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Studying the Practices of Logging Exception
Stack Traces in Open-Source Software Projects

Heng Li, Haoxiang Zhang, Shaowei Wang, and Ahmed E. Hassan, Fellow, IEEE

Abstract—Logging the stack traces of runtime exceptions assists developers in diagnosing runtime failures. However, unnecessary
logging of exception stack traces can have many negative impacts such as polluting log files. Unfortunately, there exist no guidelines
for the logging of exception stack traces and developers usually practice it in an ad hoc manner. In this work, we perform a
comprehensive study of the source code, code change history, and issue reports of ten open-source Java projects, combining
quantitative and qualitative analysis, in order to understand how developers log and modify the logging of exception stack traces, their
rationale for logging or not logging exception stack traces, and the factors that impact their logging of exception stack traces. We
observe that logging of exception stack traces is a popular practice in open-source projects, while developers have difficulties making
appropriate logging of exception stack traces in the first place. Through a qualitative analysis of 385 related issue reports, we derived
recommendations for the logging of exception stack traces, such as logging of stack traces should be avoided or downgraded for user
errors, normal execution, expected exceptions, in user interfaces, or when there is a security concern. Finally, based on our empirical
observations, we design and extract a set of code metrics and construct models to explain the likelihood of logging an exception stack
trace. Our analysis of the models indicates the important factors (e.g., the exception type and the method that throws the exception) for
determining the logging of exception stack traces. Our study helps developers and researchers understand the current practices of
logging exception stack traces, provides recommendations for developers to consider when determining whether to log the stack trace
of an exception, and provides insights for future research and practices to derive global or company-wide guidelines for the logging of
exception stack traces.

Index Terms—software maintenance, software logging, exception logging, stack traces, random forest.

✦

1 INTRODUCTION

The stack trace of an exception provides the trace of method
calls from the start of the application (or the thread in a
multi-threaded context) execution to the point where the
exception is triggered. Thus, the logged stack trace of an
exception is an important tool for diagnosing runtime fail-
ures [20, 52]. Figure 1 shows a log message with a stack
trace as an example. On the other hand, as a stack trace is
usually much longer (e.g., more than ten times longer) than
a regular log message, stack traces can usually grow log
files very quickly and result in excessive logging, which in
turn would cause performance bottlenecks [14, 60], raise the
storage costs of logs [5], and lead to increased effort on log
management and analysis [34].

Modern logging libraries (e.g., Log4j1 and SLF4J2) sup-
port convenient ways to log the stack trace of an exception
in a logging statement within the scope of an exception (i.e.,
inside the catch block that catches the exception). In this
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paper, we refer to a logging statement inside a catch block
as an exception logging statement. For example, in the code
snippet shown in Figure 2, the stack trace of an exception
is logged by specifying the exception object as the last
parameter of an exception logging statement. In particular,
the logging statement in this example produces the log
message shown in Figure 1.

However, we observe that developers sometimes have
issues making appropriate decisions for logging the
stack traces of exceptions [34]. For example, issue report
HADOOP-105713 proposes the addition of stack traces to
many exception logging statements across several modules.
However, other developers raise concerns that the logging
of stack traces should be avoided for some of these ex-
ception logging statements. As a result, it takes significant
efforts (e.g., seven developers involved, 30 comments, and
10 patches) to resolve the raised concerns. Table 1 lists
examples of another six issue reports that are concerned
with whether to log the stack trace of an exception. Three
of the issue report examples request the addition of missing
stack traces in exception logging statements, while the other
three issue report examples request the removal of existing
stack traces from exception logging statements. Most of
the issues can be fixed by a few lines of code changes.
However, it often takes a long time (e.g., years) from when
a logging statement was originally introduced in the source
code until when the stack trace issue was fixed, which
can pose long-term impact to developers and users. These
examples motivate our study to help developers understand

3. https://issues.apache.org/jira/browse/HADOOP-10571
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Regular log message

Stack 
trace(The stack trace is truncated to save space. The original stack trace is 43 lines long.)

Fig. 1. An example of a log message which outputs a stack trace (check https://issues.apache.org/jira/browse/HIVE-13325 for the full log message).
The log message is produced by the logging statement shown in Figure 2.

TABLE 1
Examples of issue reports of the Hadoop project that are concerned with whether to log the stack trace of an exception.

