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Abstract Performance regressions of large-scale software systems often lead
to both financial and reputational losses. In order to detect performance
regressions, performance tests are typically conducted in an in-house (non-
production) environment using test suites with predefined workloads. Then,
performance analysis is performed to check whether a software version has
a performance regression against an earlier version. However, the real work-
loads in the field are constantly changing, making it unrealistic to resemble
the field workloads in predefined test suites. More importantly, performance
testing is usually very expensive as it requires extensive resources and lasts
for an extended period. In this work, we leverage black-box machine learning
models to automatically detect performance regressions in the field operations
of large-scale software systems. Practitioners can leverage our approaches to
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complement or replace resource-demanding performance tests that may not
even be realistic in a fast-paced environment. Our approaches use black-box
models to capture the relationship between the performance of a software sys-
tem (e.g., CPU usage) under varying workloads and the runtime activities
that are recorded in the readily-available logs. Then, our approaches com-
pare the black-box models derived from the current software version with an
earlier version to detect performance regressions between these two versions.
We performed empirical experiments on two open-source systems and applied
our approaches on a large-scale industrial system. Our results show that such
black-box models can effectively and timely detect real performance regressions
and injected ones under varying workloads that are unseen when training these
models. Our approaches have been adopted in practice to detect performance
regressions of a large-scale industry system on a daily basis.

Keywords Performance regression · Black-box performance models · Field
workloads · Performance engineering

1 Introduction

Many large-scale software systems (e.g., Amazon, Google, Facebook) provide
services to millions or even billions of users every day. Performance regressions
in such systems usually lead to both reputational and monetary losses. For
example, a recent incident of performance regressions at Salesforce1 affected
eight data centers, resulting in a negative impact (i.e., slowdown and failures
of the provided services) on the experience of clients across many organizations
(Cannon, 2019). It is reported that 59% of Fortune 500 companies experience
at least 1.6 hours of downtime per week (Syncsort, 2018), while most of the
field failures are due to performance issues rather than feature issues (Weyuker
and Vokolos, 2000). To avoid such performance-related problems, practitioners
perform in-house performance testing to detect performance regressions of
large-scale software systems (Jiang and Hassan, 2015).

For in-house performance testing, load generators (e.g., JMeter2) are used
to mimic thousands or millions of users (i.e., the workload) accessing the sys-
tem under test (SUT) at the same time. Performance data (e.g., CPU usage) is
recorded during the performance testing for later performance analysis. To de-
termine whether a performance regression exists, the performance data of the
current software version is compared to the performance data from running an
earlier version on the same workload, using various analysis techniques (Gao
et al., 2016) (e.g., control charts (Nguyen et al., 2012)). However, such in-house
performance testing suffers from two important challenges. First, the real work-
loads in the field are constantly changing and difficult to predict (Syer et al.,
2014), making it unrealistic to test such dynamic workloads in a predefined
manner. Second, performance testing is usually very expensive as it requires

1 https://www.salesforce.com
2 https://jmeter.apache.org
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extensive resources (e.g., computing power) and lasts for a long time (e.g.,
hours or even weeks). For software systems that follow fast release cycles (e.g.,
Facebook is released every few hours), conducting performance testing in a
short period of time becomes particularly difficult.

There exist software testing techniques such as A/B testing (Xu et al.,
2015) and canary releasing (Sato, 2014) that depend on end user’s data in
the field for software quality assurance. Similarly, in this work, we propose
to directly detecting performance regressions based on the end users’ data of
large-scale software systems when they are deployed in the field3. Such an
automated detection can complement or even replace typical in-house perfor-
mance testing when testing resources are limited (e.g., in an agile environment)
and/or the field workloads are challenging to be reproduced in the testing en-
vironment. In particular, we leverage sparsely-sampled performance metrics
and readily-available execution logs from the field to detect performance re-
gressions, which only adds negligible performance overhead to SUT.

Inspired by prior research (Farshchi et al., 2015; Yao et al., 2018), we use
black-box machine learning and deep learning techniques (i.e., CNN, RNN,
LSTM, Linear Regression, Random Forest, and XGBoost) to capture the re-
lationship between the runtime activities that are recorded in the readily-
available logs of a software system (i.e., the independent variables) and its
performance under such activities (i.e., the dependent variables). We use the
black-box model that describes the current version of a software system and
the black-box model that describes an earlier version of the same software
system, to determine the existence of performance regressions between these
two versions.

Prior research that builds black-box models to detect performance regres-
sions (Farshchi et al., 2015; Yao et al., 2018) typically depends on the data
from in-house performance testing, where the workload is consistent between
two releases. However, when using the field data from the end users, one may
not assume that the workloads from the two releases are the same. In order
to study whether the use of black-box performance models under such in-
consistent workloads may still successfully detect performance regressions, we
performed empirical experiments on two open-source systems (i.e., OpenMRS
and Apache James) and applied our approaches on a large-scale industrial
system. In particular, our study aims to answer two research questions (RQs):

RQ1: How well can we model system performance under varying workloads?
In order to capture the performance of a system under varying workloads,
we built six machine learning models (including three traditional models
and three deep neural networks). We found that simple traditional models
can effectively capture the relationship between the performance of a sys-
tem and its dynamic activities that are recorded in logs. In addition, such
models can equivalently capture the performance of a system under new
workloads that are unseen when building the models.

3 Note that our approach serves different purposes and has different usage scenarios from
A/B testing and canary releasing, as discussed in Section 9.
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RQ2: Can our approaches detect performance regressions under varying work-
loads?
Our black-box model-based approaches can effectively detect both the real
performance regressions and injected ones under varying workloads (i.e.,
when the workloads are unseen when training the black-box models). Be-
sides, our approaches can detect performance regressions with the data
from a short period of operations, enabling early detection of performance
regressions in the field.

Our work makes the following key contributions:

– Our study demonstrates the effectiveness of using black-box machine learn-
ing models to model the performance of a system when the workloads are
evolving (i.e., the model trained on a previous workload can capture the
system performance under new unseen workloads).

– Our experimental results show that we can use black-box machine learning
models to detect performance regressions in the field where workloads are
constantly evolving (i.e., two releases of the same system are never running
the same workloads).

– Our approaches can complement or even replace traditional in-house per-
formance testing when testing resources are limited.

– We shared the challenges and the lessons that we learned from the success-
ful adoption of our approaches in the industry, which can provide insights
for researchers and practitioners who are interested in detecting perfor-
mance regressions in the field.

The remainder of the paper is organized as follows. Section 2 introduces
the background of black-box performance modeling. Section 3 outlines our
approaches for detecting performance regressions in the field. Section 4 and
Section 5 present the setup and the results of our case study on two open-source
subject systems, respectively. Section 6 shares our experience of applying our
approaches on a large-scale industrial system. The challenges and the lessons
that we learned from the successful adoption of our approaches are discussed
in Section 7. Section 8 and Section 9 discuss the threats to the validity of our
findings and the related work, respectively. Finally, Section 10 concludes the
paper.

2 Background: Black-box performance models

Performance models are built to model system operations in terms of resources
consumed. Performance models can be used to predict the performance of sys-
tems in the purpose of workload design (Krishnamurthy et al., 2006; Syer et al.,
2017; Yadwadkar et al., 2010), resources control (Cortez et al., 2017; Gong
et al., 2010), configuration selection (Guo et al., 2013, 2018; Valov et al., 2017),
and anomaly detection (Farshchi et al., 2015; Ghaith et al., 2016; Ibidunmoye
et al., 2015). Performance models can be divided into two categories (Didona
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et al., 2015). One is white box performance models, which is also called analyt-
ical models. White box performance models predict performance based on the
assumption of system contexts, i.e., workload intensity and service demand.

