usage of SELENIUM-based load tests, as the
total number of browsers would be reduced. As a result, the
capability of the load driver for generating workload would be
increased.⇤

⇥

�

�

Headless browsers consume considerably less resources
than other types of browser instances in SELENIUM-based
load tests. In addition, even idle browsers can consume a
significant amount of CPU and memory during a SELE-
NIUM-based load test.

B. Studying the Resource Usage of Different Settings for the
Number of Users per Browser

Approach: In the remainder of this section, we study the
resource usage of SELENIUM-based load tests using the one-
user-per-browser and many-users-per-browser configuration
settings. In these experiments, we execute the load test as
described in Section III. Hence, we keep increasing the user
instances until we exceed the thresholds for the error and delay
ratio.

Results: Sharing browsers in SELENIUM-based load
tests increases the maximum number of error-free user
instances by 20% when using headless browsers. The left
side of Table IV shows the results of our experiments using
headless browsers. The performance measures are the median
values over the five repetitions of the load test (as discussed in
Section III). For the one-user-per-browser setting, we started
to see execution errors when the number of user instances
reached 50. In comparison, for the many-users-per-browser
setting (using 20 shared browsers), the error ratio was still
zero when we ran 60 user instances on the same load driver.
The delay ratio was zero in both cases. For 65 users, the
performance metrics exceeded the thresholds for the error
and delay ratio. Therefore, our proposed approach of sharing
browsers increases the maximum number of error-free user
instances from less than 50 to 60 (i.e., by at least 20%).

Table IV also shows the performance of the load tests with
the one-user-per-browser and many-users-per-browser settings
when both running 60 user instances using headless browsers.
The median CPU, median memory, and 95th-percentile CPU
usage is similar between the two settings. However, the
many-users-per-browser setting uses significantly less 95th-
percentile memory (41.4%) than the one-user-per-browser

TABLE IV: The performance of the load tests for each configuration setting for the number of users per browser, using headless
and XVFB browsers. The threshold for determining whether the load driver is overloaded is 0% for the error ratio and 5% for
the delay ratio.

Headless browsers XVFB browsers

One user
per browser
(50 users)

One user
per browser
(60 users)

Many users
per browser
(60 users)

One user
per browser
(18 users)

One user
per browser
(22 users)

Many users
per browser
(22 users)

Error ratio 0.1 1.6 0.0 0.9 0.7 0.0
Delay ratio 0.0 0.0 0.0 0.0 1.0 1.0
Median CPU 222.0 259.0 265.0 299.0 357.0 362.0
Median memory 23.2 27.6 28.3 24.6 27.7 27.1
95th percentile CPU 385.0 429.0 418.0 485.0 506.0 501.0
95th percentile memory 45.1 51.7 41.4 40.9 48.4 40.0
Median system CPU 349.0 383.0 381.0 429.0 490.0 486.0
Median system memory 93.4 92.3 53.7 93.4 96.8 84.2
95th percentile system CPU 497.0 537.0 514.0 555.0 589.0 584.0
95th percentile system memory 97.4 97.6 60.1 96.4 98.2 87.5

Load driver overloaded? Yes Yes No Yes Yes No
- All values are in %
- Notice that there are 6 cores available on the load driver machine, hence total CPU usage can go up to 600%

setting when running 60 user instances (51.7%), and even less
than the one-user-per-browser setting when running 50 user
instances (45.1%). When looking at the system-level resource
usage, it shows that the one-user-per-browser setting uses a
median of more than 92% memory (when running either 50
user instances or 60 users). In comparison, our proposed many-
users-per-browser setting uses only 53.7% system memory in
median. This large difference in overall system memory usage
is due to the overhead that is required for the operating system
to manage the open browser instances.

Sharing browsers in SELENIUM-based load tests in-
creases the maximum number of error-free user instances
by 22% when using XVFB browsers. The right side of
Table IV shows the results of our experiments using XVFB
browsers. In the one-user-per-browser setting, execution errors
start to occur from 18 user instances, while the delay ratio
is still zero. In the many-users-per-browser setting (using 10
browser instances), the error ratio is still zero for 22 user
instances. The delay ratio increases to 1%, but this is still
below our threshold. Therefore, sharing browsers between user
instances increases the maximum number of error-free user
instances from less than 18 to 22 (i.e., by 22%) when using
XVFB browsers.

Table IV also shows the performance of the load tests
with the one-user-per-browser and many-users-per-browser
settings when both running 22 user instances using with XVFB
browsers. Similar to the results for headless browsers, the
many-users-per-browser setting with 22 user instances uses
less 95th-percentile memory (40.0%) than the one-user-per-
browser setting with 60 user instances (48.4%) and 50 user
instances (40.9%). When looking at the overall resource usage
of the system, we noticed that the median memory usage is
more than 93% in the one-user-per-browser setting with either
18 user instances or 22 user instances. In comparison, the
median memory usage is just 84.2% in the many-users-per-

browser setting with 22 user instances.⇤

⇥

�

�
Sharing browsers between user instances in a SELENIUM-
based load test increases the capability of the load driver
for generating workload by at least 20%.

V. THREATS TO VALIDITY

Generalization of our approach to other AUTs and test
schedules. We tested various configurations for executing a
SELENIUM-based load test on a single AUT (i.e., RoundCube).
Future studies should investigate how these configurations
perform for other AUTs and in different test environments.

We designed a test schedule that was inspired by the MMB3
benchmark. We assumed that the individual tasks of a user
instance are not executed directly after each other. Future work
should study the resource usage of SELENIUM-based load tests
with other test schedules.
Generalization of our approach to other browser-based
test automation. The experimental results may vary for other
browsers (e.g., Firefox). However, our approach of sharing
browsers is not limited to a specific browser.

