
On the Model Update Strategies for Supervised Learning in AIOps Solutions

YINGZHE LYU, Queen’s University, Canada

HENG LI, Polytechnique Montreal, Canada

ZHEN MING (JACK) JIANG, York University, Canada

AHMED E. HASSAN, Queen’s University, Canada

AIOps (Artificial Intelligence for IT Operations) solutions leverage the massive data produced during the operation of large-scale
systems and machine learning models to assist software engineers in their system operations. As operation data produced in the field
are constantly evolving due to factors such as the changing operational environment and user base, the models in AIOps solutions need
to be constantly maintained after deployment. While prior works focus on innovative modeling techniques to improve the performance
of AIOps models before releasing them into the field, when and how to update AIOps models remain an under-investigated topic.
In this work, we performed a case study on three large-scale public operation data: two trace datasets from the cloud computing
platforms of Google and Alibaba and one disk stats dataset from the BackBlaze cloud storage data center. We empirically assessed
five different types of model update strategies for supervised learning regarding their performance, updating cost, and stability. We
observed that active model update strategies (e.g., periodical retraining, concept drift guided retraining, time-based model ensembles,
and online learning) achieve better and more stable performance than a stationary model. Particularly, applying sophisticated model
update strategies (e.g., concept drift detection, time-based ensembles, and online learning) could provide better performance, efficiency,
and stability than simply retraining AIOps models periodically. In addition, we observed that, although some update strategies (e.g.,
time-based ensemble and online learning) can save model training time, they significantly sacrifice model testing time, which could
hinder their applications in AIOps solutions where the operation data arrive at high pace and volume and where immediate inferences
are required. Our findings highlight that practitioners should consider the evolution of operation data and actively maintain AIOps
models over time. Our observations can also guide researchers and practitioners in investigating more efficient and effective model
update strategies that fit in the context of AIOps.

CCS Concepts: • Computing methodologies→Machine learning; • Software and its engineering→Maintaining software;
Operational analysis.

Additional Key Words and Phrases: AIOps, machine learning engineering, failure prediction, concept drift, model maintenance

ACM Reference Format:
Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan. 2021. On the Model Update Strategies for Supervised Learning
in AIOps Solutions. 1, 1 (April 2021), 38 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Yingzhe Lyu, ylyu@cs.queensu.ca, Queen’s University, Software Analysis and Intelligence Lab (SAIL), Kingston, ON, Canada; Heng Li,
heng.li@polymtl.ca, Polytechnique Montreal, Department of Computer and Software Engineering, Montreal, QC, Canada; Zhen Ming (Jack) Jiang,
zmjiang@cse.yorku.ca, York University, Department of Electrical Engineering & Computer Science, Toronto, ON, Canada; Ahmed E. Hassan, ahmed@cs.
queensu.ca, Queen’s University, Software Analysis and Intelligence Lab (SAIL), Kingston, ON, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

1 INTRODUCTION

Large-scale software systems like Google and Amazon’s cloud services are generating increasingly large volumes of
operation data, such as alerting signals [7], events [15], logs [24], and resource usage metrics [63]. On the one hand, such
operation data provides rich information about the system’s runtime behavior and health condition. On the other hand,
the soaring volume of operation data has become increasingly challenging for practitioners to collect, manage, analyze,
and leverage. Therefore, AIOps [10, 42], which stands for Artificial Intelligence for IT Operations, has been proposed to
help practitioners address the challenges in the operations of large-scale software systems. AIOps solutions leverage
machine learning (ML) techniques and operation data to support various goals in software and system operations, such
as machine failure predictions [28, 30], job failure predictions [15, 44], disk failure predictions [3, 15, 61], and service
outage predictions [7]. Many of the proposed AIOps solutions have already shown promising benefits in practice. For
example, Lin et al. [30] successfully applied their technique on one of Microsoft’s large-scale cloud service systems to
predict potential node failures based on historical data.

Despite the breakthroughs in ML models and their applications in AIOps, many challenges are still associated
with the maintenance and evolution of AIOps solutions following their deployment in the field. As operation data
is usually produced in a dynamic environment where the hardware, software, and workloads can vary over time,
the characteristics of the monitoring data are subject to constant changes [27, 28, 30, 61]. As a result, AIOps models
trained on data from the past may become outdated and perform poorly on the new data. Hence, these models must be
constantly monitored and maintained to mitigate data evolution and preserve model performance. Recently, software
engineering tools such as continuous integration and DevOps have been applied to developing and maintaining ML
models. For example, CD4ML [17] and MLOps [21] have been introduced under such contexts. However, no study
systematically evaluates the model update strategies for AIOps models once deployed in the field.

Three characteristics of operation data combined make it unique from datasets in other application domains. First,
operation data constantly evolves due to the dynamic operational environment (e.g., workload changes [27]). Second,
operation data is typically highly imbalanced (e.g., less than one in a thousand jobs fail [15, 45]). Third, operation data
usually contains a mixture of heterogeneous data types (e.g., temporal and spatial data [28]). In this paper, we focus
on the constant evolution of operation data and investigate the effectiveness of different model update strategies for
supervised learning in AIOps solutions through a case study on three real-world operation datasets. As different model
update strategies can vary in performance and stability and add extra computational overhead to maintaining the
performance of machine learning models, we focus our case study on the following three evaluation dimensions.

• Performance. An AIOps solution should be accurate to provide actionable predictions [28, 30].
• Model updating cost1. As model updates can involve expensive computational efforts in training and verifying,
a model update strategy with heavy maintenance overhead may not be desirable in AIOps solutions [10, 28].
• Stability. For an AIOps solution to provide trustworthy predictions, its prediction performance should be
stable [7, 34, 35].

The performance and stability dimensions reflect the effects of model update strategies (i.e., how the update affects
model performance), whereas the model updating cost dimension captures the cost of reaching such effects (i.e., the
computational effort needed to obtain the updated model). Together, the three dimensions measure the impact of
adopting different model update strategies to mitigate the evolving nature of operation data.

1In this work, we consider both the computational overhead (e.g., training time) and the cost-effectiveness of updating the model (i.e., the performance
improvement achieved by each update of the model).

Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 3

In this work, we study the characteristics of data evolution in the AIOps context and evaluate different model update
strategies for maintaining AIOps solutions in terms of their performance, updating cost, and stability. As the properties
of operation data can shift significantly in different application scenarios, we further limit our scope to automated
prediction of failures with supervised learning algorithms, which is a practical and popular type of problem faced by
industry [11, 24, 62]. Specifically, we perform a case study on three publicly available operation datasets in this scope: the
Google cluster trace dataset [60], the Backblaze disk statistics dataset [26], and the Alibaba GPU cluster trace data [22].
Both the Google and Backblaze datasets are studied extensively in prior AIOps studies (e.g., [3, 15, 34, 37, 44, 45]) and the
Alibaba dataset is relatively new with no work of failure prediction has been done to our best knowledge. In particular,
we focus on evaluating various model update strategies for AIOps tasks that predict job failures [15] on the Google and
Alibaba cluster trace datasets and disk failures [3, 37] on the Backblaze disk stats dataset.

The contributions of this paper are:

(1) This is the first work that evaluates model update strategies in the context of AIOps. As operation data is unique
in characteristics from datasets in other domains due to its constant evolution, extreme data imbalance, and
heterogeneous data types, our findings can provide specified insights in the AIOps context.

(2) Our case study shows that the characteristics of operation data could change drastically over time, which suggests
that practitioners should carefully consider such data evolution in their modeling decisions.

(3) Our findings suggest that the emerging new strategies (e.g., online learning and time-based ensemble) are capable
of generating better performance compared to the traditional retraining strategy, although these strategies may
still need improvement to be used in practice (discussed in Section 6).

(4) Our findings suggest that, instead of only considering retraining their AIOps models periodically, AIOps practi-
tioners could consider more sophisticated strategies, such as applying concept drift detection to determine when
to maintain their models or using time-based ensemble strategies to update models.

(5) The approaches and findings presented in this paper can provide insights for future research that investigates
more efficient and effective model update strategies that fit in the context of AIOps (e.g., more efficient ways of
detecting concept drifts and more efficient time-based ensemble strategies).

(6) We share a replication package which includes our code for preprocessing the studied operation datasets and
constructing the models2, so that others in the research community can replicate or extend our work.

Paper organization. The rest of the paper is organized as follows: Section 2 provides background information and
discusses related works. Section 3 describes our studied datasets, data preparation process, and preliminary study
on the datasets. Sections 4 presents our experiment design, and Section 5 presents our experiment results. Section 6
provides further discussions of our experiment results. Section 7 discusses the threats to the validity of our findings,
and Section 8 concludes our paper.

2 RELATEDWORK

This paper aims to evaluate different model update strategies for supervised learning in AIOps solutions. In this
section, we first present prior studies on AIOps solutions (e.g., [3, 7, 15, 28, 30, 37, 44, 61]) and their practice of dealing
with data evolution. We then discuss prior works in general areas that deal with data evolution for ML models, which
may be applicable in the AIOps context to support the maintenance of AIOps solutions.

2https://github.com/SAILResearch/suppmaterial-20-yingzhe-AIOpsEvolvability).

Manuscript submitted to ACM

https://github.com/SAILResearch/suppmaterial-20-yingzhe-AIOpsEvolvability

4 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

2.1 Prior research on AIOps solutions

Prior works proposed various AIOps solutions for addressing different problems in the operations of large-scale
software and systems, including incident prediction [3, 7, 15, 28, 30, 37, 44, 61], anomaly detection [24, 29], ticket
management [62, 63], issue diagnosis [33], and self healing [11, 12, 31, 32]. For example, Lin et al. [30] and Li et
al. [28] leverage temporal data (e.g., CPU and memory utilization metrics, alerts), spatial data (e.g., node locations), and
configuration data (e.g., memory size) to predict node failures on large-scale cloud computing platforms. El-Sayed et
al. [15] and Rosa et al. [44] predict job failures in the Google cloud computing platform using trace data on the cloud
servers. Botezatu et al. [3], Mahdisoltani et al. [37], and Xu et al. [61] leverage monitoring data to predict disk failures
in the operations of large-scale cloud platforms.

Prior works generally use the following two strategies to maintain the models in AIOps solutions: 1) use stationary
models [3, 7, 15, 37, 45, 63] (a.k.a., no model maintenance) or 2) periodically retrain models [28, 30]. Using a stationary
model may lead to an outdated model that suffers from performance degradation and impacts user experience, while
periodically retraining the model could be very expensive (e.g., resources and human efforts involved in updating,
verifying, and integrating the model) [28]. Therefore, in this work, we study various strategies for model updating and
their impact on the performance, model updating cost, and stability of AIOps solutions.

2.2 Prior research on dealing with data evolution

Although prior works in AIOps usually use stationary models or periodically retraining strategies, studies in other
areas have proposed various approaches to deal with data evolution and maintain ML models. For example, prior works
in the data mining area propose various methods for detecting concept drift [18, 23, 40, 57], so that the models could be
updated timely and more effectively compared with the periodical retraining strategy. Prior studies also propose online
models (e.g., Hoeffding Trees [13]) for handling concept drift by enabling the models to learn incrementally. In addition,
time-based ensemble methods are proposed to handle concept drift by building individual classifiers on data chunks
from different time periods, then aggregating the models through a voting mechanism [14].

2.2.1 Concept drift detection and mitigation. In machine learning and data mining, the distribution of data and the
relationship between the variables may evolve over time, known as concept drift [40, 53, 55, 56]. Concept drift may
negatively impact the performance of a model trained on previous data as the data evolves. Prior works propose
algorithms for detecting concept drift to mitigate the impact of concept drift [18, 23, 40]. For example, Gama et al. [18]
propose the Drift Detection Method (DDM) that detects the concept changes by tracking the variation of prediction
error, assuming that a significant increase in the testing error suggests the change of the concept. Harel et al. [23]
propose another method, namely PERM, to detect concept drift with the assumption that random permutation of
examples from the same distribution should not change the model performance. Nishida et al. [40] propose the STEPD
concept drift detection method using a statistical test of equal proportions. It assumes that the prediction accuracy on
data from a recent time window should be equal to the overall prediction accuracy if the target concept is stationary. A
significant decrease in the prediction accuracy then suggests concept drift. Once concept drift is detected, the current
model is usually updated or retrained using the newest data [18, 19, 23, 40]. In this paper, we name the model update
strategy of retraining model after detection of concept drift as concept drift guided retraining strategy (See Section 4
for more detail)

Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 5

2.2.2 Time-based ensemble models. Prior research also proposed time-based ensemble models to handle concept
drift [4, 5, 14, 19, 25, 38, 39, 48, 55]. Time-based ensembles combine individual base classifiers trained from smaller time
periods of the data. For example, Street and Kim propose the Streaming Ensemble Algorithm (SEA) [48], a majority-
voting ensemble approach that constantly replaces the weakest base classifier in the ensemble. It builds a new classifier
on the most up-to-date data chunk and decides whether to accept it into the ensemble using a quality measure tested
on the following data chunk that considers both the accuracy and diversity of base classifiers in the ensemble. Wang et
al. propose Accuracy Weighted Ensemble (AWE) [55], another time-based ensemble model that uses weighted voting
rather than the simple majority voting as used in SEA. AWE calculates a weight for each classifier in the ensemble
based on its error rate on the newest data.

2.2.3 Online learning models. Online learning algorithms provide a method for incrementally learning from a large
volume of data samples. Domingos and Hulten [13] propose the Very Fast Decision Tree (VFDT or Hoefdding Tree) for
learning from data streams by updating the tree on the fly. The authors claim that, given sufficient samples, Hoefdding
Tree can produce nearly identical results as a conventional batch tree learner. Gomes et al. [20] propose the Adaptive
Random Forest (ARF), a Random Forest algorithm for handling concept drift in evolving data streams. The ARF algorithm
incorporates an online bagging algorithm to learn incrementally from streaming data. It also applies strategies, including
drift detection and weighted voting, to mitigate the concept drift problem. There are also time-based ensembles utilizing
online learning models as base classifiers (e.g., ADE [14], AUE [4], KUE [5]). For example, Brzezinski et al. propose the
Accuracy Updated Ensemble (AUE) model [4], which uses online base classifiers and a weighted voting mechanism to
deal with concept drift. Cano and Krawczyk propose Kappa Updated Ensemble (KUE) [5], a combination of online and
block-based ensemble approaches that use the Kappa statistic for dynamic weighing and selection of base classifiers.

In this work, we study the impact of the model update strategies (i.e., periodical retraining, concept drift guided
retraining, time-based ensembles, and online learning strategies) on AIOps models. Specifically, we apply various
model update strategies for prediction tasks on the studied operation datasets and evaluate their impact on the three
dimensions of performance, model updating cost, and stability.

3 CASE STUDY SUBJECTS AND PRELIMINARY STUDY

In this section, we first describe our studied datasets, then perform a preliminary study on the datasets.

3.1 Case Study Subjects

In order to evaluate different strategies for model updating in the context of AIOps, we perform a case study on
three large-scale operation datasets: the Google cluster trace dataset [60], the Backblaze disk stats dataset [26], and the
Alibaba GPU cluster trace data [22]. We choose to study these three datasets because: 1) they are publicly available; 2)
they are large-scale datasets and cover relatively long operation periods (i.e., months to years), which enables us to
examine model update strategies over the evolution of the data. In addition, prior works have widely studied the first
two datasets in particular for predicting job failures on the Google dataset [15, 45] and predicting disk failures on the
Backblaze dataset [3, 37, 61]. In this work, we focus on predicting job outcomes (i.e., failure or not) on the Google and
Alibaba cluster trace datasets and predicting disk failures on the Backblaze disk stats dataset.

3.1.1 Google Cluster Trace Dataset. The cluster data released by Google in 2011 contains the trace data of a production
cluster with about 12K machines in 29 days for 670K jobs and 26M tasks [6]. The data features workload arrives at a cell

Manuscript submitted to ACM

6 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

(i.e., a set of machines that share a common cluster-management system) in the form of jobs. Each job comprises one
or more tasks, each of which is scheduled on a single machine. Figure 1a shows the dataset schema and information
provided in the Google cluster trace dataset.

Following prior works [15, 45], our goal on the Google cluster data is to predict whether a job will fail or not (i.e.,
terminated for any reason before successfully completed) using the information at job submission and the monitoring
data in the first five minutes of the job execution. In the Google cluster trace data, each job has several events, and
each is associated with a transit (e.g., submit, schedule, evict, fail, kill, finish, lost, update) among the states (e.g.,
unsubmitted, pending, running, dead) in the job’s life cycle. We consider a job fails if its final state is “fail”, same as in
prior works [15, 45].

Similarly to El-Sayed et al. [15], we predict the job failures using the configuration and temporal features. Configu-
ration features are values determined upon job submission, such as the requested CPU, memory, and disk space. In
contrast, temporal features are values that change during a job’s execution, such as the mean and standard variation
of CPU, memory, and disk space usage by a job over the first 5 minutes since job submission. The detailed list of the
features for job failure prediction is described in Table 1, where the first 9 are configuration features while the latter 6
are temporal features.