Another type of performance model is black-box performance models. Black-
box performance models employ statistical modeling or machine learning tech-
niques to predict system performance by taking the system as a black box.
Black-box performance models typically require no knowledge about the sys-
tem’s internal behavior (Didona et al., 2015; Gao et al., 2016). Such models
apply various machine learning algorithms to model a system’s performance
behavior taking system execution logs or performance metrics as input. The
main strength of using black-box modeling techniques is to model the sys-
tem performance when the system is under field operations. While white-
box performance models typically require knowledge about the system’s in-
ternal behaviour, such knowledge is often not available when the system is
deployed in the production environment. Thus, under the production envi-
ronment, black-box approaches appear to be more effective than white-box
modeling approaches.

Typical examples of black-box performance models are linear regression
models (Shang et al., 2015; Yao et al., 2018). For example, prior studies use
linear regression models to capture the relationship between a target perfor-
mance metric (e.g., CPU usage) and the system operations (Yao et al., 2018)
or other performance metrics (e.g., memory utilization) (Shang et al., 2015):

y = α+ β1x1 + β2x2 + ...+ βnxn (1)

where the response variable y is the target performance metric, while the
explanatory variables (x1, x2, ..., xn) are the frequency of each operation of
the system (Yao et al., 2018) or each of the other performance metrics (Shang
et al., 2015). The coefficients β1, β2, ..., βn describe the relationship between
the target performance metric and the corresponding explanatory variables.

Linear regression requires that the input data satisfies a normal distri-
bution. With the benefit of being applicable to data from any distribution,
regression tree (Xiong et al., 2013) has been used to model system perfor-
mance. Regression tree models a system’s performance behavior by using a
tree-like structure. Quantile regression (de Oliveira et al., 2013) can model a
system’s different phases of performance behavior.

The prior success of black-box performance modeling supports our study
to detect performance regressions under variable workloads from the field.

3 Approaches

In this section, we present our three approaches that automatically detect
performance regression in a new version of a software system based on the
logs and performance data that are collected under varying workloads. Our
approaches contain three main steps: 1) extracting metrics, 2) building black-
box performance models, and 3) detecting performance regressions. The three
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approaches share the first two steps, while being different in the third step.
The overview of our studied approaches is shown in Figure 1.

3.1 Extracting metrics

We aim to identify whether there is performance regression in the new version
of the system based on modeling the relationship between the system perfor-
mance (e.g., CPU usage) and the corresponding logs that are generated during
system execution. Specifically, we collect system access logs that are readily
generated during the execution of web servers, such as the Jetty, Tomcat, and
IIS (Internet Information Services). Those logs represent the workload of the
system during a period of execution. The performance data is sparsely sampled
at a fixed frequency (e.g., every 30 seconds).

In this step, we extract log metrics and performance metrics from the
system access logs and the recorded performance data, respectively.

3.1.1 Splitting logs and performance data into time periods

We would like to establish the relationship between the execution of the system
and the performance of the system during run time. Since both performance
data and logs are generated during system runtime and are not synchronized,
i.e., there is no corresponding record of performance metrics for each line of
logs, we would first align the logs and records of performance data by splitting
them into time periods. For example, one may split a two-hour dataset into
120 time periods where each time period is one minute in the data. Each log
line and each record of performance data are allocated into their corresponding
time period.

3.1.2 Extracting log metrics and performance metrics

We parse the collected logs into events and their corresponding time stamps.
For example, a line of web log “[2019-09-27 22:43:13] GET /openmrs/ws/rest/
v1/person/HTTP/1.1 200 ” will be parsed into the corresponding web re-
quest or URL “GET /openmrs/ws/rest/v1/person/ ” and time stamp “2019-
09-27 22:43:13 ”. Afterwards, each value of a log metric is the number of
times that each log event executes during the period. For example, if the
log event “GET /openmrs/ws/rest/v1/person/ ” is executed 10 times dur-
ing a 30-second time period, the corresponding log metric for “GET /open-
mrs/ws/rest/v1/person/ ”’s value is 10 for that period. Then, we consider the
aggregation (e.g., taking the average) of the records of performance data as
the value of the performance metric of the time period, similar to prior re-
search (Foo et al., 2010). Table 1 shows an illustrative example of log metrics
and performance metrics in five 30-second time periods.

These log metrics together with the performance metrics in the correspond-
ing time periods are used to construct our performance models. Each data
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point of a log metric is based on a time period (e.g., 30 seconds) instead of a
log entry. For example, if we run the subject system for eight hours and we
take each 30 seconds as a time period, there will be 960 data instances in total:
8 (hours) * 60 (minutes per hour) * 2 (time periods per minute).

Table 1 An illustrative example of log metrics and performance metric data from OpenMRS

Log metrics* Performance metric
Time slice GET person GET observation CPU

1 sec. - 30 sec. 17 18 74.19
31 sec. - 60 sec. 10 2 52.25
61 sec. - 90 sec. 5 19 64.61
91 sec. - 120 sec. 6 6 56.26
121 sec. - 150 sec. 0 3 55.57

* In this example, we show the log metrics that are used in the linear regression,
random forest, and XGBoost models. For CNN, RNN, and LSTM, we sort the
logs in each time period by their corresponding time stamp to create a sequence
of log events.
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Fig. 1 An overview of our studied approaches to detecting performance regressions.

3.2 Building black-box performance models

In this step, we use the log metrics and performance metrics extracted from
the last step to build black-box performance models. The log metrics and the
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performance metrics (e.g., CPU usage) are used as the independent variables
and dependent variables of the models, respectively.

3.2.1 Reducing metrics

The frequency of some log events (e.g., periodical events) may not change
over time. The constant appearance of such events may not provide informa-
tion about the changes in system workloads. Therefore, after we calculate the
log metrics of each log event, we reduce log metrics by removing redundant
log metrics or log metrics with constant values in both previous and current
versions. We first remove log metrics that have zero variance in both versions
of the performance tests.

Different log events may always appear at the same time, e.g., user logging
in and checking user’s privilege, and provide repetitive information for the
workloads. To avoid bias from such repetitive information, we then perform
correlation analyses and redundancy analyses on the log metrics. We calculate
Pearson’s correlation coefficient (Benesty et al., 2009) between each pair of log
metrics (i.e., in total N*N/2 times of correlation calculations where N refers
to the number of log metrics). If a pair of log metrics have a correlation higher
than 0.7, we remove the one that has a higher average correlation with all other
metrics. We repeat the process until there exists no correlation higher than 0.7.
The redundancy analysis would consider a log metric redundant if it can be
predicted from a combination of other log metrics. We use each log metric as a
dependent variable and use the rest of the log metrics as independent variables
to build a regression model. We calculate the R2 of each model. If the R2 is
larger than a threshold (e.g., 0.9), the current dependent variable (i.e., the
log metric) is considered redundant. We then remove the log metric with the
highest R2 and repeat the process until no log metrics can be predicted with
an R2 higher than the threshold.

We only apply this step when using traditional statistical models or ma-
chine learning models (like linear regression or random forest), while if a deep
neural network (like convolutional neural network or recurrent neural network)
is adopted to build the black-box performance models, we skip this step.

3.2.2 Building models

We build models that capture the relationship between a certain workload
that is represented by the logs and the system performance. In particular, the
independent variables are the log metrics from the last step and the dependent
variable is the target performance metric (e.g., CPU usage). One may choose
different types of statistical, machine learning or deep learning models, as our
approach is agnostic to the choice of models. However, the results of using
different types of models may vary (cf. RQ1).
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3.3 Detecting performance regressions

The goal of building performance models is to detect performance regressions.
Therefore, in this step, we use the black-box performance models that are built
from an old version of the system to predict the expected system performance
of a new version. Then, we use statistical analysis to determine whether there
exists performance deviance based on prediction errors of the models. The
input of this step is the black-box performance models built from the old
version and the new version; the output of this step is the determination of
whether there exists performance deviance between the old version and the
new version of the system.