Issue ID1 Issue Report Title Issue Request
Type

Date Log
Introduced

Date Stack
Trace Fixed

LOC Changed
for Fixing

HADOOP-14481 Print stack trace when native bzip2 library does not load Add stack trace 06/Mar/13 02/Jun/17 2
HADOOP-13458 LoadBalancingKMSClientProvider#doOp should log IOExcep-

tion stacktrace
Add stack trace 26/Feb/15 03/Aug/16 4

HADOOP-10562 Namenode exits on exception without printing stack trace in
AbstractDelegationTokenSecretManager

Add stack trace 09/Feb/10 01/May/14 3

HADOOP-14418 Confusing failure stack trace when codec fallback is happend Remove stack trace 27/Apr/17 14/May/17 3
HADOOP-13710 Supress CachingGetSpaceUsed from logging interrupted excep-

tion stacktrace
Remove stack trace 12/Apr/16 12/Oct/16 3

HADOOP-11868 Invalid user logins trigger large backtraces in server log Remove stack trace 04/May/12 21/Apr/15 6
1 For more details about each issue, one can refer to its web link which is “https://issues.apache.org/jira/browse/” followed by the issue ID. For example, the
link for the first issue is “https://issues.apache.org/jira/browse/HADOOP-HADOOP-13711”.

try {
// Code in the try block omitted.

} catch (Exception e) {
LOG.warn(”Exception when evaluating predicate. Skipping ORC

PPD. Exception:”, e);
}

Fig. 2. Example of logging the stack trace of an exception by specifying
the exception (e) as the last parameter of a logging statement.

and improve their practices of logging stack traces.
Prior work performed extensive studies on software

logging practices, including studying where to log [25, 32,
33, 60, 62, 63], what to log [23, 40], how to choose log
levels [35, 37], the characteristics and evolution of log-
ging [8, 27, 28, 55, 61], and logging anti-patterns [9, 21].
However, there exists no work that studies the logging of ex-
ception stack traces, which we believe is equally important
as the previously studied aspects of logging. In addition,
there exists no guidelines or standards for developers to
follow for the logging of exception stack traces.

Therefore, in this work, we study the practices of logging
exception stack traces in ten open-source projects across
different domains. We perform a comprehensive investiga-
tion of the source code, code change history, and issue re-
ports of these studied projects, combining quantitative and
qualitative analysis, in order to understand how developers
log and modify the logging of exception stack traces, their
rationale for logging or not logging exception stack traces,
and the factors that impact their logging of exception stack
traces. Specifically, we structure our investigation along the
following three research questions (RQs):
RQ1: How do developers log and modify the logging of exception

stack traces? We analyze the source code and code
change history to understand how developers log and
modify the logging of exception stack traces. We ob-
serve that logging of exception stack traces is a popular
practice in open-source projects, while developers have
difficulties making appropriate logging of exception
stack traces in the first place. In particular, some ex-
ceptions (e.g., generic exceptions) are more likely than
other exceptions to be logged with a stack trace, while
developers make the most changes to adjust the logging
of stack traces at the warn and error levels.

RQ2: Why do developers log or not log exception stack traces?
In order to understand developers’ rationale for mak-
ing their decisions of logging exception stack traces
or not, we qualitatively examine 385 related issue re-
ports raised in the development history of the studied
projects. Our analysis derives several recommendations
for the logging of exception stack traces, including that
logging of stack traces should be avoided or down-
graded for user errors, normal execution, expected ex-
ceptions, in user interfaces, or when there is a security
concern. On the other hand, the logging of stack traces
is recommended for generic exceptions, severe prob-
lems, and unexpected exceptions.

RQ3: Which factors impact the logging of exception stack traces?
Based on our insights from RQ1 an RQ2, we design a
set of code metrics and build a model to explain the
likelihood of logging exception stack traces. Our results
suggest that the exception type and the method that
throws the exception should be considered as the pri-
mary factors for determining the logging of exception
stack traces. The log level and how well the exception is
handled should also be considered when making such
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decisions.
This work provides a comprehensive picture of devel-

opers’ practices of logging exception stack traces, through
examining the source code, code change history, and issue
reports of ten open-source projects. Our findings make four
important contributions:

• Our study helps developers and researchers under-
stand the current practices of logging exception stack
traces. In particular, as the first study in this under-
investigated area, our work will raise the research com-
munity’s attention in helping developers improve their
practices of logging exception stack traces.

• Our findings provide recommendations for developers
to consider when determining whether to log the stack
trace of an exception.

• We developed models to guide developers’ decisions
of logging exception stack traces and understand what
factors impact their decisions.

• Our findings provide insights for future research and
practices to derive global or company-wide guidelines
for the logging of exception stack traces.