Cypress5 is a framework that supports testing of web appli-
cations running in a Chrome browser. However, Cypress does
not support running multiple instances of browsers. Therefore,
we did not consider Cypress in this work.
Thresholds for detecting if the load driver is overloaded.
We used thresholds for the error ratio and delay ratio to
identify whether the load driver is overloaded. By not allowing
any errors and only a low delay ratio, we set these thresholds
fairly strict. Some web applications may prefer using other
thresholds. Future studies should do a sensitivity analysis of
the thresholds and search for generic optimal thresholds.

5https://www.cypress.io

VI. RELATED WORK

In this section, we give an overview of related work on
SELENIUM-based test automation and load testing.

Several prior studies discussed automated test generation
methodologies in SELENIUM using a combination of human
written scripts and crawlers to fetch the dynamic states of
the application [8, 9, 10]. The performance issues of SELE-
NIUM were discussed by Vila et al. [12]. They highlighted
that the SELENIUM WebDriver consumes a large amount of
resources as the whole application needs to be loaded in
the browser (including all the images, CSS and JavaScript
files). Our experimental results confirm that SELENIUM-based
testing is resource-intensive. Therefore, we proposed to share
browsers between user instances to improve the efficiency of
SELENIUM-based load testing.

There exists a large body of prior work on load testing,
which was summarized by Jiang and Hassan [7]. However,
this body of work has always focused on testing how the AUT
responds to various levels of load. The focus of our work
is quite different, as we focus on how we can improve the
efficiency of the load driver, the component that generates load
for the AUT.

To the best of our knowledge, we are the first to system-
atically study how SELENIUM can be used for load testing.
Dowling and McGrath [4] suggested that SELENIUM can be
used next to a request-based load testing framework, such as
JMeter. However, we are the first to suggest a load testing
framework that solely uses SELENIUM.

VII. CONCLUSION

Request-based frameworks for load testing such as JMeter
are the de facto standard for executing load tests. However,
browser-based load tests (e.g., using SELENIUM) have several
advantages over such request-based load tests. For example,
browser-based load tests can simulate complex user interac-
tions within a real browser. Unfortunately, browser-based load
testing is very resource heavy, which limits its applicability.

In this paper, we studied the resource usage of SELENIUM-
based load tests in different configurations for executing the
load test. Our most important findings are:

• Headless browsers consume considerably less resources
than other types of browser instances.

• The capacity of a load driver (in terms of the number
of users that it can simulate) can be increased by at least
20% by sharing browser instances between user instances.

We took the first important step towards more efficient load
testing in SELENIUM. Practitioners can use our approach as a
foundation to improve the capacity of the load drivers of their
own browser-based load tests.

ACKNOWLEDGMENT

We are grateful to BlackBerry for providing valuable sup-
port and suggestions for our study. The findings and opinions
expressed in this paper are those of the authors and do not
necessarily represent or reflect those of BlackBerry and/or

its subsidiaries and affiliation. Our results do not in any way
reflect the quality of BlackBerry’s products.

REFERENCES

[1] BlazeMeter (2016). Headless Execution of Sele-
nium Tests in Jenkins. https://www.blazemeter.com/blog/
headless-execution-selenium-tests-jenkins. (Accessed on
02/01/2019).

[2] Census (2016). Census 2016: IT experts say Bureau
of Statistics should have expected website crash.
https://www.smh.com.au/national/census-2016-it-experts-
say-bureau-of-statistics-should-have-expected-website-
crash-20160809-gqosj7.html. (Accessed on 02/01/2019).

[3] Debroy, V., Brimble, L., Yost, M., and Erry, A. (2018).
Automating web application testing from the ground up:
Experiences and lessons learned in an industrial setting.
In 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), pages 354–362.

[4] Dowling, P. and McGrath, K. (2015). Using free and
open source tools to manage software quality. Queue,
13(4):20:20–20:27.

[5] Exchange (2005). Exchange performance result.
https://www.dell.com/downloads/global/solutions/
poweredge6850 05 31 2005.pdf. (Accessed on
02/01/2019).

[6] Gojare, S., Joshi, R., and Gaigaware, D. (2015). Analysis
and design of Selenium WebDriver automation testing
framework. Procedia Computer Science, 50:341 – 346. Big
Data, Cloud and Computing Challenges.

[7] Jiang, Z. M. and Hassan, A. E. (2015). A survey on load
testing of large-scale software systems. IEEE Transactions
on Software Engineering, 41(11):1091–1118.

[8] Milani Fard, A., Mirzaaghaei, M., and Mesbah, A. (2014).
Leveraging existing tests in automated test generation for
web applications. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineer-
ing, pages 67–78. ACM.

[9] Mirshokraie, S., Mesbah, A., and Pattabiraman, K. (2013).
Pythia: Generating test cases with oracles for JavaScript
applications. In 2013 28th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages
610–615.

[10] Stocco, A., Leotta, M., Ricca, F., and Tonella, P. (2015).
Why creating web page objects manually if it can be
done automatically? In 2015 IEEE/ACM 10th International
Workshop on Automation of Software Test, pages 70–74.

[11] The Exchange Team (2007). MAPI Messaging
Benchmark Being Retired. https://blogs.technet.microsoft.
com/exchange/2007/11/06/mapi-messaging-benchmark-
being-retired/. (Accessed on 02/01/2019).

[12] Vila, E., Novakova, G., and Todorova, D. Automation
testing framework for web applications with Selenium
WebDriver: Opportunities and threats. In Proceedings of the
International Conference on Advances in Image Processing,
ICAIP 2017, pages 144–150. ACM.