Intuitively, one may use the model that is built from the old version of the
system to predict the performance metrics from running the new version of
the system. By measuring the prediction error, one may be able to determine
whether there exists performance deviance (Cohen et al., 2004; Nguyen et al.,
2012). However, such a naive approach may be biased by the choice of thresh-
olds that are used to determine whether there is performance deviance. For
example, a well-built performance model may only have less than 5% average
prediction error; while another less fit performance model may have 15% av-
erage prediction error. In these cases, it is challenging to determine whether
an average prediction error of 10% on the new version of the system should
be considered as a performance regression. Therefore, statistical analyses are
used to detect performance regressions in a systematic manner (Foo et al.,
2015; Gao et al., 2016; Shang et al., 2015).

In particular, we leverage three approaches to detect performance regres-
sions: Approach 1 ) by comparing the predicted performance metrics (using the
model built from the old version) and the actual performance metrics of the
new version, Approach 2 ) by comparing the predicted performance metrics of
the new version using the model built from the old version and the model built
from the new version, and Approach 3 ) by comparing the prediction errors of
the performance metrics on the new version using the model built from the old
version and the model built from the new version. We describe each approach
in detail in the rest of this subsection.

Approach 1: comparing the predicted performance metrics (using the model
built form the old version) and the actual performance metrics of the new ver-
sion. The most intuitive way of detecting performance regression is to com-
pare the predicted value and the actual value of performance metrics. Since
the model is built from the old version of the system, if the actual value of
the performance metrics from the new version of the system is higher than
the predicted value and the difference between them is large, we may consider
the existence of performance regressions. In particular, we use the data from
the old version of the system, i.e., Dataold to build a black-box performance
model Modelold (cf. Section 3.2). Afterwards, we apply the model Modelold on
the data from the new version of the system, i.e., Datanew. Then we compare
the predicted and the actual values of the performance metrics.



10 Lizhi Liao et al.

Approach 2: comparing the predicted performance metrics of the new version
using the model built from the old version and the model built from the new
version. Since our approach aims to be applied to varying workloads, the per-
formance regression may only impact a small number of time periods, while
the source code with performance regressions may not be executed in other
time periods. Therefore, only the time periods that are impacted by the per-
formance regressions may contain large prediction errors. To address such an
issue, we also built a performance model Modelnew using the data from the
new version of the system (Datanew). This way, Modelnew is built using the
data with potential performance regressions. Afterwards, we use Modelold and
Modelnew to predict the performance metrics in Datanew.

Since Modelnew is built from Datanew, there exists a bias when applying
Modelnew on Datanew, as the training data and testing data are exactly the
same (a model without any generalizability can just remember all the instances
in the training data and make perfect predictions). To avoid the bias, instead
of building one Modelnew, we build n models, where n is the number of data
points that exist in Datanew. In particular, for each data point in Datanew,
we build a performance model Modelnnew by excluding that data point and
apply the model Modelnnew on the excluded data point. Therefore, for n data
points from Datanew, we end up having n models and n predicted values.

Finally, we compare the predicted values using Modelold on Datanew, and
the predicted values by applying each Modelnnew on each of the n data points
in Datanew. Similar to approach 1, if the predicted values by applying each
Modelnnew on each of the n data points in Datanew are higher than predicted
values using Modelold on Datanew and the difference is large, we may consider
the existence of performance regressions.
Approach 3: comparing the prediction errors on the new version using the
model built from the old version and the model built from the new version.
The final approach of detecting performance regression is similar to the pre-
vious one (Approach 2), where instead of directly comparing the predicted
performance metrics, we compare the distribution of the prediction errors by
applying Modelold on Datanew, and the predicted errors by applying each
Modelnnew on each of the n data points in Datanew. The intuition is that,
when Modelold has a larger prediction error than Modelnew, it may be an in-
dication of performance deviance between the two versions. We note that this
approach would only be able to determine whether there exists performance
deviance, which may actually be improvement instead of regression.
Statistical analysis. All three approaches generate two distributions of either
actual/predicted performance metric values, or prediction errors. we compare
the two distributions to determine if there are performance regressions between
the two software versions. However, the differences between the data distribu-
tions may be due to experimental noises rather than the systematic difference
between the two versions. Therefore, similar to previous studies (Chen et al.,
2016), we use statistical methods (i.e., statistical tests and effect sizes) to com-
pare the data distributions of the two versions while taking into consideration
the experimental noises.
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In particular, we use the Mann-Whitney U test since it is non-parametric
and it does not assume a normal distribution of the compared data. we run
the test at the 5% level of significance, i.e., if the p-value of the test is not
greater than 0.05, we would reject the null hypothesis in favor of the alternative
hypothesis, i.e., there exists a statistically significant difference between the
performance of old version and new version systems. In order to study the
magnitude of the performance deviation without being biased by the size of
the data, we further adopt the effect sizes as a complement of the statistical
significance test. Considering the non-normality of our data, we utilize Cliff’s
Delta (Cliff, 1996) and thresholds provided in prior research (Romano et al.,
2006). For approach 1 and 2, we can use the direction (i.e., positive or negative)
of the effect size to further tell whether the deviation indicates a performance
regression or improvement.

4 Case Study Setup

To study the effectiveness of our approaches for detecting performance regres-
sions under varying workloads, we perform case studies on two open-source
systems4. In this section, we first present the subject systems. Then, we present
the workloads applied to the systems, the experimental environment and per-
formance issues. Finally, we present the choices of machine learning models
that are used in our approaches.

4.1 Subject systems

We evaluate our approaches on two open-source systems, namely OpenMRS
and Apache James. We also discuss the successful application of our ap-
proach in System X, a large-scale industrial system that provides government-
regulation related reporting services (in Section 6). Apache James is a Java-
based mail server. OpenMRS is an open-source health care system that sup-
ports customized medical records and it is wildly used in developing countries.
The two open-source subject systems and the industrial system are all stud-
ied in prior research (Gao et al., 2016; Yao et al., 2018) and cover different
domains, which ensures that our findings are not limited to a specific domain.
The details of the two open-source subject systems and the industrial system
are shown in Table 2.

Both two open-source subject systems and the industrial system are CPU-
intensive. Besides, CPU is usually the main contributor to server costs (Green-
berg et al., 2008). Performance regression in terms of CPU would result in the
need for more CPU resources to provide the same quality of service, thereby
significantly increasing the cost of system operations. Therefore, in this study,
we use CPU as the performance metric for detecting performance regressions.

4 Our experimental setup, workloads, and results are shared online https://github.com/

senseconcordia/EMSE2020Data as a replication package.
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Table 2 Overview of the open-source subject systems and the industrial system.

Subjects Versions Domains SLOC (K)
OpenMRS 2.1.4 Medical 67

Apache James 2.3.2, 3.0M1, 3.0M2 Mail Server 37

System X* 10 releases in 2019 Commercial >2,000
* We share our experience of applying our approaches on System X in
Section 6.

Table 3 Summary of the test actions with increased appearances (the ones with •) in
different load drivers.