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 describes the setting of our
experiments, including our studied projects and our overall
approach for studying the practices of logging exception
stack traces. Section 3 presents our experimental results
for answering each of our research questions. Section 4
discusses the threats to the validity of our findings. A survey
of related work is presented in Section 5. Finally, Section 6
draws conclusions based on our presented findings.

2 CASE STUDY SETUP

2.1 Studied Projects
In this work, we study ten open-source Java projects. We
selected our subject projects based on three criterion: 1)
the project should make extensive use of logging, so that
we have enough data to study the logging practices in the
project; 2) the project should be successful and mature (i.e.,
with years of development history), so that we can capture
state-of-the-art logging practices in successful long-lived
projects; 3) the selected projects should cover a variety of
types, such that our findings are not limited to a particular
project type. Table 2 provides an overview of our studied
projects. These projects are of different types, including
distributed computing, network server, distributed data storage,
data streaming platform, message broker, integration framework,
cloud computing framework, and testing framework. From the
user interface point of view, our studied projects include
desktop applications (e.g., JMeter), web applications (e.g.,
CloudStack), and frameworks (e.g, Hadoop). Our selected
projects are also extensively studied in prior work on log-
ging (e.g., [8, 23, 34, 40]).

Table 2 shows the SLOC (Source Lines of Code) of the
studied projects. The SLOC of our studied projects range
between 127 K to 2,906 K. Hadoop is the largest studied
project while ZooKeeper is the smallest. All of our studied
projects are primarily developed in Java. In this work, we
only consider the Java source code of the studied projects.
We also exclude the testing code, because developers follow
different logging practices in their testing code [33].

TABLE 2
Overview of our studied projects.

Project Type #Rel.1 Studied rel.
(Rel. time) SLOC2

Hadoop Distributed Computing 297 3.1.1 (2018.08) 2,906 K
Directory

Server Network Server 50 2.0.0.AM25
(2018.08) 245 K

Hive Distributed Data Storage 45 3.1.0 (2018.07) 1,721 K
ZooKeeper Distributed Data Storage 88 3.4.13 (2018.07) 127 K
Kafka Data Streaming Platform 92 2.0.0 (2018.07) 327 K
Qpid Broker Message Broker 24 6.1.7 (2018.08) 415 K
ActiveMQ Message Broker 59 5.15.5 (2018.08) 465 K
Camel Integration Framework 127 2.20.4 (2018.07) 1,345 K
CloudStack Cloud Computing Platform 153 4.11.1.0 (2018.07) 1,195 K
JMeter Testing Framework 31 5.0 (2018.09) 282 K

1 All releases (major, minor and patches) are counted and analyzed in our change
history analysis (see §2.4).
2 SLOC is calculated by the CLOC tool (http://cloc.sourceforge.net).

2.2 Overview of our Study

Figure 3 shows an overview of our study for investigating
the practices of logging exception stack traces in open-
source software projects. Overall, we study the source code,
change history, and issue reports of the studied projects to
understand the practices of logging exception stack traces.
Table 2 shows the studied release and the releasing time of
each of the studied project. From the version control system
(i.e., GitHub4 in our case), we obtain the source code and
the code change history of the specific release of each of the
studied projects (i.e., using git clone <repository>
and git checkout <release>). From the source code
of each studied project, we employ static code analysis (see
Section 2.3) to extract the exception logging statements and
the context information (e.g., the exception type) from the
source code. From the code change history of each studied
project, we perform change history analysis (see Section 2.4)
to extract the changes to the exception logging statements.
From the issue tracking system of each studied project, we
collect the issue reports that are related to the logging of
exception stack traces (see Section 2.5).

The results of the static code analysis (i.e., the exception
logging statements and the context information) and the
change history analysis (i.e., the changes to the exception
logging statements) are used to answer our RQ1 (Sec-
tion 3.1). The results of our issue report analysis are used
to answer our RQ2 (Section 3.2). Finally, based on the the
results of the static code analysis and the insights provided
in RQ1 and RQ2, we design and extract a set of code metrics
and build a machine learning model to understand the
factors that impact the logging of exception stack traces, i.e.,
RQ3 (Section 3.3).

2.3 Static Code Analysis

We analyze the source code of the studied projects to extract
the exception logging statements and the context informa-
tion. We developed an IntelliJ plugin5 based on the IntelliJ
Platform SDK to perform our static code analysis. The
plugin automatically extracts the context information (e.g.,
exception type) of each exception logging statement in a

4. https://github.com
5. We share the source code repo of the plugin at: https://github.

com/mooselab/logging-observer (GitHub username: loggingobserver-
guest, password: guest-passwd-21). We will make the repo public once
the paper is accepted for publication.
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Fig. 3. Overview of our study for investigating the practices of logging
exception stack traces.