We remove the jobs that are not completed or whose records are lost during execution, as the final states of these jobs
are missing. We further remove the jobs that start from the last day (i.e., the 29th day), as these jobs are more likely to
fail than complete before the data cutoff time (the completed jobs typically last longer than the failed ones), which may
cause data collection bias on the distribution of failed and completed jobs. In fact, we observed a much higher job failure
rate from the jobs starting on the last day. In addition, we removed jobs that finished in less than five minutes since
their submission as they have not generated sufficient metrics for prediction. We also observe that a large proportion of
these jobs are failed or terminated right after submission, thus they do not cause significant overhead to the computing
resources. In the end, we successfully extracted 627K (out of 670K) job samples from the first 28 days’ trace data.

Machine

 -- 12K machines

machine_attributes

 machine ID

 timestamp

 attribute list

machine_events

 machine ID

 timestamp

 event type

 CPU capacity

 memory capacity

 Platform ID

Job

 -- 670K jobs
job_events

 job ID

 timestamp

 event type

 user

 scheduling class

 job name

 logical job name

Task

 -- 26M tasks
task_events

 job ID, task index

 timestamp

 event type

 user, machine ID

 scheduling class

 priority

 CPU requested

 memory requested

 disk requested

 different machine

task_usage

 job ID, task index

 duration

 machine ID

 CPU usage

 memory usage

 disk usage

task_constraints

 job ID, task index

 timestamp

 constraint list

(a) Google data schema.

SMART Attributes

 -- Daily record for each disk

Non-cumulative

 Read error rate

 Seek error rate

 HDA temperature

 ...

Cumulative

 Start/Stop count

 Power-on Hours

 Power cycle count

 Reported uncorrectable errors

 Load cycle count

 Current Pending sector count

 UltraDMC CRC error count

 ...

Disk Configurations

 -- 41K disks

 (2015-2017)
Serial number

Model

Capacity

Manufacturer

(b) Backblaze data schema.

GPU Machine

 -- 1800 machines

 6K GPUs
machine spec

 machine ID

 CPU capacity

 memory capacity

 GPU capacity

 GPU type
machine metric

 worker name

 CPU usage

 GPU utilization

 machine load

 network I/O

 co-located workers

Jobs

 -- 1.05M jobs
job launch info

 job name

 timestamp

 user

 status

Tasks

 -- 1.26M tasks

 7.52M workers
task launch info

 job name, task name

 worker number

 CPU, mem, GPU planned

 GPU type

 status

worker sensor info

 job name, task name

 worker name

 machine ID

 CPU usage

 GPU usage

 memory usage

 network I/O

worker launch info

 job name, task name
 worker name

 machine ID

 duration

 status

(c) Alibaba data schema.

Fig. 1. Data schema for our studied datasets. Each colored box represents a data table: a line of the table name followed by lines
describing the data fields. For the Google and Alibaba datasets, each table (e.g., machine_events) is one or multiple CSV files containing
the fields described in the box. For the Backblaze dataset, the tables represent the logical view, while the physical data is stored as
daily snapshots of each disk’s attributes.

Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 7

3.1.2 Backblaze Disk Stats Dataset. The Backblaze dataset describes the statistics of the hard drives in the Backblaze
data center [26]. The dataset contains daily snapshots of operational hard drives in the data center, including drive
information (e.g., model, disk capacity) and SMART (Self-Monitoring, Analysis, and Reporting Technology) statistics,
where SMART is a manufacturer-implemented system for the monitoring and early detection of errors. Figure 1b shows
the dataset schema and information provided in the Backblaze disk stats dataset. The Backblaze disk stats dataset
contains hard drive monitoring data collected from 2013 to 2020. Initially, from 2013 to 2014, the trace captured 40
different SMART attributes; then, from 2015 to 2017, there are 45 SMART attributes; starting from the fourth quarter of
2018, 62 different SMART attributes are in the data. Despite the change of monitored attributes, the data type and the
monitoring interval (i.e., daily) are kept consistent from 2013 to 2020. We focus on the data collected from 2015 to 2017
because: 1) the subset contains a large number of samples (i.e., over 40M samples), and 2) the subset contains a fixed set
of SMART attributes while the data in other periods contains less (before 2015) or more (after 2017) SMART attributes.

Our goal on the Backblaze dataset is to predict hard drive failures (i.e., sector error) within a given future time period
(i.e., one week) based on the monitoring data captured during a period of time (i.e., one week) in the past, similar to the
prior works [3, 37]. We consider a disk fails if its “sector error count” SMART attribute increases (i.e., observe sector
errors) in the given future time period, same as described in the prior work [37]. The SMART attributes that exist in the
Backblaze dataset can be categorized into two types: cumulative attributes whose values are accumulated counts over
the disk’s lifetime, such as the “reallocated sectors count”; and noncumulative attributes whose values reflect only the
current status, such as the “read error rate”. Knowing the recent changes in cumulative attributes rather than their raw
values might be more insightful. Therefore, we capture both the value change in the past time period and the raw value
in the last day of the one-week past window as features for cumulative attributes while only capturing the last day’s
value for noncumulative attributes. As a result, we collect 11 features from the raw values and 8 features derived from
the raw values’ differences. The detailed list of our used features for disk failure prediction is described in Table 2. The
collected features are the same as those used in prior work [37], the most predictive ones selected from all the traced
SMART attributes; all 19 features are temporal features. We then collect data samples along the sliding one-week time
window and only track the disks that are alive during the whole time window. As a result, we extract 41M samples
from the daily snapshots between 2015 and 2017.

3.1.3 Alibaba GPU Cluster Trace Dataset. The GPU cluster trace data from Alibaba provides traces of workloads
collected from the operation of a large-scale data center [22]. The trace data is collected from runtime information on
over 6,500 GPUs across about 1,800 machines in a period of 2 months spanning from July to August of 2020 [59]. The
data features ML jobs submitted by various users. Once a user submits a job, the job is translated into multiple tasks of
different roles. Subsequently, each task is then allocated to machines in the format of instances. Figure 1c illustrates the
trace schema and available information provided in the Alibaba trace dataset. Similar to the Google cluster dataset,
sensitive fields like username and job name are desensitized to protect users’ privacy.

The dataset is relatively new (released in 2021), and we have not found prior works that conduct prediction tasks on
this dataset to the best of our efforts. Therefore, we define the task as predicting job outcomes using the information
available in the first five minutes since job submission, similar to our case study on the Google cluster dataset. We
then define and extract 12 predictive features on our own and list the details in Table 3, where the first 6 features are
configurational while the latter 6 are temporal. The dataset contains cluster monitoring data for a total of 69 days
(around nine weeks). To avoid abnormality (e.g., truncated and untracked jobs) on data samples close to the beginning
and end of the trace data, we initiate feature extraction from the fourth day since the trace starts and collect features

Manuscript submitted to ACM

8 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

Table 1. Features for Google job failure prediction.

Feature Description

User ID Unique ID of the user who submits the job.
Logical Job Name A hashed job identifier contains information from several internal name fields.

Different executions of the same program usually have the same logical name.
Scheduling class A nominal field represented by a single number (e.g., 3 representing a more

latency-sensitive task and 0 representing a nonproduction task) that affects
machine-local policy for resource access.

Num Tasks The number of tasks contained in a job.
Priority A nominal field indicates how effectively it can utilize system resources.
Different machine A flag that indicates tasks must be scheduled to execute on a different machine

than any other currently running tasks in the job.
Requested CPU/Memory/Disk Requested CPU/memory/disk resources by tasks in a job.
Mean CPU/Memory/Disk usage Mean CPU/memory/disk usage over 5 minutes since job submission.
Sd CPU/Memory/Disk usage Standard variation of the CPU/memory/disk usage over 5 minutes since job

submission.

Table 2. Features for Backblaze disk failure prediction.

Feature Description

Read Error Rate (Non-cumulative)1 Frequency of errors while reading raw data from a disk.
Start/Stop Count (Cumulative) Number of spindle start/stop cycles.
Reallocated Sectors Count (Cumulative) Quantity of remapped sectors.
Seek Error Rate (Non-cumulative) Frequency of errors while positioning.
Power-On Hours (Cumulative) Number of hours elapsed in the power-on state.
Power Cycle Count (Cumulative) Number of power-on events.
Reported Uncorrectable Errors (Cumulative) Number of reported uncorrectable errors.
Load Cycle Count (Cumulative) Number of cycles into landing zone position.
HDA Temperature (Non-cumulative) Temperature of a hard disk assembly.
Current Pending Sector Count (Cumulative) Number of unstable sectors (waiting for remapping).
UltraDMC CRC Error Count (Cumulative) Number of CRC errors during UDMA mode.
1 For cumulative SMART attributes, both their raw value of the last day and the difference during the training period
are extracted as features, while for non-cumulative attributes we use only the raw value of the last day as feature.

for a total of 8 weeks. Similar to our handling method on the Google cluster dataset, we also removed unfinished jobs
and jobs ending in less than five minutes and extracted 701K out of the total of 1.26M jobs.

3.2 Preliminary Study

As the operational environment and the workloads of large-scale systems are constantly evolving [27], the perfor-
mance of AIOps models may be impacted by the evolution of the operation data [28, 30]. In order to understand the
need for maintaining AIOps models, we investigate the data evolution in our studied operation datasets.

3.2.1 Approach. We study the evolution of the operation data along two dimensions: 1) the evolution of data volume
and 2) the evolution of data distribution. As described in Section 3.1, the schema (i.e., monitored attributes) of the
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 9

Table 3. Features for Alibaba job failure prediction.

Feature Description

User ID Unique ID of the user who submits the job.
Num Tasks Number of the unique task names (e.g., ps, worker, evaluator) in a job.
Num Instances Number of the instances contained in a job.
Planned CPU Number of CPU cores requested in percentage.
Planned Memory Sum of GBs of main memory requested by tasks in a job.
Planned GPU Sum of the number of GPUs requested by tasks in a job.
Mean CPU Usage Number of CPU cores used in percentage.
Mean GPU utilization Number of GPUs used in percentage.
Mean memory usage Mean usage of main memory in the first 5 minutes since job submission.
Max memory usage Maximum amount of memory used over 5 minutes since job submission.
Mean GPU memory usage Mean usage of GPU memory over 5 minutes since job submission.
Max GPU memory usage Maximum amount of GPU memory used over 5 minutes since job submission.

Backblaze dataset also changes over time. We do not consider such schema change in this work but leave it to future
work.
Evolution of the volume of the data. We first partition the data into multiple time periods according to their
timestamps. For the Google cluster trace data, we partition the entire 28-day trace data into 28 one-day time periods;
for the Backblaze disk stats data, we partition the entire 3-year monitoring data into 36 one-month time periods; for the
Alibaba GPU cluster data, we partition the 2-month GPU trace data into 8 one-week time periods. We choose the time
window sizes since prior studies have applied similar time periods in updating their AIOps models. For example, Lin et
al. [30] update their model deployed in a production cloud service system with data from the most recent one-month
period. Similarly, Li et al. [28] consider retraining their model periodically, and they also apply a one-month window.
Besides, Xu et al. [61] perform a daily model update with the data in a 90-day sliding window. After partitioning the
data into time periods, we analyze how the number of samples (i.e., data volume) changes across different time periods.
Evolution of the distribution of the data. Similarly, we partition the data into multiple time periods and analyze
how the distribution of the variables evolves across different time periods in the studied datasets. For the dependent
variable, we measure its distribution (i.e., the proportion of failed jobs or disks) in each time period. We also estimate the
statistical difference between the distributions of the dependent variable in different time periods using a two-proportion
Z-test [16], which compares whether the job or disk failure rates in two time periods are statistically different. In
addition, we use Cliff’s delta [36] effect size to calculate the magnitude of the difference between the distribution of
the dependent variable in different time periods. Since our dependent variables (i.e., job failure and disk failure) are
binary, we first calculate the log odds ratio between the distributions of the dependent variable in two time periods,
then convert it to Cliff’s delta effect size [8]. We apply the thresholds provided in Romano et al. [43] to assess the
magnitude of Cliff’s 𝛿 : Negligible, 𝛿 < 0.147; Small: 𝛿 < 0.33; Medium: 𝛿 < 0.474; Large: 𝛿 ≥ 0.474.

3.2.2 Results. Figure 2 shows the change in the number of samples across different time periods. Similarly, Figure 3
shows the distributions of the dependent variables (i.e., the daily Google job failure rate and the monthly Backblaze
disk failure rate) across different time periods. Figure 4 further shows the statistical difference of dependent variable
distributions in different time periods.

Manuscript submitted to ACM

10 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

●

●
● ● ●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

15000

20000

25000

30000

35000

40000

45000

0 10 20
Time Period

N
um

be
r

of
 S

am
pl

es

(a) Google

●●
●●

●●
●

●●●
●

●
●●

●●
●

●

●
●●

●●

●

●

●

●●

●●

●

●
●

●
●

●

400000

800000

1200000

1600000

0 10 20 30
Time Period

N
um

be
r

of
 S

am
pl

es

(b) Backblaze

●

● ●
●

●

●

●

●

30000

40000

50000

60000

70000

80000

90000

2 4 6 8
Time Period

N
um

be
r

of
 S

am
pl

es

(c) Alibaba

Fig. 2. Number of samples in different time periods of the studied datasets.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

1.0%

2.0%

3.0%

0 10 20
Time Period

Fa
ilu

re
 R

at
e

(a) Google

●

●
●

●

●

●

●
● ●

● ● ●
● ● ●

●

● ● ● ●
● ● ● ● ●

● ● ●

●
●

● ●
●

● ●
●

0.050%

0.100%

0.150%

0 10 20 30
Time Period

Fa
ilu

re
 R

at
e

(b) Backblaze

●

● ●

●

●

●

●

●25.0%

30.0%

35.0%

2 4 6 8
Time Period

Fa
ilu

re
 R

at
e

(c) Alibaba

Fig. 3. Failure rates in different time periods of the studied datasets.

The volume and distribution of the operation data constantly evolve over time. For the Google cluster trace
data, as shown in Figure 2a, the number of samples in each day fluctuates over time. For example, the number of samples
on day 18 surges to over 43K from the average value of 22K. For the Backblaze dataset, as shown in Figure 2b, the
number of samples in each month constantly increases, except for the 18th month (June 2016), where the number of
samples drops over 25% from the previous time period. For the Alibaba GPU cluster trace data, as shown in Figure 2c,
the number of samples climbs up from 30K in the first week to 59K in the second week, then fluctuates between 58K
and 88K in the following weeks.

As shown in Figure 3, the distribution of dependent variables on the two datasets also changes over time. The job
failure rate fluctuates between 0.5% and 3% on the Google dataset and between 21.5% to 39.1% on the Alibaba dataset,
while the Backblaze disk failure rate decreases from 0.19% in the first month to 0.01% (i.e., over 90% decrease) in the
16th month and gradually rises to around 0.09% in the last month. Our statistical analysis (Figure 4) shows that the
difference between the distributions of the dependent variables in different time periods can be statistically significant.
We observe that the difference in the distributions is significant (i.e., p < 0.05) between most pairs of time periods. We
also notice the distributions of the dependent variable can show medium to large differences in terms of effect sizes
between two time periods.

Drastic changes in data distribution could also happen in adjacent time periods. For the Backblaze dataset,
as shown in Figure 4b, time periods that are far from each other tend to have a larger difference in the distributions of
the dependent variable than neighboring time periods do. For example, the distribution of the dependent variable in the
16th period has medium or large differences from the time periods that are far from the time period (i.e., periods 1-9
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 11

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** **

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*** ***

2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

Large

Medium

Small

Negligible

(a) Google

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*** *** ***

2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

Large

Medium

Small

Negligible

(b) Backblaze

***** *** ***

*** ***

2 3 4 5 6 7 8

1

2

3

4

5

6

7

Large

Medium

Small

Negligible

(c) Alibaba

Fig. 4. Statistical difference of dependent variables in different time periods of the studied datasets. The symbols in each cell indicate
the statistical significance of the failure rate difference: (blank) 𝑝 ≥ 0.05; * 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001. The color indicates
the effect size of the failure rate difference using 𝛿 : Negligible, 𝛿 < 0.147; Small: 𝛿 < 0.33; Medium: 𝛿 < 0.474; Large: 𝛿 ≥ 0.474.

and 26-36) while only has small differences with its neighboring time periods (i.e., periods 10-15 and 17-25). However,
on the Google dataset, we observe that even the distribution between adjacent time periods can also have drastic
changes. As shown in Figure 4a, two neighboring time periods (e.g., the periods 18 and 19) can have medium to large

differences in their data distributions, while two time periods far away from each other (e.g., periods 1 and 26) can
have negligible differences on the Google dataset. We also observe that significant changes can happen between
neighboring time periods on the Alibaba dataset, as shown in Figure 4c. Such results suggest that the obsolescence of
AIOps models may not only be determined by time. Instead, we need more sophisticated methods to determine when to
maintain AIOps models.