OpenMRS

Test actions
Load

driver 1
Load

driver 2
Load

driver 3
Load

driver 4
Load

driver 5

Creation of patients • • •
Deletion of patients • • •

Searching for patients • •
Editing patients • •

Searching for concepts • • •
Searching for encounters • •

Searching for observations • • •
Searching for types of encounters • • •

Apache James

Test actions
Load

driver 1
Load

driver 2
Load

driver 3
Load

driver 4
Load

driver 5

Sending mails with short messages
and without attachments

•

Sending mails with long messages
and without attachments

• • • •

Sending mails with short messages
and with small attachments

• •

Sending mails with short messages
and with large attachments

•

Sending mails with long messages
and with small attachments

•

Sending mails with long messages
and with large attachments

• •

Retrieving entire mails •
Retrieving only the header of mails • • •

4.2 Subject workload design

4.2.1 OpenMRS

OpenMRS provides a web-based interface and RESTFul services. We used
the default OpenMRS demo database in our performance tests. The demo
database contains data for over 5K patients and 476K observations. Open-
MRS contains four typical scenarios: adding, deleting, searching, and editing
operations. We designed different performance tests that are composed of eight
various test actions, including 1) creation of patients, 2) deletion of patients,
3) searching for patients, 4) editing patients, 5) searching for concepts, 6)
searching for encounters, 7) searching for observations, and 8) searching for
types of encounters. Those performance tests are different in the ratio be-
tween the actions. In order to simulate a more realistic workload in the field,
we added random controllers and random order controllers in JMeter to vary
the workload. Moreover, we also simulated the variety of the number of users
and activities in the field by setting random gaps between the repetitions of
each user’s activities, randomizing the order of the user activities, and setting
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a different number of maximum concurrent users for different workloads at
different times.

Furthermore, we designed a total of five JMeter-based performance tests,
each of which consists of a mixture of random workloads. In particular, to
drive different workloads, for each of the load drivers, we pick several different
test actions and put them in an extra JMeter loop controller that iterates a
random number of times to increase their appearances in the workload. Table 3
shows the detailed choice of the looped actions of each load driver. To make
sure that the two versions of the subject systems have different workloads,
for one version of the system (e.g., the old version), we run four JMeter tests
together to exercise the system. For the other version (e.g., the new version)
of the system, we run one additional JMeter test, i.e, a total of five JMeter
tests, to ensure that the two versions have undergone different workloads.

Despite the variation in the workloads, we keep our systems not saturated
and running in normal conditions. The CPU saturation can be qualified as
the average CPU load increases to a very large value (e.g., 90%) and remains
for a long period of time (Krasic et al., 2007). When the system is saturated,
the services of the systems are not provided normally and the relationship
between the performance of a software system (e.g., CPU usage) and the
runtime activities may change. Besides, real software systems are usually not
running under saturated conditions. The details of the workload, such as the
CPU usage values, are shared in our replication package.

For the OpenMRS system, we do not have any evidence showing perfor-
mance regressions of specific versions. Therefore, we manually inject several
performance regressions in the system. The injected performance regressions
are shown in Table 4. The original version, i.e., v0 of OpenMRS does not have
any injected or known performance regressions. We separately injected four
performance regressions (heavier DB request, additional I/O, constant delay
and additional calculation) on the basis of version v0. These four versions are
called v1, v2, v3, and v4, respectively. The details of the injected performance
regressions of OpenMRS are explained below:

• v1: Injected heavier DB request. We increased the number of DB
requests in the code responsible for accessing the database in OpenMRS.
This performance issue will increase the CPU usage of the MySQL server.

• v2: Added additional I/O access. Since accessing I/O storage devices
(e.g., hard drives) are usually slower than accessing memory, we added
redundant logging statements to the source code that is frequently exe-
cuted. The execution of the logging statements will introduce performance
regression.

• v3: Created constant delay. We added the delay bug in the frequently
executed code, which creates a blocking performance issue.

• v4: Injected additional calculation. We added additional calculation
to the source code of OpenMRS that is frequently executed during the
performance test.
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We deployed the OpenMRS on two machines, each with a configuration
of Intel Core i5-2400 CPU (3.10GHz), 8 GB memory, and 512GB SATA hard
drive. One machine is deployed as the application server and the other ma-
chine is deployed as the MySQL database server. We ran JMeter using the
RESTFul API of OpenMRS on five extra machines with the same specifica-
tion to simulate user workloads on the client side for five hours. Each machine
hosts one JMeter instance with one type of workload. We used Pidstat (pid,
2019) to monitor the CPU usage that is used as the performance metrics of
this study. To minimize the noise from the system warm-up and cool-down
periods, we filtered out the data from the first and last half hour of running
each workload. Thus, we only kept four hours of data from each performance
test.

4.2.2 Apache James

Apache James is an open-source enterprise mail server. It contains two main
actions: sending and retrieving mails. Those two actions can be further divided
into many smaller actions, e.g., sending mails with or without attachments
and retrieving an entire mail or only the header of the mail. In total, we built
eight actions for the performance test, including 1) sending mails with short
messages and without attachments, 2) sending mails with long messages and
without attachments, 3) sending mails with short messages and with small at-
tachments, 4) sending mails with short messages and with large attachments,
5) sending mails with long messages and with small attachments, 6) send-
ing mails with long messages and with large attachments, 7) retrieving entire
mails, and 8) retrieving only the header of mails. Similar to OpenMRS, we
also created a total of five different workloads, where each workload consists
of a mixture of eight test actions with different ratios. We conduct perfor-
mance tests with different versions of Apache James with varying workloads
(i.e., 4 tests for one version and 5 tests for the other version). We used JMe-
ter to create performance tests that exercise Apache James. Different from
OpenMRS, in which the performance regressions are manually injected, we
performance-tested on three different versions of systems with known real-
world performance issues for Apache James. Apart from the last stable version
2.3.2, there are multiple Milestone Releases for version 3.0. After checking the
release notes on the Apache James website, we picked 3.0M1 and 3.0M2 to
use in our study. These three selected versions have many bug fixes and per-
formance improvements (Apa, 2019). The same subjects are studied in prior
research on performance testing (Gao et al., 2016). Table 4 summarizes the
details of performance improvements of three selected versions.

We deployed Apache James on a server machine with an Intel Core i7-
8700K CPU (3.70GHz), a 16 GB memory, and a 3TB SATA hard drive. We
ran JMeter on five extra machines with a configuration of Intel Core i5-2400
CPU (3.10GHz), 8 GB memory and 320GB SATA hard drive. These JMeter
instances generate multiple workloads for five hours. Similar to OpenMRS, we
use Pidstat (pid, 2019) to monitor the CPU usage as the performance metrics
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of this study. We filtered out the data from the first and last half hour of the
tests to minimize the system noises.

Table 4 Performance regressions in the studied open-source systems

System Versions Performance regressions
v0 Original version
v1 Injected heavier DB request

OpenMRS v2 Added additional I/O access
v3 Created constant delay
v4 Injected additional calculation

2.3.2 Stable release version
Apache James 3.0M1 Improved ActiveMQ spool efficiency (Apa, 2019)

3.0M2 Improved large attachment handling efficiency (Apa, 2019)

4.2.3 Generated workloads

Our generated workloads are different across different software versions. By
conducting chi-square tests of independence between the number of different
actions and the versions, we find that in both OpenMRS and Apache James,
the number of different actions and the versions are not statistically indepen-
dent (p-value � 0.05), which means that the distribution of the actions are
statistically different across versions. For example, for the OpenMRS system,
the total number of all actions ranges from 10,673 to 22,392 across versions.
In particular, the number of the deletion of patients action has a range from
293 to 1,861 across all versions. For another example from Apache James, the
number of the retrieving only the header of mails action has a range from 411
to 25,532 across all versions. In addition, we provide the detailed numbers of
each action that are sent to each version in our replication package.

Table 5 summarizes the average CPU utilization of each version of the
systems under our generated dynamic workloads. We would like to note that
when we observe a higher CPU usage, it may not correspond to a performance
regression; instead it may be just due to the system having a higher workload.
The influence of the dynamic workload on the CPU usage is one of the reasons
that we leverage performance modeling to detect performance regressions in
the field. The detailed CPU utilization information during the entire test time
period is reported in the replication package.

4.3 Subject models

Our approach presented in Section 3 is not designed strictly for any particular
type of machine learning models. In fact, practitioners may choose their pre-
ferred models. In this study, we study the use of six different types of models,
namely linear regression, random forest, XGBoost, convolutional neural net-
work (CNN), recurrent neural network (RNN) and long short-term memory
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Table 5 Summary of average CPU utilization of each version in our case studies.