Regex: ”.*log .*\\.( trace |debug|info|warn|error|fatal)”
Matched example: Logger.warn(...);

Fig. 4. Our regular expression (case-insensitive) used to match logging
statements.

project. Specifically, for each studied project, the plugin first
locates all the catch blocks in the Java source files. For each
catch block, the plugin then locates the logging statements
within the catch block (i.e., exception logging statements) by
searching all the method calls that match a predefined regu-
lar expression for logging statements (shown in Figure 4).
For each located exception logging statement, the plugin
then extracts detailed information about the logging state-
ment (e.g., the log level, and whether a stack trace is logged)
and the contextual information about the logging statement
(e.g., the type of the caught exception, and whether the
logging statement resides inside a loop).

2.4 Change History Analysis

We analyze the studied projects’ code change history to
extract the changes to the logging of exception stack traces6.
For each studied project, we use the git diff 7 command to
extract the detailed code changes of each commit in the
history of that project. We consider the entire development
history of each studied project that is available in its GitHub
repository until the release specified in Table 2. Table 3
shows the statistics of the code changes of the studied
projects. In the studied projects, 2.85% to 11.79% of the com-
mits contain log changes that involve exception stack traces.
For every thousand lines of code changes, there are 0.3 to 2.5
log changes that involve exception stack traces; although
the percentages are small, the impact of such changes can
be important to the maintenance and operations of software
systems, as the issue report examples in Table 1 have shown.

We use the word-diff option to extract the code changes
at the word level instead of at the line level. Figure 5
shows an example of the results of applying the word-diff
on a log change. In the example, the log level of a logging

6. We share our code for the change history analysis at: https:
//github.com/mooselab/logging-history-analyzer (GitHub username:
loggingobserverguest, password: guest-passwd-21). We will make the
repo public once the paper is accepted for publication.

7. https://git-scm.com/docs/git-diff

LOG.[−warn−]{+debug+}(”Ignoring socket shutdown exception”{+,
e+});

Fig. 5. Example of applying word-diff on a log change.

TABLE 3
Statistics of the code changes of the subject projects in the studied

periods.

Project Comm. Comm.Log Comm.ST CodeChg. LogChange STChange

Hadoop 18.5K 4.8K(26.06%) 1,308(7.06%) 4,966.6K 33.1K(0.67%) 3,677(0.07%)
Directory

Server 9.5K 1.2K(12.48%) 309(3.24%) 2,143.2K 11.7K(0.55%) 1,212(0.06%)

Hive 12.2K 2.8K(23.01%) 930(7.61%) 12,917.7K 21K(0.16%) 3,801(0.03%)
ZooKeeper 1.3K 0.4K(26.88%) 157(11.79%) 375.1K 5K(1.34%) 921(0.25%)
Kafka 5.2K 0.6K(11.03%) 183(3.5%) 1,087.6K 4.2K(0.38%) 663(0.06%)
QpidBroker 7.2K 1.4K(19.82%) 561(7.74%) 2,253K 14.3K(0.64%) 2,348(0.1%)
ActiveMQ 10K 2.2K(21.94%) 692(6.93%) 1,688.3K 13K(0.77%) 2,287(0.14%)
Camel 30.3K 4.5K(14.92%) 864(2.85%) 3,817.4K 21.4K(0.56%) 1,739(0.05%)
CloudStack 31.3K 4.5K(14.37%) 1,496(4.77%) 4,532.2K 43.8K(0.97%) 7,370(0.16%)
JMeter 15.7K 1.8K(11.7%) 685(4.36%) 1,451.9K 11.7K(0.8%) 2,498(0.17%)

Comm.: number of commits; Comm.Log: number and percentage of commits with log changes;
Comm.ST: number and percentage of commits with log changes that involve stack traces; CodeChg.:
number of lines of code changes; LogChange: number of log changes and its rate to code changes;
STChange: number of log changes involving stack traces and its rate to code changes.

Regex: ”{\+[ \t ]*,[ \t]*\b(e|ex|t |e\d)\b(\.getCause\(\))?(?!\.) [
\t]*\+}”

Matched example: log.info(...{+, ex+});

Fig. 6. Our regular expression (case-insensitive) used to match the
scenario of adding a stack trace to a logging statement.

statement was changed from warn (i.e., “[-warn-]”) to debug
(i.e., “{+debug+}”), and an exception stack trace was added
to the logging statement (i.e., “{+, e+}”).