Discussion on the seasonality in the datasets. Considering the two aforementioned values are the aggregation of
various samples in a time period (i.e., the number of samples in a time period and the failure rate in a time period),
the analysis of the trending may be impacted by the length of the time periods chosen for the aggregation. In this
work, we have chosen natural time periods (e.g., days, weeks, and months) that may represent the time patterns of
practitioners’ system operation activities. Since our datasets are mostly monitoring data on server clusters, it is possible
that the change of distribution is caused by repeating patterns in the natural periods (e.g., workloads in each week).
Therefore, we also analyze the preliminary study results to evaluate the impact of temporal dependencies. Similar
to prior work [63], we use autocorrelation to capture such temporal patterns within each dataset. Autocorrelation
is a mathematical representation that estimates the degree of similarity in a time series to a lagged version of itself.
The correlation coefficients of autocorrelation range in [−1, 1]. Higher positive values indicate stronger temporal
dependencies, lower negative values indicate stronger diametrically opposed dependencies, and zero values suggest no
temporal dependency. We apply autocorrelation to the failure rate and data size statistics on all three datasets. The
statistics on the Google and Alibaba datasets show no significant correlations (i.e., correlation coefficients greater than
the 95% confidence interval) on any time lags. On the Backblaze dataset, we notice that the data size trend significantly
correlates to the statistics from 1 to 3 months time lag. The failure rate trend shows moderate similarity to the data
from 1 and 2 months time lag. However, no significant correlations are found in the data from longer time lags. The
seasonality on the Backblaze dataset confirms our choice of using one month as the length of time period. Overall, the

Manuscript submitted to ACM

12 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

Time

Ensemble

Model
training

Model
training

Retraining
approach

Time-based
ensemble
approach

Model
ensemble

Model
training

Online
learning
approachIncremental

Model
training

Stationary
approach

Testing setTraining set

Fig. 5. Illustration of different strategies for maintaining AIOps models. The illustration for the “retraining approach” represents both
the periodical retraining and concept drift guided retraining strategies.

findings suggest that no to little significant seasonality exists in the data size and failure rate statistics on the Google and
Alibaba datasets, while on the Backblaze datasets, we found only short-term seasonality (i.e., 1 to 3 months compared
with the total dataset with 36 months length).

The results from our preliminary study above show that the studied operation data is constantly evolving. Therefore, it
is necessary to perform model updates in order to ensure a satisfactory user experience. This point will be the focus of
the remaining part of the paper.

4 EXPERIMENT DESIGN

In this section, we first describe our studied model update strategies and then describe how we build and evaluate
AIOps models around these strategies.

4.1 Studied Model Update Strategies

We consider five types of strategies for updating AIOps models: stationary (baseline), periodical retraining (baseline),
concept drift guided model retraining, time-based ensemble, and online learning. Figure 5 illustrates the five types
of strategies. For the concept drift guided retraining strategies, we consider three concept drift detection methods
(DDM [18], PERM [23], and STEPD [40]). For the time-based ensemble strategies, we consider AWE [55] and SEA [48]
algorithms, as they are agnostic to the base classifiers. All strategies mentioned above can apply to any classification
models used in AIOps solutions (except that the online learning strategies need the base models to be updatable); hence
we build them above five types of ML models (i.e., LR, CART, RF, NN, and GBDT) used in prior works [3, 15, 37, 45]
as their based models. For the online learning strategies, we consider Hoeffding Tree (HT) [13], Adaptive Random
Forest (ARF) [20], and Accuracy Updated Ensemble (AUE) [4] algorithms. We also consider two baseline models: 1) a
stationary model baseline that builds the model on the initially available data and then never updates, and 2) a periodical
retraining model that updates whenever training data from a new time period becomes available.
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 13

To evaluate different strategies for maintaining AIOps models, we divide the whole dataset into multiple time periods
to simulate the scenario in which a chunk of data from a new time period becomes available each time. We have 28
one-day time periods for the Google cluster trace data and 36 one-month time periods for the Backblaze disk stats data.

4.1.1 Baseline Strategies. Prior works usually use stationary models [3, 7, 15, 37, 45, 63] or periodically retrain their
models [28, 30] in the context of AIOps. Accordingly, we consider two baseline strategies: stationary and periodical
retraining.

• Stationary strategy (Stationary). A stationary model is a model that is trained once and never updated. We
train a model on the data from the first half of the time periods and apply it to all subsequent time periods. It
represents the scenario that a model is trained on the initially available data and never maintained when new
data becomes available.
• Periodical retraining strategy (Retrain). Periodically updating a model can maintain the model performance
against the changes in the data distributions. When the data from a new time period becomes available, we retrain
a new model using the latest data (i.e., samples in the latest sliding window). Following prior work [30], we use
a sliding window instead of the entire historical data since the latter is usually unrealistic in the operational
environment and may not increase the model performance as the data from old time periods may come from a
different distribution [2, 4]. In our experiment, we fixed the sliding window size at half the total number of time
periods (i.e., 14 days for the Google dataset, 18 months for the Backblaze dataset, and 4 weeks for the Alibaba
dataset).

4.1.2 Concept drift guided retraining strategies. Prior works propose various methods [18, 23, 40] in detecting concept
drift in mining stream data. In this work, we apply these methods to detect changes in the operation data and update the
models only when detecting drift in data distribution to preserve model performance while minimizing maintenance
needs. Similar to the periodical retraining strategy, we set the length of the sliding window to half the number of time
periods in the whole dataset (i.e., 14 days for the Google dataset, 18 months for the Backblaze dataset, and 4 weeks for
the Alibaba dataset). Algorithm 1 describes how we retrain the models when an occurrence of concept drift is detected
and how we evaluate the model performance.

Algorithm 1: The workflow of concept drift guided retraining strategies.
Input: 𝑁 : the total number of time periods;

[𝑃1, . . . , 𝑃𝑁]: Data that is split into 𝑁 time periods
𝑀 ←Model built on data [𝑃1, . . . , 𝑃𝑁 /2];
for 𝑖 = 𝑁 /2 + 1 to 𝑁 − 1 do

if concept drift detected on 𝑃𝑖 then
𝑀 ← New model built on data [𝑃𝑖−𝑁 /2+1, . . . , 𝑃𝑖];

end
Evaluate model performance on data 𝑃𝑖+1;

end

Concept drift detection methods. We consider three methods for detecting concept drift and apply them in Algo-
rithm 1. The three methods are the Drift Detection Method (DDM) [18], the PERM concept drift detection method [23],
and the STEPD concept drift detection method [40].

Manuscript submitted to ACM

14 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

• The Drift Detection Method (DDM). Gama et al. propose the Drift Detection Method (DDM) based on the
assumption that a significant increase in the testing error suggests a change in the data distribution (i.e., concept
drift) [18]. DDM maintains two registers 𝑝𝑚𝑖𝑛 and 𝑠𝑚𝑖𝑛 , where 𝑝 is the error rates for different testing time
periods and 𝑠 = 𝑠𝑞𝑟𝑡 (𝑝 (1 − 𝑝)/𝑛) is the standard deviation of 𝑝 . When the samples in a new time period
become available, DDM calculates the new 𝑝𝑖 and 𝑠𝑖 using the error rate evaluated on the samples from the new
time period, and updates 𝑝𝑚𝑖𝑛 and 𝑠𝑚𝑖𝑛 with 𝑝𝑖 and 𝑠𝑖 respectively when 𝑝𝑖 + 𝑠𝑖 < 𝑝𝑚𝑖𝑛 + 𝑠𝑚𝑖𝑛 . Otherwise, if
𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3 ∗ 𝑠𝑚𝑖𝑛 , DDM judges that a concept drift is occurring.
• The PERM concept drift detection method. Harel et al. propose the PERM method for detecting concept drift
on streaming data based on the empirical loss of learning algorithms [23]. The intuition is that if no concept drift
exists, the performance evaluation on an ordered split of data samples from two consecutive time periods should
not deviate too much from the evaluation on shuffled splits. Denote the original data from the two consecutive
time periods as 𝑆𝑜𝑟𝑑 and 𝑆 ′

𝑜𝑟𝑑
, we generate 𝑃 random split (𝑆𝑖 , 𝑆′𝑖) of 𝑆𝑜𝑟𝑑 ∪ 𝑆

′
𝑜𝑟𝑑

, then calculate the risks 𝑅𝑆 ′
𝑖

(i.e., the MSE loss function) of training a model on 𝑆𝑖 and testing it on 𝑆 ′
𝑖
. We then compare 𝑅𝑆 ′

𝑖
for 𝑖 in 𝑃 splits

with the risk 𝑅𝑜𝑟𝑑 of training a model on 𝑆𝑜𝑟𝑑 and testing it on 𝑆 ′
𝑜𝑟𝑑

. Under given significant level 𝛿 and rate of
change Δ, if we confirm:

1 +∑𝑃
𝑖=1 1[𝑅𝑜𝑟𝑑 − 𝑅𝑆 ′𝑖 ≤ Δ]

𝑃 + 1 ≤ 𝛿 , (1)

then we suppose there is an occurrence of concept drift between the two time periods. Otherwise, there is no
concept drift. In our experiment, we choose parameters Δ = 0, 𝛿 = 0.01, and 𝑃 = 100, which are the same
parameters as in the original paper [23].
• The STEPD concept drift detection method. Nishida et al. propose a concept drift detection method that
uses a statistical test of equal proportions (STEPD) to detect concept drift [40]. The STEPD algorithm assumes
that the accuracy of a model for recent samples will be equal to the overall accuracy from the beginning of the
learning if the target concept is stationary and a significant decrease in accuracy if the concept drifts. When
data from a new time period becomes available, we calculate a two-proportion Z-test to compute the statistical
difference between the model’s prediction accuracy in the newest samples and old samples, as described below:

𝑍 =
(𝑝2 − 𝑝1) − 0√︃

𝑝 (1 − 𝑝) (1𝑛1
+ 1

𝑛2
)
, (2)

where 𝑝 is the overall prediction error rate, 𝑝1 and 𝑛1 are the prediction error rate and number of samples in the
older time period, while 𝑝2 and 𝑛2 are the prediction error rate in the newest time period, respectively. When
the 𝑝-value is less than 0.05, we reject the null hypothesis (i.e., 𝑝1 − 𝑝2 = 0) and consider the alternative that
there is an occurrence of concept drift between the two time periods.

4.1.3 Time-Based Ensemble Strategies. The concept drift in operations data motivates us to consider training local
base classifiers using the data from each relatively short time period and then combine these base classifiers as an
ensemble [48, 55, 56]. Instead of retraining the whole model like in the above-mentioned periodical retraining and
concept drift guided retraining strategies, time-based ensembles always train a smaller base classifier on the most
recent samples and add it into the ensemble when certain criteria are met. As a result, a time-based ensemble does
not need to detect when the model needs to be updated and can exploit knowledge from even faraway historical time
periods. Specifically, we train separate base classifiers using samples from each time period, then combine these base
classifiers to assemble an ensemble model for predicting future samples. Similar to the sliding window size for periodical
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 15

retraining models, we fix the ensemble size as half the total amount of time periods. We consider the following two
ensemble strategies in our experiment.

• Streaming Ensemble Algorithm (SEA). Street and Kim propose an ensemble algorithm, namely SEA, for
handling concept drift [48] in the data mining context. SEA combines multiple classifiers trained on different
time periods using majority voting. It keeps replacing the “weakest” base classifiers in the ensemble with new
base classifiers according to a quality measure based on the base classifiers’ predictions on the samples from the
newly arrived time period. The quality measure is a combined score that balances the accuracy and diversity of
the base classifiers [48]. Specifically, when samples from time period 𝑖 become available, these new samples are
used to evaluate all base classifiers in the ensemble and a candidate classifier 𝐶𝑖−1 trained on the previous time
period using the quality measure. If the quality of𝐶𝑖−1 is better than a base classifier 𝐸 𝑗 in the ensemble, then 𝐸 𝑗

is replaced by𝐶𝑖−1. Note that𝐶𝑖−1 is automatically appended to the ensemble if the number of base classifiers in
the ensemble has not reached the predefined size. Then, a new classifier 𝐶𝑖 is built on the samples from the time
period 𝑖 , and is saved as the candidate base classifier for the next time period.
• Accuracy Weighted Ensemble (AWE). Another ensemble approach proposed by Wang et al. [55, 56], namely
AWE, also aims at handling concept drift in streaming data. The algorithm of AWE is different from SEA in mainly
two points: 1) Instead of using a majority voting as in SEA, AWE applies a weighted ensembling approach that
assigns weights (described below) on each base classifier in the ensemble. 2) When a new time period 𝑖 becomes
available, SEA evaluates𝐶𝑖−1 on the new time period to determine whether to add𝐶𝑖−1 into the ensemble, while
AWE evaluates 𝐶𝑖 on the new time period to determine whether to add 𝐶𝑖 into the ensemble.
Each base classifier’s weight in the ensemble is calculated based on its estimated prediction error on the testing
data. Since the testing data is unseen at the training time, it assumes that the distribution of the most recent
training data is close to the distribution of the testing data. Thus, the base classifiers’ weights are approximated
by computing their prediction error on the latest training data. Specifically, the weight of the 𝑖th base classifier is
based on its mean square error on the latest training data as

MSE𝑖 =
1
𝑁

𝑁∑︁
𝑗=1
(𝑦 𝑗 − 𝑦 𝑗)2, (3)

where 𝑁 is the number of samples in the latest training time period, 𝑦 𝑗 is the predicted probability of the positive
class, and 𝑦 𝑗 is the observed class (1 for the positive class and 0 for the negative class). The weight of the 𝑖th
classifier is then defined as

𝑤𝑖 = MSE𝑟 −MSE𝑖 , (4)

where MSE𝑟 is the mean square error of a classifier that predicts randomly (MSE𝑟 = 0.25). Base classifiers that
produce an MSE higher than 0.25 are removed. For the classifier trained on the latest training time period, we
use 10-fold cross-validation to estimate its MSE.

4.1.4 Online Learning Strategies. The model update strategies mentioned above (i.e., stationary, periodical retraining,
concept drift guided retraining, and time-based ensemble) are agnostic to the model type, which means they can use
any supervised classification algorithms other than the five we evaluated. However, these strategies require retraining
each time the model is updated. On the other hand, online learning strategies are more flexible in model updating
but usually rely on specifically designed models for incremental model training. We consider three online learning
strategies as follows.

Manuscript submitted to ACM

16 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

• Hoeffding Tree (HT). Proposed by Domingos et al. [13], Hoefdding Tree (HT) is a widely adopted online
prediction model that can incrementally learn from a massive data stream. HT uses Hoefdding bounds to ensure
that the attributes chosen using a limited number of samples are the same as what would be chosen using infinite
samples with a high probability.
• Adaptive Random Forest (ARF). ARF [20] is a Random Forest algorithm designed for evolving data stream
classification. It uses an algorithm to detect concept drift, When the concept drift detection mechanism in ARF
senses warning level signals, the model creates background trees that are not included in the prediction. These
background trees are subsequently used to replace current trees in the forest if detecting concept drift. ARF also
uses a weighted voting mechanism based on the testing accuracy to further cope with concept drift.
• Accuracy Updated Ensemble (AUE). AUE is a time-based ensemble algorithm that uses online base classifiers
to react to sudden drifts and can also gradually evolve with slowly changing concepts [4]. The AUE algorithm is
similar to the above-mentioned time-based ensemble models, except it uses online base classifiers (Hoeffding
Tree) and updates the existing ensemble members with the newly arrived data samples.

4.2 Building Predictive Models

Models used in the stationary, periodical retraining, concept drift guided retraining, and time-based ensemble
strategies. To ensure the generalizability of our experiment results, we choose a variety of models used in prior
works [3, 15, 37] to predict disk failures on the Backblaze disk stats dataset and job failures on the Google and Alibaba
cluster trace datasets. The list of models we select includes Logistic Regression (LR), Classification and Regression Trees
(CART), Random Forest (RF), Neural Network (NN) 3, and Gradient Boosting Decision Tree (GBDT). We select these
models as they are used in prior studies on the same datasets [3, 15, 37, 44, 45]. We choose the implementations in the
scikit-learn4 Python package for all these models. Due to the skewness of our datasets (i.e., only 1.5% of the samples
on the Google cluster trace dataset are related to job failures, and only 0.05% of the samples in the Backblaze disk stats
dataset are related to disk failures), we apply under-sampling on the training set for all of our models using a ratio of
1:10, same as in prior work [37]. For the Alibaba dataset, 34.5% of the samples are related to job failures, and we have
not applied downsampling to them. The five types of models are applied to all the model update strategies except online
learning. We also apply a standard feature scaling transformation to avoid bias on features with large parameter value
ranges. As suggested in prior works [47, 51, 52], hyperparameter settings can significantly impact the performance of
prediction models. Therefore, we tune the hyperparameters of our studied models on the training data using a random
search. We choose a random search instead of a grid search for our hyperparameter tuning as using random search is
more efficient and can find models that are as good as or better than using a grid search [1].
Models used in the online learning strategies. Online learning strategies typically have specially designed mecha-
nisms to satisfy the need for constant model updating. In this work, our studied HT model uses Hoefdding bounds to
update the underlying decision tree model [13]. The studied ARF model is a modified Random Forest algorithm that
can learn incrementally [20]. On the other hand, the studied AUE model is a time-based ensemble model that features
online learning models as its base classifiers [4]. We use the HT model as the base classifier for AUE, the same as in the

3Note that we use a vanilla NN with one hidden layer, same as prior works [37, 44].
4https://scikit-learn.org/stable/

Manuscript submitted to ACM

https://scikit-learn.org/stable/

On the Model Update Strategies for Supervised Learning in AIOps Solutions 17

original paper [4]. We choose the implementations in the scikit-multiflow5 Python package for the HT and ARF
models and implement the AUE model in Python 6.

4.3 Evaluating Model Performance

In this work, we evaluate our studied model update strategies along three dimensions: performance, model updating
cost, and stability.