OpenMRS
v0 (4w) v0 (5w) v1 v2 v3 v4
52.03 52.24 55.55 53.76 53.05 55.11

Apache James
3.0M2 (4w) 3.0M2 (5w) 3.0M1 2.3.2

0.48 0.51 3.54 4.89

(LSTM). In particular, for linear regression, random forest, and XGBoost, the
inputs of the models are vectors whose values are the number of appearances
of each log event in a time period. For CNN, RNN, and LSTM, we sort the logs
in each time period by their corresponding time stamp to create a sequence as
the input of the neural networks. Our XGBoost model is fine-tuned using the
GridSearchCV (gir, 2019) method. Our CNN, RNN, and LSTM have three,
four and four layers, respectively, and they are trained with five, five and ten
epochs, respectively. The number of layers and epochs are manually fine-tuned
to avoid overfitting.

5 Case Study Results

In this section, we evaluate our approaches by answering two research ques-
tions.

RQ1: How well can we model system performance under varying workloads?

Motivation

In order to use black-box machine learning models to detect performance re-
gressions under varying workloads, we first need to understand whether such
black-box models could accurately model the performance of a software sys-
tem under varying workloads. Although prior research demonstrates promising
results of using black-box models to capture the relationship between system
performance and logs (Farshchi et al., 2015; Yao et al., 2018), these models
are built on predefined in-house workloads instead of varying field workloads.
If such black-box models are sensitive to the variance in the workloads, they
may not be suitable for modeling the performance of software systems under
the field workloads from real end users.

Approach

In order to understand the black-box models’ ability for modeling system per-
formance under varying workloads, we train the models on one set of workloads
and evaluate the performance of the models on a different set of workloads (i.e.,
unseen workloads).
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Performance modeling. For each open-source system (i.e., OpenMRS and
Apache James), we select the version of the system that is without performance
regressions. We first run the system with four different concurrent workloads
(i.e., 4W ) and collect the logs and performance metrics. In order to ensure
having new workloads to the system, we conduct another run by having an
additional concurrent workload, i.e., having five different concurrent workloads
(i.e., 5W ). We build the performance models using the data that is generated
by running the 4W workloads (a.k.a. the training set) and apply the model
on the data that is generated by running the 5W workloads (a.k.a. the testing
set). The training and testing sets are derived from independent system runs.
We evaluate the prediction performance of the black-box models on the 5W
workloads by comparing the predicted performance and the measured perfor-
mance.
Analysis of modeling results. We calculate the prediction errors of the
models on the new workloads (i.e., the 5W workloads for the open-source
systems). In order to understand the magnitude of the prediction errors, we
use the prediction errors of the models on the old workloads (i.e., the 4W
workloads for the open-source systems) as baselines. The baseline prediction
errors are calculated using 10-fold cross-validation to avoid the bias of having
the same training and testing data.

– Median relative error. The difference between the predicted perfor-
mance and the measured performance, normalized by the measured per-
formance.

– p-value (Mann-Whitney U). In order to understand whether the models
trained on the old workloads can equivalently capture the system perfor-
mance under the new workloads, we use the Mann-Whitney U test (Nachar
et al., 2008) to determine whether there exists a statistically significant
difference (i.e., p-value < 0.05) between the prediction errors on the new
workloads and the prediction errors on the old workloads.

– Effect size (Cliff's delta). Reporting only the statistical significance may
lead to erroneous results (i.e., if the sample size is very large, the p-value
can be very small even if the difference is trivial) (Sullivan and Feinn,
2012). Therefore, we apply Cliff's Delta (Cliff, 1996) to quantify the effect
size of the difference between the prediction errors on the old workloads
and the prediction errors on the new workloads.

Results

Table 6 shows the detailed results of using six machine learning techniques
to model the performance of the studied open-source systems (i.e., OpenMRS
and Apache James) under varying workloads. The column “MRE” shows the
median relative errors of applying the models (trained on the 4W workloads)
on the 4W workloads and the 5W workloads, respectively. The columns “p-
value” and “effect size” show the statistical significance and the effect size of
the difference between the prediction errors of the models on the 4W workloads
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and the prediction errors of the models on the 5W workloads, respectively. The
“violin plot” column shows the distribution of the relative prediction errors
under the 4W and 5W workloads.
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Our black-box models can effectively model the performance of
the studied systems using the dynamic runtime activities that are
recorded in the logs. As shown in Table 6, the XGBoost model achieves the
best results for modeling the performance of the OpenMRS system, with a me-
dian relative error of 2.11% on the 5W workloads (i.e., the new workloads) and
a median relative error of 2.16% on the 4W workloads (i.e., the baseline work-
load). The random forest model achieves the best results for Apache James,
reaching a median relative error of 22.99% and 23.08% for the 4W workloads
and 5W workloads, respectively. All the machine learning models achieve bet-
ter results for the OpenMRS system than the results for the Apache James
system. The less-promising results for the Apache James system might be ex-
plained by the latency between the actual activities of the mail server system
and the recorded logs. For example, the system can take an extended period
of time to process an email with a large attachment, while a log about the
successful processing of the email is only printed after the processing period.

The traditional models (e.g., linear regression and random forest)
outperform the deep neural networks (e.g., CNN and RNN) for
modeling the performance of the studied systems. As shown in Table 6,
for both the OpenMRS and the Apache James systems, the three traditional
models achieve better results than the three deep neural networks for modeling
the system performance. These results indicate that the relationship between
the system performance and the runtime activities recorded in the logs can be
effectively captured by the simple traditional models. Such results also agree
with a recent study (Dacrema et al., 2019) that compares deep neural networks
and traditional models for the application of automated recommendations.

Our black-box models can equivalently explain the performance of
a system under new workloads that are unseen when constructing
the models. Table 6 shows the statistical significance (i.e. the p-value) and
the effect size of the difference between the prediction errors of applying the
old models (i.e., trained from the 4W workloads) on the new workloads (i.e.,
the 5W workloads) and applying the old models on the old workloads (i.e.,
the 4W workloads). Table 6 also compares the distributions of the prediction
errors for the 4W and 5W workloads. The prediction errors of most of the
models (except LSTM) have an either statistically insignificant or negligible
difference between the 4W and the 5W workloads, indicating that the models
trained from the old workloads can equivalently model the system performance
under new workloads. The LSTM model results in a small difference of the
prediction errors between the 4W and the 5W workloads. We suspect that
the complex LSTM model is likely to over-fit towards the training workloads.

�

�

�

�
Simple traditional models (e.g., linear regression and random for-
est) can effectively capture the relationship between the performance
of a system and its dynamic activities that are recorded in logs, with
varying workloads.
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RQ2: Can our approach detect performance regressions under varying work-
loads?

Motivation

In traditional performance testing, in order to detect performance regressions,
performance analysts compare the performance data of two versions of a soft-
ware system that is generated by running the same workloads from the same
performance test suites. However, in a field environment, as the workloads of
the systems are constantly changing, it is almost impossible to run two soft-
ware versions on the same workloads to detect performance regressions. The
results of RQ1 show that our black-box models can accurately capture the
performance of a software system even under new workloads that are unseen
when training the models. Therefore, in this research question, we would like
to leverage such black-box models to detect performance regressions when the
workloads of the two versions of a system are not consistent.

Running the systems for hours or days before discovering performance
regressions incurs a high cost. As the systems are already running in the field,
any delay in detecting the performance regressions may pose a huge impact
on the end users. Hence, the desired approach in practice should be able to
detect performance regression in a timely manner. Therefore, we also want to
study how fast our approaches can detect performance regressions.