To understand developers’ challenges of logging excep-
tion stack traces, we focus on the log changes that modify
the logging of exception stack traces. Based on the word-diff
results, we use predefined regular expressions to match the
code changes that modify the logging of stack traces. For
example, we use the regular expression shown in Figure 6
to match the scenario of adding a stack trace to a logging
statement. We consider all the scenarios of changing the log-
ging of exception stack traces, including adding or removing
stack traces from existing logging statements and changing
the log level of the logging statements with stack traces.
Table 4 provides an example for each scenario of changing
the logging of exception stack traces.

2.5 Issue Report Collection

In order to understand developers’ reasons for logging or
not logging exception stack traces, we manually investi-
gated the issue reports from the subject projects that are
related to the logging of stack traces. Nine out of the ten
subject projects use JIRA8 as their issue tracking systems,
except that JMeter uses Bugzilla9 as its issue tracking sys-
tem. Besides, we only find two issue reports of JMeter that
are related to the logging of stack traces. Therefore, for the
convenience of extracting and analyzing the issue report
data, we exclude JMeter from our analysis of issue reports.

We extracted the issue reports from the Apache JIRA
issue tracking system10. We study the issue reports that were

8. https://www.atlassian.com/software/jira
9. https://www.bugzilla.org
10. https://issues.apache.org/jira
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TABLE 4
Scenarios of changing the logging of exception stack traces.

A pair of {+ and +} indicates an added code unit, while a pair of [- and -] indicates a deleted code unit.

Scenario Example

Logging an additional stack trace LOG.error(”Failed to send last message.”{+, e+}) ;
Removing a previously-logged stack trace LOG.error(”Lifecycle start issue”[-, e-]) ;
Increasing the level of a logged stack trace LOG[-.debug-]{+.error+}(”Could not stop tez dags: ”, e);
Decreasing the level of a logged stack trace LOG.[-info-]{+debug+}(”Failed to vectorize”, e);

project in (<Project Name>) AND summary ˜ ”((log || print ||
output || write) AND (exception)) OR (\”stack trace\”) OR
(\”exception trace\”) OR (stacktrace)” ORDER BY created DESC

Fig. 7. The JQL query that we used to search for the logging-related
issue reports.

created until May 17th, 2020, the time when we extracted the
data. We used the JIRA Query Language (JQL) to automati-
cally search for the JIRA issues reports that are related to the
logging of exception stack traces. Specifically, we used the
JQL query in Figure 7 to search for the related issue reports
of each of the studied projects. The “<Project Name>” is
replaced with the specific project name (e.g., Hive) for each
of the studied projects. This JQL query searches for all the
issue reports of the specified project that have “log”, “print”
, “output” , or ”write”, and ”exception” in its summary,
or have ”stack trace”, ”exception trace”, or ”stacktrace” in
its summary, sorted by their creation time using a reverse-
chronological order.

We detail our qualitative analysis of the collected issue
reports in RQ2 (Section 3.2).

3 RESEARCH QUESTIONS AND RESULTS

In this section, we present the results for our RQs. For each
RQ, we discuss our motivation, our approaches, and the
detailed experimental results.

3.1 RQ1. How do developers log and modify the log-
ging of exception stack traces?

Motivation

Stack traces of exceptions help developers identify the
causes of runtime issues. However, the logging of too many
stack traces would grow the log files very fast and hide
other important information. Prior work on logging focused
on the characteristics and evolution of logging, where to
log, what to log, how to choose log levels, and logging
anti-patterns. However, there exists no work that studies
the logging of exception stack traces. We believe that ap-
propriate logging of exception stack traces is as important
as the logging aspects studied in prior work. As the first
step, in this research question, we study how developers
log and modify the logging of exception stack traces. Our
results can help developers and researchers understand
the current practices of logging exception stack traces and
provide insights for future research to improve the logging
practices of exception stack traces.

Approach

We first study how often developers log exception stack
traces and their associated code context (e.g, exception
type). Second, we examine the code change history of the
studied projects to understand how developers modify the
logging of exception stack traces.
1) Studying the context under which exception stack traces
are logged. We examine the source code of the studied
projects to understand the context of logging exception stack
traces in the studied projects. We use the described approach
in Section 2.3 to extract the characteristics of the logging
statements (i.e., the log level and whether a stack trace is
logged) and the contextual information (e.g., the exception
types). Then, we examine the relationship between stack
trace logging and log levels, exception types, and exception
sources, as described below:

• Log level is the assigned severity level to a logging
statement, which is usually one of trace, debug, info,
warn, error, and fatal, ordered from the lowest severity
level to the highest.