4.3.1 Performance. We evaluate the performance of our models using the AUC (Area Under the Receiver Operating
Characteristic Curve) metric, which is a standard and widely used metric for evaluating machine learning models.
AUC measures the model performance by calculating the area under the curve of true positive rate (TPR) against
false positive rate (FPR) at different classification thresholds. It evaluates a model’s ability to discriminate between
positive samples (e.g., failed jobs) and negative samples (e.g., normal jobs). Prior work recommends the use of AUC over
threshold-dependent metrics (e.g., precision and recall) when comparing model performance [50]. In our replication
package, we also report other performance metrics (e.g., F1 score and MCC (Matthews Correlation Coefficient)). To
mitigate the impact of random noise, we train and test each model with each strategy 100 times and calculate their
average performance.

4.3.2 Model updating cost. While model update strategies can mitigate performance deterioration caused by the
constant data evolution in operation datasets, significant computing efforts will be needed to update (e.g., by retraining)
the model. Once a model is updated, additional efforts and resources will also be needed to verify the quality of the
model (i.e., testing), integrate the model into the production system (i.e., integration), deploy the system that includes
the AIOps model to the production environment (i.e., deployment), and monitor the performance of the updated model
in the production environment (i.e., monitoring). Therefore, AIOps solutions that require frequent updating may not
be desirable [10, 28]. Accordingly, we define model updating cost from two perspectives: 1) the cost-effectiveness of
model updates which quantifies the model performance gain normalized by the times of model update, and 2) the cost
of computing resources in terms of the training and testing time.
Cost-effectiveness analysis. In order to evaluate the benefits and costs of different strategies for determining when to
update AIOps models, we perform cost-effectiveness analysis [58] on each considered strategy. In particular, for each
strategy, we calculate the effectiveness per unit of cost (i.e., the EC ratio) [54] by Equation:

𝐸𝐶 =
Performance improvement

Frequency of retrains
, (5)

where the performance improvement is represented by the percentage of AUC improvement over the stationary model,
and the frequency of retrains is measured by the percentage of time periods needing updates. A higher EC value suggests
the given strategy is more cost-effective. We do not measure the EC ratio for the online learning strategies since the
score is based on the performance improvement over the stationary strategies, while we do not have a corresponding
base model in the stationary strategy for the online learning strategies.
Training and inference cost. Considering the sheer volume of operation data and the need for real-time actions
in specific scenarios, the computing cost should also be carefully inspected. For example, training an LLM can cost
millions of dollars, and the inference costs far exceed training costs when deploying a model at any reasonable scale,

5https://scikit-multiflow.github.io/
6AUE has an implementation in Java [4] but no available Python implementation, so we implemented it in Python by ourselves for a fair comparison. The
other two works do not mention the implementation of their algorithms, so we choose to use the popular scikit-multiflow Python package.

Manuscript submitted to ACM

https://scikit-multiflow.github.io/

18 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

with ChatGPT costing over $700,000 per day to operate in hardware inference costs [41]. Therefore, we quantify the
training and inference time of each model update strategy and model choice as one aspect of our evaluation and further
estimate the compute cost in USD by referencing the cloud computing price per unit time [9]. We choose the r6i.2xlarge
instance (3rd generation Intel XEON CPU with 64 GiB memory) on AWS with an on-demand hourly cost of $0.504
to estimate the training and inference cost in dollars. The CPU in this type of instance is a rough equivalent to our
benchmark platform, and the memory is the minimum possible fit for running our experiments. The training time
measures the time needed for preprocessing, hyperparameter tuning, concept drift detection, and model fitting, and the
inference time measures the total time needed to apply the models in predicting testing samples. To mitigate measuring
errors, we repeat each experiment 100 times on the same machines and choose the average. To further avoid bias in
comparing the time efficiency of different strategies, we limit all models to only using a single CPU core.

4.3.3 Stability. Due to the evolving nature of operation data, strategies that fail to maintain and update models timely
may result in an inferior performance on future testing data and could further undermine the usefulness of the model.
Therefore, we include stability (i.e., to what extent the performance varies on testing data from different time periods)
as one of the evaluation dimensions. We measure the stability over each combination of update strategy and model
choice by calculating the coefficient of variation (CV):

𝐶𝑉 =
𝜎

𝜇
, (6)

where 𝜎 is the standard deviation and 𝜇 is the mean value of the observations on the AUC performance from different
testing time periods. Similar to the experiment design above, we repeat the experiment 100 times on the same machines
and calculate the average CV from the repetitions.

4.3.4 Statistical ranking on the evaluation results. For each of the above-mentioned evaluation metrics, we use the
Scott-Knott test to rank the combinations of model update strategy and model choice statistically. Scott-Knott is a
clustering technique [46] that groups observations into statistically distinct groups using hierarchical clustering analysis.
The observations within a group have no statistically significant difference (i.e., 𝑝-value ≥ 0.05), while the observations
in different groups have a statistically significant difference (i.e., 𝑝-value < 0.05). In our case, the observations are the
evaluated metric values (e.g., AUC) of the combinations of model update strategies and model choices in the repeated
experiments.

5 EXPERIMENT RESULTS

We organize our experiment results by evaluating the studied model update strategies in three dimensions: perfor-
mance, updating cost, and stability. We apply five types of models (i.e., LR, CART, RF, NN, and GBDT) to four strategies
that incorporate regular ML models out of the five model update strategies we have: stationary, periodical retraining,
concept drift guided retraining, and time-based ensemble. We also experiment with three types of models (i.e., HT, ARF,
and AUE) for the online learning strategy.

5.1 Performance

Figure 6 shows the AUC performance of each combination of update strategy and model choice on testing time
periods. Table 4 shows the overall AUC performance for the update strategies on each model choice and dataset. The
aforementioned overall AUC performance is calculated on all the testing samples combined. Figure 7 further shows our
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 19

Scott-Knott ranking test results on the overall AUC performance of each combination of update strategy and model
choice.

LR CART RF NN GBDT Online

15 20 25 15 20 25 15 20 25 15 20 25 15 20 25 15 20 25
0.5
0.6
0.7
0.8
0.9
1.0

Testing Time Period

A
U

C

Scenario
Stationary
Retrain
DDM
PERM
STEPD
SEA
AWE
HT
ARF
AUE

(a) Google

LR CART RF NN GBDT Online

20 25 30 35 20 25 30 35 20 25 30 35 20 25 30 35 20 25 30 35 20 25 30 35
0.5
0.6
0.7
0.8
0.9
1.0

Testing Time Period

A
U

C

Scenario
Stationary
Retrain
DDM
PERM
STEPD
SEA
AWE
HT
ARF
AUE

(b) Backblaze

● ●

● ●

● ● ● ●● ●

● ●

● ● ● ●● ● ● ●● ● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●
●

●

LR CART RF NN GBDT Online

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
0.5
0.6
0.7
0.8
0.9
1.0

Testing Time Period

A
U

C

Scenario
●

●

●

●

●

●

●

●

●

●

Stationary
Retrain
DDM
PERM
STEPD
SEA
AWE
HT
ARF
AUE

(c) Alibaba

Fig. 6. The AUC performance of different model update strategies in each testing period.

Periodical retraining, concept drift guided retraining, and time-based ensemble strategies all achieve
better performance than the stationary strategy, while different model update strategies lead to diverse
model performance. We observe that different strategies for training AIOps models can lead to significant performance
differences. For example, the CART model trained on the Backblaze dataset achieves an overall AUC of 0.86 using
the AWE ensemble strategy and 0.83 using periodical model retraining or the STEPD concept drift detection strategy.
In contrast, the stationary model only achieves an overall AUC of 0.77. As shown in Figure 7, we also rank the AUC
performance with our Scott-Knott test. It is worth noting that the stationary strategies always sit in the worst-performed
group, except for the GBDT and RF models on the Google dataset, where time-based ensemble strategies (SEA and
AWE) perform equally or worse than the stationary strategy. Overall, the periodical retraining strategy provides 1.5%
to 10.3% performance improvement on the Google dataset, 3.8% to 25.4% improvement on the Backblaze dataset, and

Manuscript submitted to ACM

20 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

Table 4. The performance evaluation of different model maintenance strategies in terms of the overall AUC performance.

Item Dataset Model
Strategy

Stationary Retrain Detection Emsemble Online2
DDM PERM STEPD SEA AWE HT ARF AUE

AUC1

Google

LR 0.63 (0.0%) 0.69 (10.3%) 0.66 (5.6%) 0.67 (6.7%) 0.69 (10.0%) 0.66 (4.5%) 0.67 (7.1%)

0.68 0.89 0.81
CART 0.86 (0.0%) 0.88 (2.0%) 0.87 (1.0%) 0.87 (1.0%) 0.88 (1.9%) 0.92 (6.9%) 0.93 (7.8%)
RF 0.96 (0.0%) 0.97 (1.5%) 0.97 (1.0%) 0.97 (1.1%) 0.97 (1.5%) 0.95 (-0.8%) 0.96 (-0.2%)
NN 0.86 (0.0%) 0.90 (4.6%) 0.88 (2.4%) 0.89 (4.0%) 0.90 (4.4%) 0.88 (3.0%) 0.89 (3.9%)

GBDT 0.96 (0.0%) 0.97 (1.5%) 0.97 (1.0%) 0.97 (1.1%) 0.97 (1.5%) 0.95 (-1.3%) 0.95 (-0.4%)

Backblaze

LR 0.69 (0.0%) 0.86 (25.4%) 0.85 (23.9%) 0.76 (10.9%) 0.85 (24.5%) 0.84 (23.0%) 0.86 (25.1%)

0.87 0.90 0.91
CART 0.77 (0.0%) 0.83 (7.9%) 0.82 (6.9%) 0.80 (4.9%) 0.83 (8.0%) 0.84 (10.1%) 0.86 (12.5%)
RF 0.86 (0.0%) 0.90 (3.8%) 0.90 (4.0%) 0.86 (-0.3%) 0.90 (3.8%) 0.88 (2.0%) 0.88 (2.3%)
NN 0.84 (0.0%) 0.90 (7.8%) 0.90 (6.9%) 0.90 (6.9%) 0.90 (7.6%) 0.85 (1.3%) 0.87 (3.4%)

GBDT 0.85 (0.0%) 0.89 (5.0%) 0.88 (4.1%) 0.88 (3.8%) 0.89 (4.8%) 0.86 (1.2%) 0.88 (3.6%)

Alibaba

LR 0.53 (0.0%) 0.55 (3.1%) 0.53 (0.0%) 0.55 (3.1%) 0.55 (3.1%) 0.54 (0.9%) 0.55 (3.4%)

0.64 0.60 0.62
CART 0.66 (0.0%) 0.71 (6.2%) 0.68 (2.4%) 0.70 (5.4%) 0.71 (6.2%) 0.75 (13.0%) 0.76 (14.7%)
RF 0.70 (0.0%) 0.75 (7.8%) 0.73 (5.0%) 0.75 (7.9%) 0.75 (7.8%) 0.77 (11.1%) 0.80 (14.3%)
NN 0.69 (0.0%) 0.75 (8.5%) 0.71 (3.2%) 0.75 (8.7%) 0.75 (8.5%) 0.69 (-0.1%) 0.71 (3.5%)

GBDT 0.67 (0.0%) 0.72 (6.5%) 0.70 (4.4%) 0.72 (6.5%) 0.72 (6.5%) 0.78 (15.4%) 0.81 (20.6%)
1 The number in brackets shows the AUC performance improvement compared with corresponding stationary models.
2 We skip the calculation of performance improvement for online models as they do not have corresponding stationary models.

3.1% to 8.5% improvement on the Alibaba dataset over the stationary models. Although having less frequent retraining
frequency, the concept drift guided retraining strategies can also provide comparable performance improvement to the
periodical retraining strategies. We observe a 1.0% to 10.0% performance improvement for the Google dataset, 3.8% to
24.5% improvement for the Backblaze dataset, and 2.4% to 8.7% improvement for the Alibaba dataset over the stationary
models. For the time-based ensemble strategies, we also observe significant performance improvement, achieving a
3.0% to 7.8% increase on the Google dataset, 1.2% to 25.1% increase on the Backblaze dataset, and 0.9% to 20.6% increase
on the Alibaba dataset over the stationary strategy.

In general, periodical retraining strategies achieve the best performance among all the evaluated model
update strategies, while concept drift guided retraining strategies can usually achieve as good performance.
Our Scott-Knott analysis of the AUC performance (Figure 7) shows that the periodical retraining strategy achieves
the best performance for 4 out of the 5 models on both the Google and Backblaze datasets and 3 out of the 5 models
on the Alibaba dataset, while the ensemble strategies achieve better performance on the remained scenarios. The
Scott-Knott analysis results also show that concept drift guided retraining strategies achieve a performance level that
has no statistical difference from the performance of the periodical retraining strategy for most of the scenarios. For
example, on the Google dataset, the STEPD concept drift guided retraining strategy ranks in the same group as the
periodical retraining strategy for all 5 models (i.e., LR, CART, RF, NN, and GBDT). On the Backblaze dataset, the STEPD
strategy also ranks in the same group as the periodical retraining strategy for 4 of the 5 models (i.e., CART, RF, NN, and
GBDT). Similarly, on the Alibaba dataset, the STEPD and PERM concept drift guided retraining strategies also rank in
the same group as the periodical retraining strategy for all 5 models.

Time-based ensemble strategies achieve promising results for certain scenarios (tree-based models es-
pecially) while showing inferior performance than model retraining strategies in other scenarios. Prior
works [48, 55, 56] show that time-based ensemble strategies outperform training a single model. For example, researchers
found the AWE ensemble built on several models outperforms the corresponding single classifier on both synthetic and
real-life stream data [55]. As shown in Figure 7, the time-based ensemble strategies achieve even higher performance
than the periodical retraining strategy in several scenarios in our case study. We observe both time-based ensemble
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 21

● ●● ●●● ●● ●●●● ● ● ●● ● ●●●● ●● ●●● ●
●●●●
●●● ●●●●

●●●
●● ● ●●●●●●

●
●●●● ●

●●●●●●
●●●●●● ●● ●●●● ●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Retra
in/G

BDT

Retra
in/RF

STEPD/G
BDT

STEPD/RF

DDM/G
BDT

DDM/RF

PERM/G
BDT

PERM/RF

AWE/RF

Statio
nary/

GBDT

Statio
nary/

RF

AWE/G
BDT

SEA/RF

SEA/G
BDT

AWE/CART

SEA/CART

Retra
in/NN

STEPD/NN

ARF/O
nline

AWE/NN

PERM/NN

SEA/NN

DDM/NN

Retra
in/CART

STEPD/CART

DDM/CART

PERM/CART

Statio
nary/

CART

Statio
nary/

NN

AUE/O
nline

Retra
in/LR

STEPD/LR

HT/O
nline

AWE/LR

PERM/LR

DDM/LR

SEA/LR

Statio
nary/

LR

0.5
0.6
0.7
0.8
0.9
1.0

A
U

C

Model
LR
CART
RF
NN
GBDT
Online

(a) Google

●●● ●●●●●●● ●●●●●●●●● ● ●●● ●● ●● ●● ●●● ●●● ● ● ●●●●●●●●● ●●●● ● ●●●● ●
●
●
●

●●
● ●●●●●●●●

●●● ●
●●

●●● ●

●

●
●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AUE/O
nline

Retra
in/NN

STEPD/NN

ARF/O
nline

DDM/NN

DDM/RF

PERM/NN

Retra
in/G

BDT

Retra
in/RF

STEPD/G
BDT

STEPD/RF

AWE/G
BDT

AWE/RF

DDM/G
BDT

PERM/G
BDT

SEA/RF

AWE/NN

HT/O
nline

AWE/CART

AWE/LR

PERM/RF

Retra
in/LR

SEA/G
BDT

Statio
nary/

RF

DDM/LR

SEA/NN

Statio
nary/

GBDT

STEPD/LR

SEA/CART

SEA/LR

Statio
nary/

NN

Retra
in/CART

STEPD/CART

DDM/CART

PERM/CART

Statio
nary/

CART

PERM/LR

Statio
nary/

LR

0.5
0.6
0.7
0.8
0.9
1.0

A
U

C

Model
LR
CART
RF
NN
GBDT
Online

(b) Backblaze

●●●●●●●●
●
●●●●●●
●●

●
● ●

●

●
●

●
●

●
●
●

●
●

●
●●

●●
●

●●●●●● ●●●●●●● ●●●●●●●
●
●
●

●

●

●

●●●
●

●●

●●
●●●●● ●●

●

●

●

●●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AWE/G
BDT

AWE/RF

SEA/G
BDT

SEA/RF

AWE/CART

PERM/NN

PERM/RF

Retra
in/NN

Retra
in/RF

SEA/CART

STEPD/NN

STEPD/RF

DDM/RF

PERM/G
BDT

Retra
in/G

BDT

STEPD/G
BDT

AWE/NN

DDM/NN

DDM/G
BDT

PERM/CART

Retra
in/CART

STEPD/CART

Statio
nary/

RF

SEA/NN

Statio
nary/

NN

DDM/CART

Statio
nary/

GBDT

Statio
nary/

CART

HT/O
nline

AUE/O
nline

ARF/O
nline

AWE/LR

PERM/LR

Retra
in/LR

STEPD/LR

DDM/LR

SEA/LR

Statio
nary/

LR

0.5
0.6
0.7
0.8
0.9
1.0

A
U

C

Model
LR
CART
RF
NN
GBDT
Online

(c) Alibaba

Fig. 7. Scott-Knott test results of the AUC performance of different model update strategies.

strategies rank in the first or the second group for the CART model on all three datasets. In addition, both time-based
ensemble strategies also rank in the first or second group for the GBDT and RF models on the Alibaba dataset. In
particular, for the CART model on the Google dataset, the SEA and AWE time-based ensemble strategies achieve a
4.5% and a 5.7% overall performance increase compared to the best model retraining strategy (including concept drift
guided retraining and periodical retraining strategy) in terms of the overall AUC, as shown in Table 4. However, in the
other specific scenarios, the time-based ensemble strategies achieve poorer performance, especially on the NN model,
where both ensemble models achieve similar performance to the stationary model. In other scenarios, the time-based
ensemble strategies achieve comparable performance to concept drift guided retraining strategies. Part of the inferior
results may be explained by the fact that these models already have internal ensemble mechanisms (i.e., RF and GBDT
use bagging and boosting, respectively, and NN uses a strategy similar to the stacking ensemble strategy), thus adding
an extra layer of ensemble process to these models may not always improve their performance.