Approach

The results from RQ1 show that random forest and XGBoost have the lowest
prediction errors when modeling performance (cf. Table 6). Since XGBoost
requires resource-heavy fine-tuning, we opt to use random forest in this re-
search question. For the open-source systems, we first build the performance
models from running the systems without performance regressions under the
4W workloads (i.e., a combination of four different concurrent workloads). We
then run the systems without performance regressions under the 5W work-
loads (i.e., a combination of five different concurrent workloads). Ideally, our
approach should not detect performance regressions from these runs. We use
such results as a baseline to evaluate the effectiveness of our approach for de-
tecting performance regressions under the new workloads (i.e., the 5W work-
loads). Afterwards, we run the systems with the performance regressions (cf.
Table 4) under the 5W workloads. Our approach should be able to detect
performance regressions from these runs.

Finally, to study how fast our approaches can detect performance regres-
sions, for the new versions of the systems that have performance regressions,
we only use the first 15-minute data and apply our approach to detect the per-
formance regressions. Then, we follow an iterative approach to add another
5-minute data to the existing data, until our approach can detect the perfor-
mance regressions (i.e., with a medium or large effect size that is higher than
the baseline).
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Results

Our black-box-based approaches can effectively detect performance
regressions under varying workloads. Table 7 shows the results of our
three approaches of performance regression detection (cf. Section 3.3) on Open-
MRS and Apache James. We find that with all three approaches, when there
are known performance regressions between two versions, the statistical analy-
sis always shows a significant difference between the two versions with medium
or large effect sizes. In addition, the effects sizes from Approach 1 and 2 are
negative, confirming the existence of performance regressions (negative val-
ues indicate performance regression and positive values indicate performance
improvement).

When we compare the effect sizes with the baseline, i.e., running our ap-
proaches with systems without performance regressions but under two different
workloads, we find that the baseline effect sizes are always smaller than the
corresponding ones with performance regressions, except when detecting the
regression in v3 of OpenMRS. We consider the reason being the nature of
the regression in v3, i.e., an injected delay. Since our considered performance
metric is the CPU usage and such a delay may not have a large impact on the
CPU usage, it is difficult for our approaches to detect such a regression.

Table 7 Performance regression detection results for OpenMRS and Apache James.

OpenMRS

Versions Approach 1 Approach 2 Approach 3

Old
version

New
version P-value Effect size P-value Effect size P-value Effect size

v0 v0 �0.001 0.39 (medium) �0.001 0.36 (medium) �0.001 0.17(small)

v0 v1 �0.001 -0.59 (large) �0.001 -0.69 (large) �0.001 0.38 (medium)

v0 v2 �0.001 -0.44 (medium) �0.001 -0.63 (large) �0.001 0.37 (medium)

v0 v3 �0.001 -0.36 (medium) �0.001 -0.42 (medium) �0.001 0.53 (large)

v0 v4 �0.001 -0.69 (large) �0.001 -0.76 (large) �0.001 0.51 (large)

Apache James

Versions Approach 1 Approach 2 Approach 3

Old
version

New
version P-value Effect size P-value Effect size P-value Effect size

3.0m2 3.0m2 0.008 0.09 (negligible) �0.001 -0.12 (negligible) �0.001 -0.03 (negligible)

3.0m2 3.0m1 �0.001 -0.65 (large) �0.001 -0.76 (large) �0.001 0.41 (medium)

3.0m2 2.3.2 �0.001 -0.90 (large) �0.001 -0.93 (large) �0.001 0.82 (large)

Note: For all the old versions, we use four concurrent workloads and for all the new versions with and without
regressions, we use five concurrent workloads (one extra workload).

Comparing the prediction errors is more effective than comparing
the prediction values when detecting performance regressions be-
tween two versions. We observe that for OpenMRS, the differences between
the prediction values using Approach 1 and 2 can still be medium (0.39 and
0.36) even for the baseline (i.e., without regressions). On the other hand, when
comparing the prediction errors instead of the prediction values, i.e., using Ap-
proach 3, the baseline without regressions has only a small effect size (0.17).
Such a smaller baseline effect size makes Approach 3 easier to be adopted in
practice, i.e., without the need of spending efforts searching for an optimal
threshold on the effect size to detect performance regressions. However, Ap-
proach 3 only shows the deviance of the prediction errors without showing
the direction of the performance deviance, thus it cannot distinguish a perfor-
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mance regression from a performance improvement. Hence, Approach 3 may
be used first to flag the performance deviance then be combined with other
approaches in practice to determine whether the performance deviation is a
performance regression or a performance improvement.
Our approaches can detect performance regressions as early as 15
minutes after running a new version. Table 8 shows the earliest time that
our approach can detect performance regressions in the studied open-source
systems. We find that all the performance regressions in the open-source sys-
tems can be detected by at least one approach with less than 20-minute data
from the new version. In particular, the regressions from both versions of
Apache James and three versions of OpenMRS can even be detected using
only the first 15-minute data. The ability of early detection eases the adoption
of our approaches in the practices of testing in the field, where performance
regressions are detected directly based on the field data, instead of using dedi-
cated performance testing. In our future work, we plan to investigate on further
shortening the needed time for detecting performance regressions in the field
to ease practitioners in adopting our approach.

Table 8 The earliest time for our approaches to detect regressions in the two open-source
systems.

OpenMRS Apache James
v1 v2 v3 v4 3.0m1 2.3.2

Approach 1 60 mins 160 mins 15 mins 15 mins 15 mins 15 mins
Approach 2 20 mins 50 mins 15 mins 15 mins 15 mins 15 mins
Approach 3 45 mins 15 mins 15 mins 15 mins 15 mins 15 mins

�

�

�

�

All three approaches can successfully detect performance regressions
under varying workloads, requiring data from a very short period
of time (down to 15 minutes). Comparing the prediction errors is
more effective than comparing the prediction values for detecting
performance regressions between two versions.

6 An Industrial Experience Report

System X is a commercial software system that provides government-regulation
related reporting services. The service is widely used as the market leader of
the domain. System X has over ten years of history with more than two mil-
lion lines of code that are based on Microsoft .Net. System X is deployed in
an internal production environment and is used by external enterprise cus-
tomers worldwide. System X is a CPU-intensive system. Thus, CPU usage
is the main concern of our industrial collaborator in performance regression
detection. Due to a Non-Disclosure Agreement (NDA), we cannot reveal ad-
ditional details about the hardware environment and the usage scenarios of
System X.
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6.1 Modeling system performance

We directly use the field data that is generated by workloads from the real
end users to model the performance of System X. For each release cycle with
n days, we use the data from the first n/2 days to build the models and
apply them on the data from the second n/2 days to evaluate the prediction
performance of the models. We would like to note that there exists no control
on the end users for applying any particular workload, and that all the data
is directly retrieved from the field with no interference on the behavior of the
end users. We studied 10 releases of System X.

We find that black-box models can accurately capture the relationship
between the system performance and the system activities recorded in the logs,
with a prediction error between 10% to 20%. In particular, the models trained
from the first half-release data can effectively predict the system performance
of the second half release.

6.2 Detecting performance regressions

For every new release, we use our approaches to compare the field data from
the new release and the previous release to determine whether there are per-
formance regressions. Since there are no injected or pre-known performance
regressions, we present the detected performance regressions to the developers
of the system and manually study the code changes to understand whether the
detection results are correct. For the releases that are detected as not having
performance regressions, we cannot guarantee that these releases are free of
performance regressions. However, we also present the results to the develop-
ers to confirm whether there exist any users who report performance-related
issues for these releases. If so, our detection results may be considered false.