• Exception type is the type of the exception caught
by the containing catch block, such as IOException and
FileNotFoundException. We only consider the exception
types that appear in more than half of the studied
projects (i.e., common exception types).

• Exception source indicates the source where an ex-
ception class is defined. An exception class can be
defined by the application project, by the programming
language (i.e., JDK for Java), or by third-party libraries.

Chi-square test. We use Pearson’s Chi-square test to eval-
uate the statistical relationship between the aforementioned
characteristics (e.g., exception types) and stack trace logging
(i.e., the logging of an exception stack trace). The Chi-square
test is used to test the strength of association between two
categorical variables [17, 26]. For example, we use the Chi-
square test to test whether there is a statistically significant
association between exception types and stack trace logging.
In our Chi-square test, the samples are independent and
they are not paired or matched, and the categories (e.g, log
levels) are exclusive from each other (e.g., one logging state-
ment can not have two log levels). Thus we choose the Chi-
square tests instead of a test for dependent samples. A p-
value resulting from the Chi-square test that is less than 0.05
indicates the two categorical variables have a statistically
significant association. As we perform multiple Chi-square
tests, in order to address the multiple testing problem [6]
that may lead to over-estimation of statistical significance,
we use the Bonferroni correction [59] to adjust the p-value
threshold to 0.05

3 where 3 is the number of Chi-square tests
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TABLE 5
Summary of the exception logging statements in the studied projects.

Hadoop Dir. Server Hive ZooKeeper Kafka Qpid Broker ActiveMQ Camel CloudStack JMeter

# Exception
log. stmts 3,548 363 1,636 394 279 381 758 862 3,454 647

% with a
stack trace 63% 51% 66% 77% 75% 75% 76% 63% 62% 65%

we perform. In each Chi-square test, we consider all the data
of the studied projects together.
Stack trace ratio. For each group of exception logging
statements (e.g., with a certain log level), we measure the
ratio of these exception logging statements that are with
stack traces (i.e., the stack trace ratio). The stack trace ratio
indicates how likely the exception logging statements in a
certain group (e.g., with a certain log level) are with stack
traces.
Odds ratio. While the stack trace ratio indicates how likely
a certain group (e.g, with a certain log level) is associated
with the logging of stack traces, it does not indicate whether
the characteristic of the group increases the likelihood of
logging a stack trace. Thus, for each group, we measure
the odds ratio of logging exception stack traces. The odds
ratio is the ratio between the odds that exception logging
statements in a group are with stack traces and the odds
that exception logging statements in other groups are with
stack traces:

OR =
STRgroup/(1− STRgroup)

STRother−groups/(1− STRother−groups)
(1)

where STRgroup is the stack trace ratio of a certain group
(e.g., with a certain log level) and STRother−groups is stack
trace ratio of other groups (e.g., with other log levels). An
odds ratio greater than 1 indicates increased likelihood of
logging exception stack traces while an odds ratio smaller
than 1 indicates decreased likelihood of logging exception
stack traces.
2) Studying how developers modify the logging of excep-
tion stack traces. We examine the code change history of the
studied projects to understand how developers modify the
logging of exception stack traces. We use the approach that
is described in Section 2.4 to analyze the code change history
of the studied projects. Theoretically, modifying the logging
of a stack trace includes logging additional stack traces,
removing previously-logged stack traces, and changing the
log level of the logging statements with a stack trace. We
analyze the distribution of these types of modifications
to the logging of exception stack traces. In particular, we
examine the patterns of how developers modify the logging
of exception stack traces and how they change their log
levels.

Results
Developers are more likely than not to log the stack trace
in an exception logging statement. Overall, 65% of the
exception logging statements log a stack trace. Table 5 sum-
marizes the number of exception logging statements and the
percentage that log a stack trace. The studied projects have a
range of 279 to 3,548 exception logging statements, and 51%
to 77% of them log a stack trace.