Online learning models’ performance is mixed and significantly depends on characteristics of the datasets.
The performance of online learning strategies varies from dataset to dataset. The online learning models rank among the

Manuscript submitted to ACM

22 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

worst-performing strategies on the Google and Alibaba datasets while ranking among the top-performing strategies on
the Backblaze dataset. For example, the AUE and HT online learning strategies rank in the 14th and 16th performance
groups in terms of AUC on the Google dataset, respectively (shown in Figure 7a). For the Alibaba dataset, online learning
strategies also show inferior performance, with all three strategies ranking in the 15th to the 17th performance groups,
as shown in Figure 7c. In contrast, the online learning models are among the best-performing strategies on the Backblaze
dataset, with the AUE online learning model being the best-performing strategy and the ARF online learning model
ranking in the 3rd group for the Backblaze dataset, as shown in Figure 7b. We speculate that the different characteristics
of the datasets cause such significantly different results. For instance, as shown in Figure 3, the distribution of the target
variable (i.e., the failure rate) in the Google and Alibaba datasets fluctuates rapidly from one time period to another,
which may impair the performance of the online models that build up incrementally. In comparison, the distribution of
the target variable in the Backblaze dataset is evolving gradually and is more predictable. Future work is needed to
investigate the appropriate application scenarios for online learning models.

5.2 Model updating cost

Table 5 shows the EC ratio of the combinations of our studied model update strategies and models. Figure 8 shows
the Scott-Knott test results of ranking the combinations into statistically distinct groups based on the EC ratios in 100
rounds of the experiment. Table 6 shows the training and testing time of each combination of model update strategy
and model choice on all the training and testing time periods combined. Figure 9 shows the Scott-Knott test results of
ranking the combinations of model update strategy and model choice based on their training and testing time combined
in 100 rounds of experiment. Table 7 further shows the average cost estimation in dollar value for training and testing
different strategies.

Table 5. The model updating cost evaluation of different model maintenance strategies in terms of the EC ratio.

Item Dataset Model
Strategy

Stationary Retrain Detection Emsemble
DDM PERM STEPD SEA AWE

EC ratio 1

Google

LR - (0) 2.96 (13) 7.43 (2) 5.99 (4) 4.28 (8) 1.29 (13) 2.04 (13)
CART - (0) 0.57 (13) 0.95 (3) 0.66 (5) 0.72 (10) 1.97 (13) 2.24 (13)
RF - (0) 0.43 (13) 0.94 (3) 0.62 (7) 0.55 (10) -0.23 (13) -0.07 (13)
NN - (0) 1.32 (13) 2.62 (2) 2.33 (6) 1.60 (10) 0.87 (13) 1.13 (13)

GBDT - (0) 0.43 (13) 0.98 (3) 0.61 (6) 0.46 (12) -0.37 (13) -0.12 (13)

Backblaze

LR - (0) 5.65 (17) 17.34 (5) 16.83 (1) 8.14 (11) 5.11 (17) 5.58 (17)
CART - (0) 1.76 (17) 4.41 (6) 4.85 (3) 2.04 (15) 2.26 (17) 2.80 (17)
RF - (0) 0.85 (17) 4.07 (3) -0.59 (1) 1.24 (11) 0.45 (17) 0.51 (17)
NN - (0) 1.74 (17) 5.81 (4) 3.43 (7) 2.80 (10) 0.29 (17) 0.75 (17)

GBDT - (0) 1.11 (17) 2.81 (5) 4.94 (2) 1.53 (12) 0.27 (17) 0.81 (17)

Alibaba

LR - (0) 3.12 (3) 0.00 (0) 3.12 (3) 3.12 (3) 0.91 (3) 3.38 (3)
CART - (0) 6.31 (3) 4.90 (1) 6.15 (3) 6.31 (3) 13.34 (3) 15.01 (3)
RF - (0) 7.78 (3) 10.06 (1) 7.87 (3) 7.78 (3) 11.12 (3) 14.34 (3)
NN - (0) 8.56 (3) 6.47 (1) 8.76 (3) 8.56 (3) -0.00 (3) 3.65 (3)

GBDT - (0) 6.47 (3) 8.85 (1) 6.47 (3) 6.47 (3) 15.36 (3) 20.59 (3)
1 The number in brackets shows the counts of model retraining for each of the model maintenance strategies.

Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 23

●●
●

●●
●

●

●

●●●
●●●●●●

●●●●●●

●●
●
●●

●●●●● ●●● ●●●●
●
● ●●●●

●

●●●

●

●

●

●●

●●●

●●●
●●

●

●●

●

●●
●

●●

●

●●

●

●●●●
● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13

DDM/LR

PERM/LR

STEPD/LR

Retra
in/LR

DDM/NN

AWE/CART

PERM/NN

AWE/LR

SEA/CART

STEPD/NN

Retra
in/NN

SEA/LR

AWE/NN

DDM/CART

DDM/G
BDT

DDM/RF

SEA/NN

PERM/CART

PERM/G
BDT

PERM/RF

Retra
in/CART

Retra
in/G

BDT

Retra
in/RF

STEPD/CART

STEPD/G
BDT

STEPD/RF

AWE/G
BDT

AWE/RF

Statio
nary/

CART

Statio
nary/

GBDT

Statio
nary/

LR

Statio
nary/

NN

Statio
nary/

RF

SEA/G
BDT

SEA/RF

−5

0

5

E
C

 R
at

io

Model
LR
CART
RF
NN
GBDT

(a) Google

●

●●●●●●●●●●●

●

●● ●●●

●

●
●
●

●

●●●●●●●●● ●
●●●●● ●● ●●●●●●●●

●
● ● ● ● ● ●●●●●●● ●

●
●●
● ●

1 2 3 4 5 6 7 8 9 10

DDM/LR

PERM/LR

STEPD/LR

AWE/LR

DDM/NN

Retra
in/LR

PERM/CART

PERM/G
BDT

SEA/LR

DDM/CART

DDM/RF

PERM/NN

AWE/CART

DDM/G
BDT

STEPD/NN

Retra
in/CART

Retra
in/NN

SEA/CART

STEPD/CART

STEPD/G
BDT

AWE/G
BDT

AWE/NN

AWE/RF

Retra
in/G

BDT

Retra
in/RF

SEA/RF

STEPD/RF

PERM/RF

SEA/G
BDT

SEA/NN

Statio
nary/

CART

Statio
nary/

GBDT

Statio
nary/

LR

Statio
nary/

NN

Statio
nary/

RF

−25

0

25

E
C

 R
at

io

Model
LR
CART
RF
NN
GBDT

(b) Backblaze

●

●●●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●●●
●
● ●● ●●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●
●

●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●

●●

1 2 3 4 5 6 7 8 9 10 11 12

AWE/G
BDT

AWE/CART

SEA/G
BDT

AWE/RF

SEA/CART

SEA/RF

DDM/RF

DDM/G
BDT

PERM/NN

Retra
in/NN

STEPD/NN

PERM/RF

Retra
in/RF

STEPD/RF

DDM/NN

PERM/CART

PERM/G
BDT

Retra
in/CART

Retra
in/G

BDT

STEPD/CART

STEPD/G
BDT

DDM/CART

AWE/LR

AWE/NN

PERM/LR

Retra
in/LR

STEPD/LR

DDM/LR

SEA/LR

SEA/NN

Statio
nary/

CART

Statio
nary/

GBDT

Statio
nary/

LR

Statio
nary/

NN

Statio
nary/

RF

−10

0

10

20

30

E
C

 R
at

io

Model
LR
CART
RF
NN
GBDT

(c) Alibaba

Fig. 8. Scott-Knott test results of the EC ratio of different model update strategies.

The concept drift guided retraining strategies are among the most cost-effective and require fewer model
updates. We observe that using concept drift guided retraining strategies can significantly reduce the model retraining
frequency compared with the periodical retraining strategy (Table 5). For example, on the Backblaze dataset, the DDM,
PERM, and STEPD concept drift guided retraining strategies only require 4, 7, and 10 times of retraining for the NN
model, respectively. In contrast, the periodical retraining strategy retrains the same model type 17 times. Overall, the
concept drift guided retraining models achieve the highest EC ratio on the three datasets, except that the two time-based
ensemble strategies (SEA and AWE) prevail in EC ratios for the CART model on the three datasets and for the RF
and GBDT models on the Alibaba dataset. Specifically, the DDM concept drift guided retraining strategy achieves the
highest EC ratio on the Google dataset for 4 out of the 5 models (i.e., LR, RF, NN, and GBDT); while on the Backblaze
dataset, the PERM concept drift guided retraining strategy has the highest EC ratio for 3 models (i.e., LR, CART, and
GBDT) and the DDM strategy has the highest EC ratio for the other 2 models (i.e., RF and NN). The Alibaba dataset
only has 3 model update periods and can only reflect short-term performance for the concept drift guided retraining
strategies. We observe that the PERM and STEPD strategies retrain on all 3 testing periods and obtain similar EC ratios

Manuscript submitted to ACM

24 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

to the periodical retraining strategies. However, the DDM retraining strategy detects effective retraining points, only
retraining once but obtaining similar EC performance to the periodical retraining strategy, except for the LR model,
in which the DDM strategy detects no drift. In addition, we observe the ensemble models tend to have a better EC
ratio on the Alibaba dataset than on the other two datasets due to the large amount of performance improvement.
The Scott-Knott test results of the EC ratios (Figure 8) also show that the DDM strategy ranks in the first group for 4
of 5 models on the Google dataset and 3 of 5 models on the Backblaze dataset. On the Alibaba dataset, the ensemble
model has the best EC ratio, but the DDM strategy still manages to rank higher than the periodical retraining strategy
on the GBDT and RF models. Model update strategies other than the concept drift guided retraining strategies (i.e.,
periodical retraining and time-based ensemble) need to update the model each time the data in a new time period
becomes available, which may not be favorable in field deployment. Our results indicate that selectively maintaining
the models based on concept drift detection could reduce the cost of model updating while cost-effectively preserving
model performance.

Table 6. The evaluation of different strategies in updating AIOps models in terms of efforts. The total training time and testing time
are calculated as the sum of the training/testing time for each round, including the time taken to detect concept drift.

Item Dataset Model
Strategy

Stationary Retrain Detection Emsemble Online
DDM PERM STEPD SEA AWE HT ARF AUE

Training
time

(seconds)

Google

LR 2,037 12,517 3,052 3,602 9,553 415 453

20 1,344 332
CART 19 285 79 183 226 51 68
RF 1,047 17,974 5,083 10,649 13,400 2,252 2,412
NN 2,262 36,419 8,937 21,894 28,985 5,415 6,069

GBDT 874 12,859 3,729 7,456 12,071 1,657 1,870

Backblaze

LR 9,874 47,487 15,714 21,268 33,887 11,192 11,667

67 4,858 1,467
CART 53 865 362 974 776 158 498
RF 307 6,125 2,084 7,010 5,178 5,029 5,880
NN 437 8,720 2,604 12,403 5,738 12,744 13,611

GBDT 280 3,728 1,685 5,584 2,971 3,795 4,600

Alibaba

LR 1,417 6,581 1,417 7,798 6,581 2,115 2,174

87 1,548 486
CART 87 423 193 482 423 154 160
RF 2,995 14,783 7,239 17,486 14,785 5,468 5,607
NN 22,984 101,350 38,970 125,480 101,351 45,693 47,925

GBDT 5,098 23,221 11,388 27,923 23,223 9,511 9,857

Testing
time

(seconds)

Google

LR 0.3 0.2 0.2 0.3 0.2 10.7 10.7

43.2 958.5 456.7
CART 0.4 0.3 0.3 0.3 0.3 10.4 10.1
RF 3.6 4.7 4.7 4.6 4.7 85.5 85.9
NN 0.6 0.8 0.7 0.8 0.8 24.7 24.9

GBDT 1.8 2.3 2.5 2.2 2.3 39.8 41.9

Backblaze

LR 11.9 11.8 11.4 11.4 11.2 189.4 192.3

3,760.9 10,5523.3 63,373.3
CART 16.3 16.4 15.9 15.7 15.5 285.6 289.0
RF 251.5 238.4 216.5 357.9 248.5 3989.1 4313.4
NN 59.8 33.6 38.0 36.0 33.3 771.6 764.0

GBDT 174.3 87.1 117.0 114.6 87.5 1557.1 1598.8

Alibaba

LR 0.2 0.2 0.2 0.2 0.2 0.7 0.7

42.2 200.9 164.2
CART 0.3 0.2 0.2 0.2 0.2 0.9 0.9
RF 2.6 3.0 2.9 3.0 2.9 11.9 12.9
NN 0.9 0.7 0.7 0.7 0.7 3.5 3.1

GBDT 3.8 2.3 3.1 2.3 2.3 7.5 6.8

Overall, the online learning and periodical retraining strategies usually have the highest time consumption
for model training and testing, while the concept drift guided retraining and time-based ensemble strategies
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 25

●●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●

●
●●
●
●●
● ●●

●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ● ●●● ●●●●●● ●●●●● ●●● ●●● ●●●● ● ●●●●●●● ●●●●● ●●● ●●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Retra
in/NN

STEPD/NN

PERM/NN

Retra
in/RF

STEPD/RF

Retra
in/G

BDT

Retra
in/LR

STEPD/G
BDT

PERM/RF

STEPD/LR

DDM/NN

PERM/G
BDT

AWE/NN

SEA/NN

DDM/RF

DDM/G
BDT

PERM/LR

DDM/LR

ARF/O
nline

AWE/RF

SEA/RF

Statio
nary/

NN

AWE/G
BDT

Statio
nary/

LR

SEA/G
BDT

AUE/O
nline

Statio
nary/

GBDT

Statio
nary/

RF

AWE/LR

Retra
in/CART

SEA/LR

AWE/CART

DDM/CART

HT/O
nline

PERM/CART

SEA/CART

Statio
nary/

CART

STEPD/CART

0

10000

20000

30000

Tr
ai

ni
ng

+
Te

st
in

g
T

im
e

Model
LR
CART
RF
NN
GBDT
Online

(a) Google

●●

●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●● ● ● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●● ●● ●●● ●●● ●● ● ● ●●● ● ●●●●●●●●●●●●●●● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ARF/O
nline

AUE/O
nline

Retra
in/LR

STEPD/LR

PERM/LR

DDM/LR

AWE/NN

SEA/NN

PERM/NN

AWE/LR

SEA/LR

AWE/RF

Statio
nary/

LR

Retra
in/NN

SEA/RF

PERM/RF

AWE/G
BDT

Retra
in/RF

PERM/G
BDT

SEA/G
BDT

STEPD/NN

STEPD/RF

HT/O
nline

Retra
in/G

BDT

STEPD/G
BDT

DDM/NN

DDM/RF

DDM/G
BDT

AWE/CART

PERM/CART

Retra
in/CART

STEPD/CART

DDM/CART

SEA/CART

Statio
nary/

CART

Statio
nary/

GBDT

Statio
nary/

NN

Statio
nary/

RF

0

30000

60000

90000

120000

Tr
ai

ni
ng

+
Te

st
in

g
T

im
e

Model
LR
CART
RF
NN
GBDT
Online

(b) Backblaze

●●●

●● ●●

● ●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●

●●●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PERM/NN

Retra
in/NN

STEPD/NN

AWE/NN

SEA/NN

DDM/NN

PERM/G
BDT

Retra
in/G

BDT

Statio
nary/

NN

STEPD/G
BDT

PERM/RF

Retra
in/RF

STEPD/RF

DDM/G
BDT

AWE/G
BDT

SEA/G
BDT

DDM/RF

PERM/LR

Retra
in/LR

STEPD/LR

AWE/RF

SEA/RF

Statio
nary/

GBDT

Statio
nary/

RF

AWE/LR

SEA/LR

ARF/O
nline

DDM/LR

Statio
nary/

LR

AUE/O
nline

AWE/CART

DDM/CART

HT/O
nline

PERM/CART

Retra
in/CART

SEA/CART

Statio
nary/

CART

STEPD/CART

0

40000

80000

120000

Tr
ai

ni
ng

+
Te

st
in

g
T

im
e

Model
LR
CART
RF
NN
GBDT
Online

(c) Alibaba

Fig. 9. Scott-Knott test results of the training and testing time of different model update strategies.