Within all the 10 studied releases of System X, our approaches detected
performance regressions from one release. All three approaches detected perfor-
mance regressions from the release with large effect sizes when compared with
the previous release. None of the three approaches false-positively detect per-
formance regressions from the other nine releases (i.e., with either statistically
insignificant difference or negligible effect sizes when compared with the pre-
vious release). By further investigating the release with detected performance
regressions, we observed that developers added a synchronized operation to
lock the resources that are responsible for generating a report, in order to
protect the shared resources under the multi-thread situation. However, the
reporting process is rather resource-heavy, resulting in significant overhead
for each thread to wait and acquire the resources. Thus, the newly added lock
causes the performance regression. After we discussed with the developers who
are responsible for this module, we confirmed that this synchronized opera-
tion introduced the performance regression to the software. In addition, for
all the nine releases from which our approaches did not detect performance
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regressions, the developers of System X have not yet received any reported
performance issues from the end users till the day of writing this paper.

Our approaches have been adopted by our industrial collaborator to detect
performance regressions of System X on a daily basis.

7 Challenges and Lessons Learned

In this section, we discuss our faced challenges and learned lessons during
applying our approach to the production environment of an industrial setting
where a large number of customers worldwide access the system on a daily
basis.

C1: Determining the sampling frequency of performance metrics

Challenge. Our approach uses both logs and performance metrics as the input
data to our black-box models. We use the logs that are automatically generated
by the web servers, such as the Jetty, Tomcat, and IIS (Internet Information
Services) web servers. The performance metrics (e.g., CPU, I/O) of the systems
are collected using tools (e.g., Pidstat). A higher sampling frequency of the
performance metrics can capture the system performance more accurately.
However, a higher sampling frequency would also introduce more performance
overhead. Since we need to apply our approach to the production environment,
it is necessary to produce as low performance overhead as possible.

Solution. At a first attempt, we intuitively chose 10 seconds as the sampling
interval of the performance metrics. After we deployed our approach in pro-
duction, we found that there is 0.5%-0.8% CPU overhead each time when our
approach is collecting the performance metrics, and the overhead happens six
times in 1 minute. Such a monitoring overhead cannot be ignored, especially
when the system is serving heavy workloads. After working closely with the IT
staffs from our industrial partner, we gained a deeper understanding of how
the sampling frequency of performance metrics impact the monitoring over-
head. Finally, we agreed that collecting the performance metrics for every 30
seconds would be a good balance between reducing the monitoring overhead
and ensuring accurate measurement of the system performance.

Lessons learned. Monitoring a system usually comes with the monitoring
overhead. A higher monitoring frequency can provide a better monitoring ac-
curacy at the cost of a larger monitoring overhead, which is usually undesirable
when the system is serving large workloads. Finding a good balance between
the monitoring accuracy and the overhead is crucial for the successful adoption
of similar approaches in practice.
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C2: Reducing the time cost of performance regression detection

Challenge. We choose random forest as our final black-box model to detect
performance regressions, as random forest achieves the best results for model-
ing the performance of the studied systems (see RQ1). A random forest model
contains a configurable multitude of decision trees and takes the average out-
put of the individual decision trees as the final output. At first, we started
with the default number of trees (i.e., 500 trees) (Breiman et al., 2018). It
took 5-6 hours to detect performance regressions between two releases of the
industry system, including training and testing the random forest models and
performing statistical tests. The industrial practitioners usually have an early
need of checking if there is performance regression between the current version
and multiple historical versions, which makes our approaches difficult to be
adopted in a fast-paced development environment (e.g., an agile environment).

Solution. A larger number of trees usually result in a more accurate random
forest model, at the cost of longer training and prediction time. In order to re-
duce the time cost of performance regression detection, we gradually decreased
the number of trees in our random forest model while ensuring the model per-
formance is not significantly impaired. In the end, we kept 100 decision trees
in our random forest models. It took less than 2 hours to detect performance
regressions between two releases of the industry system (i.e., training and test-
ing the random forest models and performing statistical tests). Such a lighter
model also enables us to detect performance regressions between the current
version and multiple history versions (e.g., taking less than 10 hours when
comparing the current version with five historical versions). We compared the
prediction results of the 100-tree model with the original 500-tree models. We
found that the 100-tree model only has a slightly higher median relative er-
ror (around 0.1%) than the previous 500-tree models, which is negligible in
practice.

Lessons learned. In addition to the model performance, the time cost of
training and applying a black-box model is also a major concern in the prac-
tice of performance regression detection in the field. Seeking an appropriate
trade-off between the model performance and the time cost is essential for
the successful adoption of performance regression detection approaches in the
field.

C3: Early detection of performance regressions

Challenge. In an in-house performance testing process, performance engineers
usually wait until all the tests finish before they analyze the testing results.
However, in a field environment, any performance regressions can directly im-
pact users’ experience. We cannot usually wait for a long time to gather plenty
of data before performing performance analysis. If our approach cannot de-
tect performance regressions in a timely manner, the performance regressions
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would already have brought non-negligible negative impact to users. This is a
unique challenge facing the detection of performance regressions in the field.
Solution. In order to detect field performance regressions in a timely manner,
we continuously apply our approach to detect performance regressions using
the currently available data. For example, after a new version of the system
has been up and running for one hour, we use only the one-hour data as our
new workloads to determine the existence of performance regressions in the
new versions. Using the data generated in a short time period also allows
the analysis part of our approach (i.e., model training and predictions) to
be processed faster. As discussed in RQ2, our approach can effectively detect
performance regressions when the system has run for a very short time (e.g.,
down to 15 minutes for Apache James). In other words, our approach can
detect early performance regressions in the field.
Lessons Learned. Different from performance regression detection in an in-
house testing environment, performance regressions in the field need to be
detected in a timely manner, in order to avoid notable performance impact to
the users. Continuously detecting performance regressions using the currently
available data can help detect early performance regressions in the field.

8 Threats to Validity

This section discusses the threats to the validity of our study.
External validity. Our study is performed on two open-source systems (i.e.,
OpenMRS and Apache James) and one industry system (i.e., System X) that
are from different domains (e.g., health care system and mail server). All our
studied systems are mature systems with years of history and have been stud-
ied in prior performance engineering research. Nevertheless, more case studies
on other software systems in other domains can benefit the evaluation of our
approach. All our studied systems are developed in either Java or .Net. Our ap-
proach may not be directly applicable to systems developed in other program-
ming languages, especially dynamic languages (e.g., JavaScript and Python).
Future work may investigate approaches to minimize the uncertainty in the
performance characterization of systems developed in dynamic languages.
Internal validity. Our approach builds machine learning models to capture
the relationship between the runtime activities that are recorded in logs and
the measured performance of a system. However, there might be some runtime
activities that are not recorded in logs and that also impact system perfor-
mance. In our approach, we use logs that capture the high-level workloads of
the system. Our experiments on our studied systems demonstrated that such
logs can predict system performance with high accuracy. Nevertheless, the cor-
relation between the runtime activities recorded in the logs and the measured
system performance does not necessarily suggest a causal relationship between
them.

Our approach relies on comparing performance models that are constructed
based on software behaviors that are recorded in logs. We admit that our
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approach is not applicable in situations where the old version and the new
version have fundamentally different features. If a new version has many new
features that do not exist in an old version, the model constructed on the old
version would not have the knowledge about the performance impact of the
new features, thus comparing performance models between these two versions
would not be practical. However, we would like to emphasize that the goal of
our approach is to verify whether the black-box performance models can work
in the scenarios where the workloads have high variations (e.g., variation in
the ratio between different types of activities).

Our approach relies on non-parametric statistical analysis (i.e., Mann-
Whitney U test and Cliff’s delta) to compare the black-box behaviors of two
software versions to detect performance regressions. Our assumption is that
statistically different behaviors between two software versions would suggest
performance regressions. In practice, however, determining whether there is
a performance regression usually depends on the subjective judgment of the
performance analysts. Therefore, our approach enables performance analysts
to adjust the threshold of the statistics (e.g., the effect size) to detect perfor-
mance regressions in their specific scenarios.