Developers are less likely to log a stack trace in info-
level logging statements than in higher-level (e.g., error)
or lower-level (e.g., debug) logging statements. Our Chi-
square test indicates that the log level of a logging statement
and the likelihood of logging a stack trace in that logging
statement have a statistically significant association (i.e., p-
value < 0.05

3 ). Figure 8 shows the distributions of stack trace
logging over log levels in the studied projects. When the log
level increases along trace, debug, to info, the likelihood of
logging a stack trace drops and reaches the lowest at the
info level; while when the log level increases along info,
warn, error, to fatal, the likelihood of logging a stack trace
increases and reaches the highest at the fatal level. Showing
a similar trend as the stack trace ratios, the odds ratios
indicate that the fatal and error levels increase the likelihood
of logging exception stack traces the most, while the info
level decreases the likelihood of logging exception stack
traces the most. A low-level (i.e., trace and debug) logging
statement usually indicates debugging purposes. A high-
level (i.e., warn, error, and fatal) logging statement is usually
concerned with the handling of a runtime issue. Stack traces
can support debugging for both types of logging statements.
In comparison, an info level logging statement usually indi-
cates a normal (i.e., non-error) event, and logging a stack
trace in such a case could be confusing to the users. For
example, issue report AMQ-290211 argues that a stack trace
should not be logged in an info level logging statement,
because “the cause for the message is actually harmless
- hence the INFO level - but the messages are confusing
and annoying nonetheless”. Similarly, in RQ2, we find that
“normal executions” is one of the reasons for not logging
exception stack traces.

However, in some cases, the info level is used for situ-
ations where developers want the exception stack traces to
be delivered to users to indicate some runtime issues even
though such issues may not impact the normal execution
of the system. For example, in issue report CAMEL-271012,
the log level of an exception stack trace was changed from
warn to info, as “the end user has configured it to ignore” a
certain runtime issue (i.e., invalid endpoint), while the user
may “still need to know about” the runtime issue.
Some exception types, in particular, generic exceptions
(e.g., Exception)13, are more likely than other exception
types (e.g., FileNotFoundException) to be logged with a
stack trace. Our Chi-square test results show that the type
of an exception has a statistically significant association
with the likelihood of logging a stack trace about it (i.e., p-

11. https://issues.apache.org/jira/browse/AMQ-2902
12. https://issues.apache.org/jira/browse/CAMEL-2710
13. Generic exceptions refer to how an exception is caught in a catch

block, i.e., a superclass (e.g., IOException) is declared in a catch statement
to catch a subclass exception (e.g., FileNotFoundException).
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Fig. 8. The likelihood of logging stack traces for each log level. The
grey box-plots show the distribution of the stack trace ratios across the
studied projects; the black dashed line shows the average stack trace
ratio of the studied projects across all the log levels. The red box-plots
show the distribution of odds ratios across the studied projects; the red
dashed line marks the odds ratio of 1.

value < 0.05
3 ). Figure 9 shows the distribution of stack trace

logging over the ten most popular exception types in the
studied projects. In general, generic exceptions (e.g., Throw-
able, Exception, IOException, and RuntimeException) are more
likely than an average exception type to be logged with a
stack trace. The odds ratios also indicate that these generic
exceptions increase the likelihood of logging exception stack
traces. In RQ2, we also find that “generic exceptions” is one
of the reasons for logging exception stack traces. When a
generic exception is caught in a catch block, logging the
stack trace of such a generic exception is important as it
helps developers locate more specific information about
an exception (e.g., the specific exception type). Prior work
suggested always catching a specific exception instead of
a generic exception [45], while it was found that only a
small portion of exceptions are handled in a specific way,
while the majority of exceptions are handled with a generic
strategy [11].
The JDK and third-party-defined exceptions are more
likely to be logged with a stack trace than project-defined
exceptions. Figure 10 shows the distribution of stack trace
logging over exception sources in the studied projects. Our
Chi-square test results show that the exception source (i.e.,
JDK, third-party libraries, or application projects) has a
statistically significant association with the likelihood of
logging a stack trace (i.e., p-value < 0.05

3 ). The project-
defined exceptions are least likely to be logged with a stack
trace, which might be explained by the intuition that these
exceptions are expected by developers and they understand
the causes of such project-defined exceptions. In contrast,
exceptions defined outside of their own project may be
unexpected by developers or they may not understand the
causes of these exceptions, thus they are more likely to need
stack traces when investigating such exceptions to explain
their causes. As discussed in RQ2, “unexpected exceptions”
is one of the reasons for logging exception stack traces while
“expected exceptions” is one of the reasons for not doing so.
Developers are more likely to log additional stack traces
to existing logging statements rather than remove already-
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Fig. 9. The likelihood of logging stack traces for each of the ten most
popular exception types. The grey box-plots show the distribution of the
stack trace ratios across the studied projects; the black dashed line
shows the average stack trace ratio of the studied projects across all
exception types. The red box-plots show the distribution of odds ratios
across the studied projects; the red dashed line marks the odds ratio of
1.
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Fig. 10. The likelihood of logging stack traces for each type of exception
sources. The grey box-plots show the distribution of the stack trace ratios
across the studied projects; the black dashed line shows the average
stack trace ratio of the studied projects across all types of exception
sources. The red box-plots show the distribution of odds ratios across
the studied projects; the red dashed line marks the odds ratio of 1.