Table 7. The cost estimation in dollars for running different model maintenance strategies in a single run. For strategies other than
online learning methods, we take the average value from running five different models.

Item Dataset
Strategy

Stationary Retrain Detection Emsemble Online
DDM PERM STEPD SEA AWE HT ARF AUE

Training
cost ($)

Google 629 8,069 2,105 4,413 6,475 987 1,096 10 675 167
Backblaze 1,104 6,746 2,263 4,762 4,894 3,191 3,506 34 2,439 736
Alibaba 3,284 14,753 5,968 18,060 14,754 6,345 6,625 44 777 244

Testing
cost ($)

Google 1 1 1 1 1 17 17 22 481 229
Backblaze 52 39 40 54 40 584 613 1,888 52,973 31,813
Alibaba 1 1 1 1 1 2 2 21 101 82

Manuscript submitted to ACM

26 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

typically have the lowest time consumption. As shown in our Scott-Knott test results (Figure 9) that rank the
different combinations of model update strategies and model choices, the periodical retraining strategies of the NN,
RF, and GBDT models take the longest time to finish a round of training and testing on the Google dataset. On the
Backblaze dataset, two online learning strategies (i.e., ARF and AUE) and the periodical retraining strategies for the
LR model take the longest to train and test. Due to the smaller amount of time periods on the Alibaba dataset, the
model type becomes the dominant factor for training and testing time, and the strategies for the NN model take the
longest to run. However, in most cases, the concept drift guided retraining and time-based ensemble strategies take
the shortest time to train and test. On the Google datasets, the AWE and SEA time-based ensemble strategies are the
fastest strategies other than the stationary models for all 5 types of models (i.e., LR, CART, RF, NN, and GBDT). On the
Backblaze dataset, the DDM concept drift guided retraining strategy ranks in the fastest groups, excluding the stationary
models for 4 out of 5 models (i.e., CART, RF, NN, and GBDT). On the Alibaba dataset, the two time-based ensemble
strategies rank in the fastest groups other than the stationary models for 3 types of models (i.e., RF, CART, and GBDT),
while the DDM concept-drift detection strategy ranks in the first place for the 2 remaining models (i.e., LR and NN).
Table 7 further shows the average cost estimation in dollars on five different model types for each model update strategy
(except for the online learning strategy, in which we use the nominal value as it does not allow different model types).
We observe that the DDM concept drift detection strategy and the two time-based ensemble strategies have the lowest
model training cost other than the stationary and online learning strategies, which matches our observations on time
consumption. Online learning can also have a short training time, but the performance varies significantly, with the HT
online learning strategy being worse than the stationary CART model on both the Google and Alibaba datasets while
having a longer training time. We also observe that although time-based ensemble strategies have a higher cost for
inference, the volume is still a fraction compared to the training cost. Nevertheless, the time consumption and related
computing cost are highly related to the choice of model and dataset. Hence, we advise practitioners to experiment
with multiple models.

The concept drift guided retraining, time-based ensemble, and online learning strategies can all reduce
the total training time needed to update the models than the periodical retraining strategy. As shown in
Table 6, we observe that the DDM and STEPD concept drift guided retraining strategies show a significant reduction in
the training time (i.e., 54.8% to 75.6% and 10.2% to 34.2%, respectively) compared with the periodical retraining strategy
for all 5 types of models on both the Google and Backblaze datasets. On the Alibaba dataset, the DDM concept drift
retraining strategy reduces to training time by 50.9% to 78.4% for all five types of models compared with the periodical
retraining strategy, while the STEPD concept drift retraining strategy has a similar retraining time compared with the
periodical retraining strategy (the STEPD retrained on every new training period on the Alibaba dataset). The PERM
concept drift guided retraining strategy reduces the training time (i.e., 35.9% to 71.2%) on the Google dataset. On the
Backblaze dataset, the PERM concept drift guided retraining strategy reduces the training time for only the LR model
(55.2% reduction) but increases the training time for the other 4 types of models (12.7%, 49.8%, 42.2%, and 14.5% increase
of training time for the CART, GBDT, NN, and RF model, respectively). On the Alibaba dataset, the PERM concept
drift guided retraining strategy shows an increase in the training time on all five types of models ranging from 13.9%
to 23.8%. The PERM concept drift guided retraining strategy involves additional model training for each time period
to detect potential concept drift and the situation, slowing the training performance, especially on the Alibaba and
Backblaze datasets, as their retrain frequency is higher. On the other hand, the time-based ensembles have an even
shorter training time for some models while increasing the training time for others compared with periodical retraining
strategies. For example, the SEA ensemble trains faster on all 5 models on the Google dataset, 3 out of 5 models on the
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 27

Alibaba dataset (on CART, RF, and GBDT), and 2 out of 5 models on the Backblaze dataset (i.e., LR and CART) than the
fastest concept drift guided retraining strategy while being even slower than the periodical retraining strategy for 2 out
of 5 models (i.e., NN and GBDT) on the Backblaze dataset. Time-based ensemble strategies must construct and evaluate
base models for each time period. As the Backblaze dataset is enormous in volume (even a single time period holds
hundreds of thousands of data samples), constructing and evaluating these base models can be very slow, which may
explain the slow training speed of the time-based ensemble strategies on the Backblaze dataset for complex models (e.g.,
NN and GBDT). The online learning strategies can also take a shorter training time than other model update strategies.
For example, AUE online learning strategy, the best-performing strategy on the Backblaze dataset, takes only 1,454
seconds to train and update the model; in comparison, the second-best-performing models on the Backblaze dataset
(i.e., Retrain/NN and STEPD/NN), take 8,720 and 5,738 seconds, respectively.

While time-based ensemble strategies and online learning strategies can save model training time, they
take significantly longer time in model testing than other mode update strategies. Time-based ensemble
strategies and online learning strategies can usually save training time and be used in situations where retraining
the model from scratch is too expensive [13, 55]. However, as shown in Table 6, the online learning strategies and
time-based ensemble strategies can take much longer testing time than other model update strategies. For example, on
the Backblaze dataset, the online learning strategies take an average of 3,802 to 62,810 seconds to test the model on
the testing time periods, and the time-based ensemble strategies take up to 4,132 seconds for testing. In comparison,
other strategies that only use base models (i.e., stationary and retrained models) take less than 358 seconds to test the
model on the testing time periods. For the same model (e.g., RF), the time-based ensemble strategies usually take tens of
times the testing time of strategies that only use base models. In particular, while other strategies take shorter testing
time than the corresponding training time, the online learning strategies take even longer testing time than training
time. For example, the AUE strategy takes 43 times longer to test (62,810 seconds) than to train (1,454 seconds) on
the Backblaze dataset. Online learning models preserve the ability to modify the internal structure, thus increasing
the time needed for inference [49]. In conclusion, time-based ensemble strategies and online learning strategies save
training time by increasing the complexity of the models at the cost of significantly increasing the testing time. As
operation data usually arrive in very large batches (i.e., hundreds of thousands of data instances) and the delay in
mitigating incidents would cause tremendous cost, such slow-in-testing strategies may hinder the ability of AIOps
solutions to provide timely predictions [31, 61]. Emerging new research strategies (e.g., online learning and time-based
ensemble) are still not mature enough to be used in practice, although they are showing better performance compared
to traditional retraining strategies.

5.3 Stability

Table 8 shows, for each combination of model update strategy and model choice, the coefficient of variance (CV) of
the AUC over the testing periods. Figure 10 shows our Scott-Knott test results of ranking the combinations according
to their CV values.

Active model update strategies (i.e., periodical retraining, concept drift guided retraining, and time-based
ensemble strategies) achieve more stable performance than stationary model. As shown in Table 8, the studied
model update strategies, including the periodical retraining strategy, the concept drift guided retraining strategies, and
the time-based ensemble strategies, all show smaller performance variance than the stationary models for most of
the cases. In particular, the periodical retraining strategy usually shows the stablest results (i.e., with the smallest CV
values) among all the model update strategies. As shown in our Scott-Knott test results ((Figure 10)), the periodical

Manuscript submitted to ACM

28 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

retraining strategy shows the stablest results for 4 out of 5 base models (except for LR) on the Google dataset, 4 out of
the 5 base models (except for CART) on the Backblaze dataset, and 3 out of the 5 base models (except for GBDT and
CART) on the Alibaba dataset. Since the stationary model may suffer from performance degradation caused by concept
drift while actively maintaining models could mitigate the concept drift problem and sustain model performance, it is
reasonable that the model update strategies achieve higher stability in terms of AUC performance.‘’ In general, more
frequent model updating is needed to achieve more stable model performance.

Table 8. The stability evaluation of different model maintenance strategies in terms of the coefficient of variance (CV) of AUC on
each testing period.

Item Dataset Model
Strategy

Stationary Retrain Detection Emsemble Online
DDM PERM STEPD SEA AWE HT ARF AUE

CV 1

Google

LR 0.09 (0.0%) 0.09 (-3.1%) 0.09 (-6.3%) 0.09 (-6.5%) 0.08 (-12.9%) 0.09 (-6.5%) 0.12 (28.6%)

0.12 2 0.05 0.06
CART 0.06 (0.0%) 0.04 (-24.1%) 0.05 (-13.9%) 0.05 (-14.7%) 0.05 (-21.4%) 0.03 (-48.5%) 0.03 (-52.0%)
RF 0.02 (0.0%) 0.01 (-37.5%) 0.02 (-23.3%) 0.02 (-25.4%) 0.01 (-37.1%) 0.02 (-5.6%) 0.02 (-12.0%)
NN 0.05 (0.0%) 0.03 (-37.1%) 0.04 (-22.4%) 0.04 (-35.6%) 0.04 (-36.1%) 0.04 (-28.1%) 0.04 (-31.1%)

GBDT 0.02 (0.0%) 0.02 (-30.2%) 0.02 (-22.7%) 0.02 (-27.2%) 0.02 (-29.9%) 0.02 (-4.6%) 0.02 (-12.8%)

Backblaze

LR 0.14 (0.0%) 0.05 (-66.8%) 0.06 (-59.4%) 0.10 (-25.2%) 0.05 (-60.6%) 0.06 (-54.7%) 0.05 (-60.4%)

0.04 0.03 0.03
CART 0.05 (0.0%) 0.05 (-11.4%) 0.05 (-13.6%) 0.07 (20.4%) 0.05 (-9.3%) 0.05 (-6.6%) 0.04 (-21.0%)
RF 0.05 (0.0%) 0.03 (-45.5%) 0.03 (-32.1%) 0.05 (-8.1%) 0.03 (-36.3%) 0.04 (-13.0%) 0.04 (-14.5%)
NN 0.06 (0.0%) 0.03 (-55.7%) 0.04 (-38.0%) 0.03 (-51.3%) 0.03 (-48.2%) 0.06 (-6.4%) 0.05 (-18.9%)

GBDT 0.05 (0.0%) 0.04 (-18.5%) 0.04 (-1.7%) 0.05 (1.1%) 0.04 (-7.7%) 0.05 (2.3%) 0.04 (-18.5%)

Alibaba

LR 0.03 (0.0%) 0.00 (-91.5%) 0.03 (0.0%) 0.00 (-91.5%) 0.00 (-91.5%) 0.01 (-69.8%) 0.06 (120.6%)

0.16 0.10 0.11
CART 0.14 (0.0%) 0.14 (1.5%) 0.13 (-4.1%) 0.14 (1.1%) 0.14 (1.5%) 0.11 (-22.8%) 0.06 (-58.1%)
RF 0.12 (0.0%) 0.11 (-11.2%) 0.11 (-10.3%) 0.11 (-11.1%) 0.11 (-11.2%) 0.10 (-21.6%) 0.05 (-62.4%)
NN 0.16 (0.0%) 0.08 (-52.9%) 0.13 (-17.3%) 0.08 (-53.6%) 0.08 (-52.9%) 0.15 (-7.3%) 0.06 (-61.6%)

GBDT 0.17 (0.0%) 0.17 (5.0%) 0.17 (0.3%) 0.17 (5.0%) 0.17 (5.0%) 0.13 (-18.4%) 0.03 (-82.7%)
1 The number in brackets shows the relative increase of CV compared with corresponding stationary models.
2 We skip the calculation of performance improvement for online models as they do not have corresponding stationary models.

The stability of different update strategies and model types is highly correlated with its performance:
a better performing one is usually more stable. As shown in Table 8, on the Google dataset, the RF model, the
GBDT model, and the CART model with the time-based ensemble strategies are among the stablest strategies. These
strategies are also the best-performing ones (with the highest AUC values) on the Google dataset (as shown in Figure 7).
On the Backblaze dataset, the online learning strategies (AUE, ARF, and HT) are among the most stable strategies and
are among the best-performing ones on the same dataset. Similarly, the best-performing ensemble strategies are among
the stablest strategies. In fact, we measure the Spearman correlation between the stability and performance (AUC) of
the combinations of model update strategies and model choices, and we observe a high correlation value of -0.93 (i.e., a
higher AUC is correlated with a smaller CV).

6 DISCUSSION

Model retraining may not always lead to performance improvement of AIOps models in the immediate fu-
ture. However, adopting a higher model retraining frequency strategy can always lead to better performance
in the long term. In order to track the performance impact of model retraining, we compare the periodical retraining
approach, the three concept drift guided retraining approaches, and a hypothesized optimal approach in terms of their
retrain frequency and performance improvement over the stationary approach. The hypothesized optimal approach is
based on the intuition that a model needs to be retrained when retraining the model statistically significantly improves
the model performance on the samples in the following time period. Specifically, when the data from a new time period
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 29

●
●●●● ●●●

●●●●●
●

●●

●

●
●
●
●
●●●●●●●
● ●●●●●

●●●
●●
●●

●●
●●

●
● ● ● ●

●● ●● ●● ● ●●● ●● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

HT/O
nline

AWE/LR

Statio
nary/

LR

Retra
in/LR

DDM/LR

PERM/LR

SEA/LR

STEPD/LR

AUE/O
nline

Statio
nary/

CART

Statio
nary/

NN

DDM/CART

PERM/CART

ARF/O
nline

STEPD/CART

DDM/NN

Retra
in/CART

SEA/NN

AWE/NN

PERM/NN

Retra
in/NN

STEPD/NN

SEA/CART

AWE/CART

SEA/G
BDT

Statio
nary/

GBDT

Statio
nary/

RF

AWE/G
BDT

SEA/RF

AWE/RF

DDM/G
BDT

DDM/RF

PERM/G
BDT

PERM/RF

Retra
in/G

BDT

STEPD/G
BDT

Retra
in/RF

STEPD/RF

0.05

0.10

0.15

C
oe

ffi
ci

en
t o

f V
ar

ia
nc

e

Model
LR
CART
RF
NN
GBDT
Online

(a) Google

●●

●

●

●

●

●

●
●

●
●●
●●
●

●

●●

●

●● ●
●● ●

●
●●
● ●● ●

●

●

●

●

●

●
●● ● ●●●●

●
●●
●● ●●●●●●●●●●●●●●●● ●

●
● ●●●●●●●●●● ●●●●●●●● ● ●

1 2 3 4 5 6 7 8 9 10

Statio
nary/

LR

PERM/LR

PERM/CART

SEA/LR

Statio
nary/

NN

AWE/LR

DDM/LR

SEA/NN

Statio
nary/

CART

STEPD/LR

AWE/NN

DDM/CART

Retra
in/CART

SEA/CART

Statio
nary/

RF

STEPD/CART

AWE/CART

AWE/RF

DDM/G
BDT

PERM/G
BDT

PERM/RF

Retra
in/LR

SEA/G
BDT

SEA/RF

Statio
nary/

GBDT

STEPD/G
BDT

AWE/G
BDT

DDM/NN

DDM/RF

HT/O
nline

Retra
in/G

BDT

ARF/O
nline

AUE/O
nline

STEPD/NN

STEPD/RF

PERM/NN

Retra
in/NN

Retra
in/RF

0.1

0.2

C
oe

ffi
ci

en
t o

f V
ar

ia
nc

e

Model
LR
CART
RF
NN
GBDT
Online

(b) Backblaze

●●

●●●●
● ●● ●● ●● ● ●●

●
●
●●
●
●●
●●
●
●

●

●
● ● ● ●

●●

●●●●●●

●●●
●

●●●
●
●
●
●

●
●●●●● ●●●●●

●●●●● ●● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PERM/G
BDT

Retra
in/G

BDT

STEPD/G
BDT

DDM/G
BDT

HT/O
nline

Statio
nary/

GBDT

Statio
nary/

NN

SEA/NN

PERM/CART

Retra
in/CART

Statio
nary/

CART

STEPD/CART

DDM/CART

DDM/NN

SEA/G
BDT

Statio
nary/

RF

AUE/O
nline

DDM/RF

PERM/RF

Retra
in/RF

SEA/CART

STEPD/RF

ARF/O
nline

SEA/RF

PERM/NN

Retra
in/NN

STEPD/NN

AWE/CART

AWE/LR

AWE/NN

AWE/RF

AWE/G
BDT

DDM/LR

Statio
nary/

LR

SEA/LR

PERM/LR

Retra
in/LR

STEPD/LR

0.00

0.05

0.10

0.15

0.20

C
oe

ffi
ci

en
t o

f V
ar

ia
nc

e

Model
LR
CART
RF
NN
GBDT
Online

(c) Alibaba

Fig. 10. Scott-Knott test results of the coefficient of variance of the AUC performance of different model update strategies.

arrives, the optimal approach trains a new model with the latest data and compares the performance of the new model
with the performance of the previously-trained model on the data samples from the following time period (i.e., a future
time period). Upon detecting a statistically significant difference between the two models’ performance, we deem that
concept drift occurred and replace the previous model with the new one. Otherwise, we retain the old, previously
trained model. In particular, we train and test the models 100 times and use a Mann-Whitney U test (p ≤ 0.05) to quantify
the statistical significance of the performance difference between model performance (i.e., AUC) before and after an
update. In a practical setting, we would not have the knowledge of how the model performs on future data. Hence, it is
a hypothetical optimal approach in which we leverage historical data to simulate and assess the evaluation criteria of
model updates in different strategies.