Construct validity. In this work, instead of using modern performance mon-
itoring tools (e.g., application performance monitoring (APM)), we use tradi-
tional system monitoring tools (e.g., Pidstat) to collect the performance data
(e.g., CPU usage) when running the systems. The use of APM to collect more
information may complement our approach.

We use the CPU usage as our performance metric to detect performance
regressions. There exist other performance metrics, such as memory utilization
and response time that can be considered to detect performance regressions.
Considering other performance metrics would benefit our approach. However,
monitoring more performance metrics would introduce more performance over-
head to the monitored system. In the case of our industrial system, CPU usage
is the main concern in performance regression detection. Besides, the three
studied approaches are not limited to the performance metric of CPU usage.
Practitioners can leverage our approach to consider other performance metrics
that are appropriate in their context.

We use JMeter to send workloads to the open-source systems. We are
not experts for these open-source software systems and the actual field users’
data for these open-source systems is not available. Therefore, the portions of
each type of action are not pre-chosen but just the results of our randomized
workload drivers, and we do not have any empirical evidence to support such
numbers. However, our goal is just to make different workloads across different
versions, instead of having chosen specific numbers. Similarly, in the real world,
it may be difficult to anticipate the number of users of a system and their usage
patterns.
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9 Related Work

We discuss related work along with four directions: analyzing performance test
results, A/B testing and canary releasing, source code evolution and perfor-
mance, and leveraging logs to detect performance-related anomalies.

9.1 Analyzing performance test results

Prior research has proposed many automated techniques to analyze the results
of performance tests (Gao et al., 2016; Jiang and Hassan, 2015). Initially, the
Queuing Network Model (QNM) (Lazowska et al., 1984) has been proposed
to model the performance of a software system based on the queuing theory.
Based on QNM, Barna et al. (2011) propose an autonomic performance testing
framework to locate the software and hardware bottlenecks in the system. They
use a two-layer QNM to automatically target hardware and software resources
utilization limits (e.g., hardware utilization, web container threads number,
and response time).

Due to the increasing complexity of software systems and their behaviors,
the QNM-based performance model becomes insufficient. Therefore, prior work
uses statistical methods to assist in performance analysis. Cohen et al. (2005)
present an approach that captures the signatures of the states of a running
system and then cluster such signatures to detect recurrent or similar per-
formance problems. Nguyen et al. (2011, 2012) use control charts to analyze
performance metrics across test runs to detect performance regressions. Malik
et al. (2010, 2013) use principle component analysis (PCA) to reduce the large
number of performance metrics to a smaller set, in order to reduce the efforts
of performance analysts.

Prior work also uses machine learning techniques for performance anal-
ysis (Didona et al., 2015; Foo et al., 2015; Lim et al., 2014; Shang et al.,
2015; Xiong et al., 2013). Shang et al. (2015) propose an approach that au-
tomatically selects target performance metrics from a larger set, in order to
model system performance. Xiong et al. (2013) propose an approach that
automatically identifies the system metrics that are highly related to system
performance and detects changes in the system metrics that lead to changes in
the system performance. Foo et al. (2015) build ensembles of models and asso-
ciation rules to detect performance regressions in heterogeneous environments,
in order to achieve high precision and recall in the detection results.

Different from existing approaches that analyze the results of in-house
performance tests, our approach builds black-box performance models that
leverage performance metrics and readily available logs to detect performance
regressions in the field.
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9.2 A/B testing and canary releasing

As the software system evolves, developers need to take actions to ensure that
the new versions meet the expectations, in terms of both functional and non-
functional requirements. In order to reduce the potential risk of introducing
new releases, one common approach is to perform A/B testing to compare two
versions of the system against each other to determine which one performs
better. For example, Xu et al. (2015) build an A/B testing experimentation
platform at LinkedIn to support data-driven decisions and improve user experi-
ences. A/B tests is a standard way to evaluate user engagement or satisfaction
with a new service, feature, or product and its main concern is not about the
system performance. In comparison, our approach aims to detect performance
regressions in the field.

Another prevalent industrial live experimentation technique is called ca-
nary releasing, which gradually delivers the new versions or features to an
increasingly larger user group. Sato (2014) indicates that canary releasing
reduces the risk associated with releasing a new version of the software by
limiting its audience at the beginning. Different from canary releasing, our
approach relies on the field data from the normal operations of a software
system (i.e., without gradual releasing to gain confidence). Our approach has
advantages over canary releasing when new features need to be delivered to
all the users quickly, such as the scenario faced by our industrial partner. Nev-
ertheless, our approach can be used in a canary releasing process to detect
performance regressions based on the field data collected from a sample of the
users, which can be a step in our future research.

In summary, although A/B testing, canary releasing and our approach all
rely on the end user data from the field, our approach serves different purposes
and has different usage scenarios from the other two techniques (as discussed
above). Our approach is not a direct replacement or peer to A/B testing or
canary releasing, and we do not aim to alter how the software is released to
the end users. On the other hand, our approach can complement existing A/B
testing and canary releasing practices.

9.3 Source code evolution and performance

Performance issues are essentially related to the source code. Thus, under-
standing how software performance evolves across code revisions is very im-
portant. Alcocer and Bergel (2015) conduct an empirical study on the perfor-
mance evolution of 19 applications. Their findings show that every three code
revisions introduce a performance variation and the performance variations can
be classified into some patterns. Based on these patterns, Zhou et al. (2019)
propose an approach called DeepTLE that can predict the performance of sub-
mitted source code before executing the system, based on the semantic and
structural features of the submitted source code. While source-code level tech-
niques aim to identify performance issues before running performance tests,
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we believe that the performance of the whole system is not just a simple com-
bination of each code snippet’s performance. Instead, the performance of the
whole system needed to be measured by performance testing. In this work,
we propose three approaches that identify performance issues when the sys-
tem is running in the field, which can complement or even replace traditional
performance testing.

9.4 Leveraging logs to detect performance-related anomalies

Prior research proposes various approaches that leverage execution logs to de-
tect performance-related anomalies (He et al., 2018; Jiang and Hassan, 2015;
Tan et al., 2010; Xu et al., 2009). Jiang et al. (2009) propose a framework
that automatically generates a report to detect and rank potential performance
problems and the associated log sequences. Xu et al. (2009) extract event fea-
tures from the execution logs and leverage PCA to detect performance-related
anomalies. Tan et al. (2010) present a state-machine view from the execution
logs of Hadoop to understand the system behavior and debug performance
problems. Syer et al. (2017) propose to leverage execution logs to continu-
ously validate whether the workloads in the performance tests are reflective
of the field workloads. Syer et al. (2013) also propose to combine execution
logs and performance metrics to diagnose memory-related performance issues.
Similarly, He et al. (2018) correlate the clusters of log sequences with sys-
tem performance metrics to identify impactful system problems (e.g., request
latency and service availability).

In comparison, our approach leverages the relationship between the logs
and performance metrics from the field to detect performance regressions be-
tween two versions of a software system.

10 Conclusions

In this paper, we propose to leverage automated approaches that can effectively
detect early performance regressions in the field. We study three approaches
that use black-box performance models to capture the relationship between
the activities of a software system and its performance under such activities,
and then compare the black-box models derived from the current version of a
software system and an earlier version of the same software system, to deter-
mine the existence of performance regressions between these two versions. By
performing empirical experiments on two open-source systems (OpenMRS and
Apache James) and applying our approaches on a large-scale industrial system,
we found that simple black-box models (e.g., random forest) can accurately
capture the relationship between the performance of a system under varying
workloads and its dynamic activities that are recorded in logs. We also found
that these black-box models can effectively detect real performance regressions
and injected performance regressions under varying workloads, requiring data
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from only a short period of operations. Our approaches can complement or
even replace typical in-house performance testing when testing resources are
limited (e.g., in an agile environment). The challenges and the lessons that
we learned from the successful adoption of our approach also provide insights
for practitioners who are interested in performance regression detection in the
field.
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