Table 9 and Table 10 show the impact of the model retraining approaches on each testing time period for the
retraining approaches on the Google and Backblaze datasets, respectively. We exclude the Alibaba dataset from the
discussion because only 3 retraining and testing periods are available for it. As shown in the results, a higher number of
retrains generally produces higher performance improvement. In some cases, the “optimal” approach achieves a better

Manuscript submitted to ACM

30 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

performance than the periodical retraining approach (e.g., for the CART model on the Google dataset); however, in
other cases, the periodical retraining approach performs better (e.g., for the NN model applied on the Backblaze dataset).
While the “optimal” approach acts as a “prophet” and only retrains a model when it could improve the performance, it
evaluates the performance impact on the following time period instead of on all future time periods, thus it may not
lead to the best overall performance in all cases. In addition, even if retraining a model could negatively impact its
performance in the immediate next time period, the model retraining decision could still benefit the model performance
in the long term. For example, the PERM concept guided retraining approach on the LR model suggests one more
retraining (i.e., for the 18th time period) than the DDM concept guided retraining approach on the Google dataset.
Although the extra retrain decreases the model performance in the immediate subsequent time period, the PERM
approach still results in a 1.1% more overall performance increase.

Table 9. The detection of concept drift in each time period by different retraining strategies on the Google cluster trace dataset. A
symbol indicates that an occurrence of concept drift is detected in the corresponding time period by the corresponding strategy on
over half of the experiment rounds. An ↑ means the AUC performance significantly increased, a − means no significant difference in
AUC performance, and a ↓ means the AUC performance significantly decreased, compared to not updating the model using the
Mann–Whitney U Test.

Model Strategy Testing period Performance
Improvement16 17 18 19 20 21 22 23 24 25 26 27 28

LR

Retrain ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓ 10.3%
DDM ↑ ↓ 5.6%
PERM ↓ ↑ ↓ 6.7%
STEPD ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ 10.0%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ 8.9%

CART

Retrain ↑ ↑ ↑ ↑ − ↑ − − ↑ ↑ ↑ ↑ ↑ 2.0%
DDM ↑ ↑ − 1.0%
PERM ↑ ↑ ↑ ↑ − ↑ 1.0%
STEPD ↑ ↑ ↑ ↑ − ↑ − ↑ ↑ ↑ ↑ 1.9%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 3.2%

RF

Retrain ↑ ↑ ↑ ↑ ↑ ↑ − ↑ ↑ ↑ ↑ ↑ ↑ 1.5%
DDM ↑ ↑ ↑ 1.0%
PERM ↑ ↑ ↑ ↑ ↑ ↑ 1.1%
STEPD ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1.5%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1.3%

NN

Retrain ↑ ↑ − ↑ − ↓ ↑ ↑ ↑ − ↑ ↑ ↑ 4.6%
DDM ↑ 2.4%
PERM ↑ ↑ − ↑ ↑ ↑ 4.1%
STEPD ↑ ↑ − ↑ − ↓ ↑ ↑ ↑ ↑ ↑ 4.4%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 4.1%

GBDT

Retrain − ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1.5%
DDM ↑ ↑ ↑ 1.0%
PERM − ↑ ↓ ↑ ↑ ↑ 1.1%
STEPD − ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1.5%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1.3%

1 The performance improvement indicates the relative improvement of the overall AUC performance
against the corresponding stationary models.

Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 31

Table 10. The detection of concept drift in each time period by different retraining strategies on the Backblaze disk stats dataset. A
symbol indicates that an occurrence of concept drift is detected in the corresponding time period by the corresponding strategy on
over half of the experiment rounds. An ↑ means the AUC performance significantly increased, a − means no significant difference in
AUC performance, and a ↓ means the AUC performance significantly decreased, compared to not updating the model using the
Mann–Whitney U Test.

Model Strategy Testing period Performance
Improvement20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

LR

Retrain ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ − ↓ ↑ ↑ 25.4%
DDM ↑ ↑ ↑ 23.9%
PERM ↑ 11.0%
STEPD ↓ ↑ ↑ − − ↑ ↑ ↑ ↓ − ↓ ↑ 24.5%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 23.1%

CART

Retrain ↑ ↑ ↑ ↑ − ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ − ↑ 7.9%
DDM ↑ 7.0%
PERM 4.9%
STEPD ↑ ↑ ↑ ↑ − ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ − ↑ 8.1%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 9.1%

RF

Retrain ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↑ − ↑ ↑ − ↑ 3.8%
DDM ↑ 4.0%
PERM ↓ -0.3%
STEPD ↑ ↓ ↑ ↑ ↓ ↑ ↑ − ↑ ↑ − ↑ 3.8%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 4.7%

NN

Retrain − ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ 7.8%
DDM ↑ ↑ ↑ 6.9%
PERM ↓ ↑ ↑ ↑ ↑ ↑ ↑ 7.0%
STEPD ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ 7.6%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 7.0%

GBDT

Retrain ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ − ↑ ↓ ↑ ↓ ↑ 5.0%
DDM ↑ ↑ ↑ 4.1%
PERM ↑ 3.8%
STEPD ↑ ↑ ↓ ↑ ↑ ↑ ↑ − ↑ ↑ ↓ ↑ 4.8%
Optimal ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 5.9%

1 The performance improvement indicates the relative improvement of the overall AUC performance against the corre-
sponding stationary models.

Practitioners should be cautious while deciding when and how tomaintain their AIOpsmodels, depending
on their performance requirements, resources, and the characteristics of data. As retraining AIOps models come
with benefits (e.g., performance improvement and higher stability) and costs (e.g., computing cost for maintenance),
practitioners should be cautious when adapting model update strategies. We summarize the performance of different
model update strategies along each evaluation dimension (i.e., AUC performance, EC ratio, computing time, and stability)
and suggest one or several general picks for each dimension in Table 11. We also advise that different approaches
have their own advantages on specific evaluation dimensions, and there is no clear winner on all of the evaluation
dimensions. Hence, practitioners should consider the requirements and constraints of their application scenario to
trade-off between the model performance, training effort, stability, and other dimensions. For example, in our case
study on the Backblaze disk stat dataset, the new data feed in at a steady and relatively low pace (i.e., daily snapshot for
each machine) and does not require immediate responses. Hence, practitioners could deploy the maintenance-heavy

Manuscript submitted to ACM

32 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

Table 11. The comparison of different model maintenance strategies along each evaluation dimension.

Evaluation dimension
Strategy 1

Stationary Retrain Detection Emsemble Online
DDM PERM STEPD SEA AWE HT ARF AUE

Performance × ✓ ◦ ✓ ◦ ✓ ◦
Cost-effectiveness × ✓ ✓ ◦ × × × × ×
Training time ✓ × ✓ ✓ ✓
Testing time × × × × ×
Stability × ✓ ✓ ◦ ✓ ✓

1 A checkmark (✓) indicates a recommended strategy based on the performance for the majority of scenarios
in the corresponding evaluation dimension, a circle (◦) indicates less recommended strategies with medium
performance, while a cross mark (×) indicates a not recommended strategies due to performance in certain
evaluation dimensions.

time-based ensemble approaches and schedule the prediction and model maintenance daily to increase prediction
performance while bringing little maintenance overhead. On the other hand, our case study on the Google and Alibaba
cluster trace datasets indicates a need for high inference speed and minimum downtime. The periodical retraining
approach is then more suitable than the time-based ensemble and online learning approaches, which have a slower
inference speed or need constant model updates.

Practitioners could consider advanced model update strategies (e.g., concept-drift guided retraining or
time-based ensembles) as alternatives to periodical model retraining. The industry usually applies periodical
retraining approaches to maintain the model performance. However, our case study shows that advanced model update
strategies can reach similar or even higher performance while bringing additional advantages. For example, both the
SEA and AWE time-based ensemble approaches achieve higher AUC performance on the GBDT model, with an increase
of 8.4% and 13.2% over the periodical retraining approach on the Alibaba dataset, as shown in Table 4. On the other
hand, although not outperforming the periodical retraining approach, concept drift guided retraining approaches can
reach statistically comparable performance to the periodical retraining approaches. Besides, the concept drift guided
retraining approaches can significantly reduce the frequency of model retraining compared with periodical retraining
(e.g., a reduction between 76.9% and 84.6% on the Google dataset and 64.7% to 82.3% on the Backblaze dataset when
using the DDM concept drift guided retraining approach). In addition, except that the PERM concept drift guided
retraining approach requires additional model retraining to operate, the DDM and STEPD concept drift guided retraining
approaches only add insignificant time for concept drift detection compared with the model training cost. Although the
time-based ensemble approaches require the same amount of retraining as the periodical retraining approach, they
significantly reduce the retraining cost (e.g., 76.4% to 96.7% reduction in training time on the Google dataset when using
the SEA ensemble approach) since only one small base classifier is trained when the newest data is added.

Future works are needed for improving the efficiency of the concept drift guided retraining and time-
based ensemble approaches. We investigated why some concept drift guided retraining approaches may require
longer training time than others (e.g., the PERM retraining approach even has longer training time than the periodical
retraining approach on 4 out of 5 models on the Backblaze data), and found that it accounts for both the time spent
on detecting concept drift and the frequency of retraining. When a new time period becomes available, extra model
training and evaluation are performed to detect concept drift. For each new time period, the PERM approach performs
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 33

100 random splits of the samples in the period and builds a model for each split to detect concept drift. The DDM and
STEPD approaches do not involve extra model training and only require extra model testing on the new time period
to detect concept drift; hence they are faster for detecting concept drift. As shown in Table 5, the STEPD approach
reports concept drift more often than the other two concept drift detection methods, which explains why it is slower in
certain scenarios. A similar circumstance happens in the time-based ensemble approaches. For example, both time-based
ensemble approaches are slower in training than the periodical retraining models on the NN and GBDT models on
the Backblaze dataset, as shown in Table 6. The reason is that the ensemble approaches need extra time to build a
new classifier on each new time period and evaluate all base classifiers in the ensemble on the data in the new time
period to determine whether and how to replace base classifiers (for both SEA and AWE) and assign weights to the
base classifiers (for AWE). Therefore, we suggest that future research could develop methods that can efficiently detect
concept drift in operation data (usually massive in volume) and more efficient time-based ensemble algorithms.

The efficiency of model testing may be equally important as the efficiency of model training for AIOps
solutions where the data arrive at high speed and fast model inferences are required. As shown in our
experiment results (Table 6), the time-based ensemble approaches and online learning approaches tend to consume
a large amount of time in testing. When a new time period becomes available, the time-based ensemble approaches
only train a base classifier on the data from the new time period. Therefore, using time-based ensemble approaches to
update AIOps models can be more efficient than retraining a single model using all the training data. Prior work also
reports that time-based ensemble approaches can lead to shorter training time [55]. However, during model testing,
such ensemble approaches need to evaluate all the base classifiers on the testing data, which can lead to a very slow
testing speed. Similarly, online learning approaches can save training time but at the cost of longer testing time. Prior
work notes that the need for modifying the model trees (i.e., to allow online learning) causes HT’s runtime to be four to
six times slower than the tree model that does not require structural modifications [49]. Hence, while online learning
approaches are able to be updated on the fly by preserving the ability to modify the internal model structure, such ability
can significantly sacrifice model testing time. As operation data usually arrives at high speed and volume, applying
time-based ensemble or online learning approaches may not be ideal when the application requires applying the model
on a large volume of samples simultaneously.

Data pre-processing of operation data. Operation datasets are usually not presented in the form that general ML
algorithms can readily consume. For instance, the Google and Alibaba datasets are trace data of server workloads and
machine monitoring, while the Backblaze dataset is in the form of daily snapshots of SMART diagnosis metrics. All
three datasets used in our case study need extensive pre-processing before turning into feature vectors that can be fed
into ML models. To understand the computational cost of data pre-processing, we measure the time consumption of
data pre-processing for each of the three datasets. The Google cluster trace dataset takes an average of 76.3 seconds on
pre-processing for each of the one-day time periods while the Alibaba dataset takes only an average of 4.1 seconds on
each of the one-week time periods. Although the two datasets go through similar pre-processing steps, the discrepancy
in pre-processing could be from the difference in how the job and monitoring information are recorded. For example,
the Google dataset records job and task status along certain intervals, requiring tracing down the status of each job
and task through its life cycle, while the Alibaba dataset presents the job and task information in a single entry. The
Backblaze dataset also takes longer for pre-processing: we observe an average of 74.6 seconds for each of the one-month
time periods. The reasons for the prolonged pre-processing time could be both the sheer amount of data volume (i.e., an
average of 114K samples per period for the Backblaze dataset vs. an average of 22K for the Google dataset) and the use
of cumulative features that need calculation of the difference of value changes in the one-week windows. Similar efforts

Manuscript submitted to ACM

34 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

may be needed for building AIOps solutions on other operation datasets, and we suggest practitioners keep in mind the
pre-processing requirement and the associated extra time consumption in building their AIOps solutions.

Generalizability of our results. We discuss the generalizability of our results from two perspectives: 1) which
scenarios can our studied AIOps model update strategies and results apply to, and 2) the generalizability of our results
to new datasets.

• Scope of the application scenarios. In this work, we studied the evolution of the operation data distribution and
the effects of different AIOps model update strategies in handling the evolution. However, we did not consider
other types of evolution in operation data, such as the changes in data format, or the addition or deletion of
features that are caused by the evolution of the system under operation. Our study also focuses on automated
failure prediction, thus our results may not generalize to other types of AIOps tasks. Still, our studied model
update strategies and results are applicable to other scenarios in automated failure prediction where the feature
set and format formats do not change. When the feature set or data formats are changed, human intervention is
needed to perform feature engineering that considers the new features or new formats. Nevertheless, even in
such cases, our studied approaches and results are still applicable in the time periods when the feature sets and
formats are stable. We encourage future work to extend our work to consider other forms of data evolution.
• Generalizability to new datasets. This work performs case studies on three public operation datasets (i.e., the
Google cluster trace dataset, the Backblaze disk stats dataset, and the Alibaba GPU cluster trace dataset). These
are large-scale real-world datasets produced by production systems in industry from three different companies
(i.e., Google, Backblaze, and Alibaba) regarding different aspects (i.e., CPU jobs, hard disks, and GPU jobs). In
order to improve the generalizability of our results, for each dataset, we consider five popular models (i.e., LR,
CART, RF, NN, and GBDT) that are used in prior studies built on these datasets. In fact, initially, our study was
only performed on two of the three datasets (the Google cluster trace dataset and the Backblaze disk stats dataset).
Then, we added experiments on the third dataset (the Alibaba GPU cluster trace dataset) and observed that our
initial results and conclusions still apply to the new dataset. This observation demonstrates that our results and
conclusions may generalize to more operation datasets. Nevertheless, our work could benefit from evaluating
the different AIOps model update strategies on more datasets, in particular, in a real-world application in an
industry setting. We encourage future work to extend our work by considering other datasets and models or
performing an industry case study.

7 THREATS TO VALIDITY

7.1 External Validity

A threat to the external validity of our findings concerns the generalizability of our results to other AIOps applications,
datasets, and models. While we do not generalize our results, our study considers popular supervised models (i.e., LR,
CART, RF, NN, and GBDT) on three datasets (i.e., the Google cluster trace dataset, the Backblaze disk stats dataset, and
the Alibaba GPU cluster trace dataset) for two types of AIOps applications focusing on the automated prediction of
failures. Although these datasets were released from the industry (i.e., by Google, Backblaze, and Alibaba), our work
could benefit from evaluating the different AIOps model update strategies in a real-world application in an industry
setting. We encourage future work to extend our work by performing an industry case study.

Another external validity concerns the type of data evolution considered in this study. We focus on studying the
evolution of the data distribution of the features and their relationships rather than other kinds of evolution in operation
Manuscript submitted to ACM

On the Model Update Strategies for Supervised Learning in AIOps Solutions 35

data. For example, we do not consider changes in data format, additions or deletions of features, or other possible forms
of data evolution. We encourage future studies to extend our work to consider other forms of data evolution.

In addition, our evaluation approaches and criteria are all general and can be easily applicable to additional datasets
or other model maintenance contexts. Future work can replicate our study on more applications, datasets, and models.

This work focuses on AIOps, which develops AI-based solutions to operationalize various software and system oper-
ations goals (e.g., job failure prediction or system anomaly detection). Another highly correlated concept, MLOps [21],
instead focuses more on deploying and maintaining machine learning models in production reliably and efficiently.
After designing AIOps solutions, practitioners need MLOps tools to ensure the continuous delivery of machine learning
solutions. While our work on AIOps model updating can be considered an application area of MLOps, our work does
not touch on automated tooling for the deployment and maintenance of general ML models. Future research could
consider incorporating MLOps tools for automating the delivery of AIOps solutions.

7.2 Internal Validity

A threat to the internal validity of our findings concerns the measurement of the training and testing time. Considering
the timemeasurement is sensitive to many factors, we repeat our experiments 100 times to mitigate noise in the measured
training and testing time.

Our choice of the time period size could also be a threat to the validity of our results. Although the data could be
partitioned into time periods in other sizes, we consider the natural time periods (e.g., days and months) such that
practitioners can better leverage the tools to maintain their models (e.g., daily or monthly).

In this work, we consider two aspects (cost-effectiveness of model updating as well as model training and testing
cost) to measure the updating cost of AIOps models, which focuses on the computational aspect of model maintenance.
However, there are other aspects of maintenance cost that are not considered in this work, such as the human efforts
and resources taken to integrate, deploy, and monitor the AIOps model in the production system. In addition, the extra
complexity of the system brought by the model update strategies themselves (e.g., the concept drift detection approaches)
can introduce additional maintenance costs, such as the efforts needed for practitioners to learn the corresponding
skills and maintain the implementation of the approaches. We plan to study these aspects in our future work.

7.3 Construct Validity

A threat to construct validity concerns our model training process. The configuration of the models may impact our
results. In order to mitigate this impact, we use automated hyperparameter tuning (i.e., random search) to optimize
the configuration of the hyperparameters, which is a widely used practice in the development of machine learning
models. Nevertheless, different searches of the hyperparameters may lead to different results, and we cannot guarantee
optimum hyperparameters. As our findings apply to all the studied datasets and models, we assume that using different
hyper-parameters may not impact our findings.

There may be other potential threats concerning our model training process. We use the same features as in prior
works for the Google and Backblaze operation datasets and the same types of base models (except for the online learning
approaches) appeared in the prior works [3, 15, 37, 45] (no prior work on predicting job failure is done on the Alibaba
dataset) to reflect the training process in AIOps solutions. Future work that evaluates our study by considering other
modeling processes, e.g., using a different ML library or a different re-sampling approach, could benefit our study.

Manuscript submitted to ACM

36 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

8 CONCLUSION

In this work, we study the model update strategies of supervised learning in the context of AIOps through a case
study on three AIOps applications: 1) predicting job failures on the Google cluster trace data; 2) predicting disk failures
on the Backblaze disk stats data; 3) predicting job failures on the Alibaba GPU cluster trace data.

We evaluate different model update strategies on our studied operation datasets along three dimensions: performance,
model updating cost, and stability. We observe that active model update strategies (i.e., periodical retraining, concept
drift guided retraining, time-based ensemble, and online learning) all increase the model performance and stability
compared to a stationary model. In particular, concept drift guided retraining strategies can achieve similar model
performance as periodical retraining while requiring fewer model updates. Model updating strategies (i.e., time-based
ensemble and online learning) could reduce the model training time but significantly increase the model testing time.
Our findings suggest that AIOps practitioners should consider the evolving nature of their operation data and maintain
their models with informed decisions (e.g., when there is concept drift) and cost-efficient update strategies. Our results
also indicate that no single strategy is best in all aspects (e.g., performance, model updating cost, and stability). Instead,
practitioners should consider the context and product requirements (e.g., the urgency to deploy model updates and the
characteristics of the dataset) to decide the most appropriate strategy.We also suggest future research to investigate more
efficient model update strategies that accommodate the unique characteristics of operation data (e.g., ultra-large-scale
data and extremely imbalanced data distribution) and various deployment requirements (e.g., the urgency to push
updates or the consideration of model maintenance efforts).

REFERENCES
[1] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 10 (2012),

281–305.
[2] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data with Adaptive Windowing. In Proceedings of the 7th SIAM International

Conference on Data Mining (SIAM ’07). 443–448.
[3] Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bogojeska, and Dorothea Wiesmann. 2016. Predicting Disk Replacement Towards Reliable Data

Centers. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). 39–48.
[4] Dariusz Brzezinski and Jerzy Stefanowski. 2014. Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm. IEEE

Transactions on Neural Networks and Learning Systems 25, 1 (2014), 81–94.
[5] Alberto Cano and Bartosz Krawczyk. 2020. Kappa Updated Ensemble for Drifting Data Stream Mining. Machine Learning 109, 1 (2020), 175–218.
[6] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. 2014. Failure Prediction of Jobs in Compute Clouds: A Google Cluster Case Study. In Proceedings

of the 2014 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW ’14). 341–346.
[7] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu, Yingnong Dang, Dongmei Zhang, Hang Dong, Yong Xu, Hao Li, and

Yu Kang. 2019. Outage Prediction and Diagnosis for Cloud Service Systems. In Proceedings of the 2019 World Wide Web Conference (WWW ’19).
2659–2665.

[8] Harris Cooper, Larry V. Hedges, and Jeffrey C. Valentine. 2019. The Handbook of Research Synthesis and Meta-Analysis. Russell Sage Foundation.
[9] Ben Cottier. 2023. Trends in the dollar training cost of machine learning systems. https://epochai.org/blog/trends-in-the-dollar-training-cost-of-

machine-learning-systems
[10] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: Real-World Challenges and Research Innovations. In Proceedings of the 41st International

Conference on Software Engineering: Companion Proceedings (ICSE-Companion ’19). 4–5.
[11] Rui Ding, Qiang Fu, Jian-Guang Lou, Qingwei Lin, Dongmei Zhang, Jiajun Shen, and Tao Xie. 2012. Healing Online Service Systems via Mining

Historical Issue Repositories. In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE ’12). 318–321.
[12] Rui Ding, Qiang Fu, Jian-Guang Lou, Qingwei Lin, Dongmei Zhang, and Tao Xie. 2014. Mining Historical Issue Repositories to Heal Large-Scale

Online Service Systems. In Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’14). 311–322.
[13] Pedro Domingos and Geoff Hulten. 2000. Mining High-Speed Data Streams. In Proceedings of the 6th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD ’00). 71–80.
[14] Priyanka B. Dongre and Latesh G. Malik. 2014. A Review on Real Time Data Stream Classification and Adapting to Various Concept Drift Scenarios.

In Proceedings of the 2014 IEEE International Advance Computing Conference (IACC ’14). 533–537.

Manuscript submitted to ACM

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

On the Model Update Strategies for Supervised Learning in AIOps Solutions 37

[15] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder. 2017. Learning from Failure Across Multiple Clusters: A Trace-Driven Approach to
Understanding, Predicting, and Mitigating Job Terminations. In Proceedings of the 37th IEEE International Conference on Distributed Computing
Systems (ICDCS ’17). 1333–1344.

[16] Murray J. Fisher, Andrea P. Marshall, and Marion Mitchell. 2011. Testing Differences in Proportions. Australian Critical Care 24, 2 (2011), 133–138.
[17] Martin Fowler. 2019. Continuous Delivery for Machine Learning. https://martinfowler.com/articles/cd4ml.html. Last accessed 09/03/2020.
[18] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. 2004. Learning with Drift Detection. In Proceedings of the 17th Brazilian Symposium

on Artificial Intelligence (SBIA ’04). 286–295.
[19] João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A Survey on Concept Drift

Adaptation. Comput. Surveys 46, 4, Article 44 (2014), 37 pages.
[20] Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. 2017.

Adaptive Random Forests for Evolving Data Stream Classification. Machine Learning 106, 9 (2017), 1469–1495.
[21] Google. 2020. MLOps: Continuous delivery and automation pipelines in machine learning. https://cloud.google.com/solutions/machine-learning/

mlops-continuous-delivery-and-automation-pipelines-in-machine-learning. Last accessed 09/03/2020.
[22] Alibaba Group. 2021. Alibaba cluster trace program. https://github.com/alibaba/clusterdata.
[23] Maayan Harel, Koby Crammer, Ran El-Yaniv, and Shie Mannor. 2014. Concept Drift Detection through Resampling. In Proceedings of the 31st

International Conference on International Conference on Machine Learning - Volume 32 (ICML ’14). II–1009–II–1017.
[24] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and Dongmei Zhang. 2018. Identifying Impactful Service System Problems

via Log Analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’18). 60–70.

[25] T. Ryan Hoens, Robi Polikar, and Nitesh V. Chawla. 2012. Learning from Streaming Data with Concept Drift and Imbalance: An Overview. Progress
in Artificial Intelligence 1, 1 (2012), 89–101.

[26] Backblaze Inc. 2020. Backblaze Hard Drive Stats. Backblaze B2 Cloud Storage. Posted at https://www.backblaze.com/b2/hard-drive-test-data.html.
[27] Heng Li, Tse-Hsun Peter Chen, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. 2018. Adopting Autonomic Computing Capabilities in

Existing Large-Scale Systems: An Industrial Experience Report. In Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’18). 1–10.

[28] Yangguang Li, Zhen Ming Jiang, Heng Li, Ahmed E. Hassan, Cheng He, Ruirui Huang, Zhengda Zeng, Mian Wang, and Pinan Chen. 2020. Predicting
Node Failures in an Ultra-Large-Scale Cloud Computing Platform: An AIOps Solution. ACM Transactions on Software Engineering and Methodology
29, 2 (2020), 1–24.

[29] Meng-Hui Lim, Jian-Guang Lou, Hongyu Zhang, Qiang Fu, Andrew Beng Jin Teoh, Qingwei Lin, Rui Ding, and Dongmei Zhang. 2014. Identifying
Recurrent and Unknown Performance Issues. In Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM ’14). 320–329.

[30] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, et al.
2018. Predicting Node Failure in Cloud Service Systems. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18). 480–490.

[31] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao Xie. 2013. Software Analytics for Incident Management of Online
Services: An Experience Report. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering (ASE ’13). 475–485.

[32] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao Xie. 2017. Experience Report on Applying Software Analytics in
Incident Management of Online Service. Automated Software Engineering 24, 4 (2017), 905–941.

[33] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang, and Zhe Wang. 2014. Correlating Events with Time Series for
Incident Diagnosis. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14). 1583–1592.

[34] Yingzhe Lyu, Heng Li, Mohammed Sayagh, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan. 2021. An Empirical Study of the Impact of Data Splitting
Decisions on the Performance of AIOps Solutions. ACM Transactions on Software Engineering and Methodology 30, 4, Article 54 (jul 2021), 38 pages.

[35] Yingzhe Lyu, Gopi Krishnan Rajbahadur, Dayi Lin, Boyuan Chen, and Zhen Ming (Jack) Jiang. 2021. Towards a Consistent Interpretation of AIOps
Models. 31, 1, Article 16 (nov 2021), 38 pages.

[36] Guillermo Eduardo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. 2011. Cliff’s Delta Calculator: A Non-parametric Effect Size
Program for Two Groups of Observations. Universitas Psychologica 10 (2011), 545–555.

[37] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. 2017. Proactive Error Prediction to Improve Storage System Reliability. In Proceedings
of the 2017 USENIX Annual Technical Conference (ATC ’17). 391–402.

[38] Leandro L. Minku, Allan P. White, and Xin Yao. 2009. The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE
Transactions on knowledge and Data Engineering 22, 5 (2009), 730–742.

[39] Leandro L. Minku and Xin Yao. 2011. DDD: A New Ensemble Approach for Dealing with Concept Drift. IEEE Transactions on Knowledge and Data
Engineering 24, 4 (2011), 619–633.

[40] Kyosuke Nishida and Koichiro Yamauchi. 2007. Detecting Concept Drift Using Statistical Testing. In Discovery Science. Springer, 264–269.
[41] Dylan Patel and Afzal Ahmad. 2023. Peeling The Onion’s Layers - Large Language Models Search Architecture And Cost. https://www.semianalysis.

com/p/peeling-the-onions-layers-large-language.
[42] Pankaj Prasad and Charley Rich. 2018. Market Guide for AIOps Platforms. Gartner Research. Posted at https://www.gartner.com/doc/3892967/market-

guide-aiops-platforms.

Manuscript submitted to ACM

https://martinfowler.com/articles/cd4ml.html
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://github.com/alibaba/clusterdata
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.semianalysis.com/p/peeling-the-onions-layers-large-language
https://www.semianalysis.com/p/peeling-the-onions-layers-large-language
https://www.gartner.com/doc/3892967/market-guide-aiops-platforms
https://www.gartner.com/doc/3892967/market-guide-aiops-platforms

38 Yingzhe Lyu, Heng Li, Zhen Ming (Jack) Jiang, and Ahmed E. Hassan

[43] Jeanine Romano, Jeffrey D. Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006. Appropriate Statistics for Ordinal Level Data: Should We Really
Be Using T-Test and Cohen’d for Evaluating Group Differences on the NSSE and Other Surveys. In annual meeting of the Florida Association of
Institutional Research. 1–3.

[44] Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2015. Catching Failures of Failures at Big-Data Clusters: A Two-level Neural Network Approach. In
Proceedings of the 2015 IEEE 23rd International Symposium on Quality of Service (IWQoS ’15). 231–236.

[45] Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2015. Predicting and Mitigating Jobs Failures in Big Data Clusters. In Proceedings of the 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15). 221–230.

[46] Andrew J. Scott and M. Knott. 1974. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 30, 3 (1974), 507–512.
[47] Liyan Song, Leandro L. Minku, and Xin Yao. 2013. The Impact of Parameter Tuning on Software Effort Estimation Using Learning Machines. In

Proceedings of the 9th International Conference on Predictive Models in Software Engineering (PROMISE ’13). Article 9, 10 pages.
[48] W. Nick Street and YongSeog Kim. 2001. A Streaming Ensemble Algorithm (SEA) for Large-Scale Classification. In Proceedings of the 7th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’01). 377–382.
[49] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. 2011. Fast anomaly detection for streaming data. In Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence - Volume Volume Two (IJCAI ’11). 1511–1516.
[50] Chakkrit Tantithamthavorn and Ahmed E. Hassan. 2018. An Experience Report on Defect Modelling in Practice: Pitfalls and Challenges. In

Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’18). 286–295.
[51] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto. 2016. Automated Parameter Optimization of Classification

Techniques for Defect Prediction Models. In Proceedings of the 38th International Conference on Software Engineering (ICSE ’16). 321–332.
[52] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto. 2018. The Impact of Automated Parameter Optimization

on Defect Prediction Models. IEEE Transactions on Software Engineering 45, 7 (2018), 683–711.
[53] Alexey Tsymbal. 2004. The Problem of Concept Drift: Definitions and Related Work. Computer Science Department, Trinity College Dublin 106, 2

(2004), 58.
[54] UK Prime Minister’s Strategy Unit. 2004. Strategy Survival Guide. https://www.betterevaluation.org/resources/guides/strategy_survival_guide.

Accessed: 2021-05-07.
[55] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. 2003. Mining Concept-Drifting Data Streams Using Ensemble Classifiers. In Proceedings of the

9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’03). 226–235.
[56] Haixun Wang, Philip S. Yu, and Jiawei Han. 2010. Mining Concept-Drifting Data Streams. Springer, 789–802.
[57] Shuo Wang, Leandro L. Minku, Davide Ghezzi, Daniele Caltabiano, Peter Tino, and Xin Yao. 2013. Concept Drift Detection for Online Class

Imbalance Learning. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN ’13). 1–10.
[58] Milton C. Weinstein, Louise B. Russell, Marthe R. Gold, Joanna E. Siegel, et al. 1996. Cost-Effectiveness in Health and Medicine. Oxford University

Press.
[59] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the Wild:

Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In 19th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 22). USENIX Association, 945–960.

[60] John Wilkes. 2020. Google Cluster-Usage Traces V3. Technical Report. Google Inc. Posted at https://github.com/google/cluster-data/blob/master/
ClusterData2019.md.

[61] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang, Wenchi Zhang, Jian-Guang Lou, Murali
Chintalapati, and Dongmei Zhang. 2018. Improving Service Availability of Cloud Systems by Predicting Disk Error. In Proceedings of the 2018
USENIX Annual Technical Conference (ATC ’15). 481–494.

[62] Ji Xue, Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2016. Managing Data Center Tickets: Prediction and Active Sizing. In Proceedings of the
46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’16). 335–346.

[63] Ji Xue, Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2018. Spatial-Temporal Prediction Models for Active Ticket Managing in Data Centers.
IEEE Transactions on Network and Service Management 15, 1 (2018), 39–52.

Manuscript submitted to ACM

https://www.betterevaluation.org/resources/guides/strategy_survival_guide
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md

	Abstract
	1 Introduction
	2 Related Work
	2.1 Prior research on AIOps solutions
	2.2 Prior research on dealing with data evolution

	3 Case Study Subjects and Preliminary Study
	3.1 Case Study Subjects
	3.2 Preliminary Study

	4 Experiment Design
	4.1 Studied Model Update Strategies
	4.2 Building Predictive Models
	4.3 Evaluating Model Performance

	5 Experiment Results
	5.1 Performance
	5.2 Model updating cost
	5.3 Stability

	6 Discussion
	7 Threats to Validity
	7.1 External Validity
	7.2 Internal Validity
	7.3 Construct Validity

	8 Conclusion
	References