logged stack traces. In contrast, developers are more likely
to reduce than increase the log level for the logged stack
traces. Table 6 shows the numbers of different types of stack
trace modifications for all the studied projects. Figure 11
indicates that the distributions of the different types of stack
trace modifications are relatively consistent in the studied
projects. We observed some instances when the logging of
a stack trace was noted as being inappropriate, developers
then often opted to reduce the log level of the corresponding
logging statement rather than removing the logged stack
trace. For example, issue report HDFS-345414 claims that
a stack trace should not be logged for a normal situation.
As the result, the developer changed the log level of the
corresponding logging statement from info to debug instead
of removing the logged stack trace.

14. https://issues.apache.org/jira/browse/HDFS-3454
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TABLE 6
The numbers of stack trace modifications in the studied projects.

Logging an
additional
stack trace

Removing a
previously-logged

stack trace

Increasing
the level of a

logged stack trace

Decreasing
the level of a

logged stack trace
Total1

347 85 207 352 915
1 There are 76 changes that add/remove stack traces and increase/decrease the log levels
of the same logging statements.
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Fig. 11. The distributions of stack trace modifications in the studied
projects.

Developers are most likely to adjust the logging of stack
traces in the warn and error-level logging statements.
As shown in Figure 12, compared to other log levels, de-
velopers are more likely to log additional stack traces to
existing warn and error-level logging statements and remove
previously-logged stack traces from existing warn and er-
ror logging statements. On the one hand, stack traces can
help developers diagnose runtime failures (e.g., indicated
by warn or error-level log messages). For example, issue
report HADOOP-1284015 proposed to add a stack trace to an
existing logging statement to help debugging. On the other
hand, logging too many unnecessary stack traces in warn or
error logging statements can “easily pollute the log files”16.
Therefore, developers should carefully consider whether to
log the stack trace of an exception in a warn or error-level
logging statement.
Developers appear to be confused between the warn and
error log levels when logging stack traces. Figure 13 illus-
trates the pattern of the changes to the levels of logged stack
traces. The log levels of logged stack traces are mostly being
changed between the warn and error levels. For example,
issue report AMQ-480117 changed the log level of a logged
stack trace from error to warn, because the exception could be
ignored. The info, warn and error level for logged stack traces
also tend to be changed to the debug level. For example,
issue report AMQ-290218 changed the log level of a logged
stack trace from info to debug, in order to avoid logging stack
traces for a successful operation. On the other hand, some
debug level stack traces were changed to the warn level. For

15. https://issues.apache.org/jira/browse/HADOOP-12840
16. https://issues.apache.org/jira/browse/KAFKA-1591
17. https://issues.apache.org/jira/browse/AMQ-4801
18. https://issues.apache.org/activemq/browse/AMQ-2902
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Fig. 13. The pattern of the changes of the stack trace log levels.

example, issue report YARN-681519 changes the log level of
a logged stack trace from debug to warn, in order to avoid the
hiding of an exception. Finally, some fatal level stack traces
were changed to error, due to the migration of these projects
to SLF4J which does not support the fatal level.
Developers sometimes make back-and-forth changes to
the stack traces of the same logging statements. In order
to understand how the logging of stack traces evolve, we
identified the stack trace changes that are for the same
logging statements. Specifically, we first grouped the 915
changes by their containing files, then manually examined
whether the changes in the same files are for the same
logging statements. We found that the stack traces of 43
exception logging statements were changed two to three
times (the 915 changes actually changed 863 original logging
statements). For example, issue report AMQ-211920 changed
the level of an exception stack trace from debug to info as
“network problems are imho important”. However, a later
issue report AMQ-290221 changed its level back to debug,
as the stack traces are “confusing and annoying”. This phe-
nomenon further indicates that developers face challenges

19. https://issues.apache.org/jira/browse/YARN-6815
20. https://issues.apache.org/jira/browse/AMQ-2119
21. https://issues.apache.org/jira/browse/AMQ-2902
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TABLE 7
Number of studied issue reports per project.

Hadoop Dir. Server Hive ZooKeeper Kafka Qpid Broker ActiveMQ Camel CloudStack JMeter Total*

# issue reports 179 2 54 14 31 18 31 33 23 - 385
* The resulting issue reports from the automated querying may falsely include some issue reports that are not related to the logging of stack traces.
We manually identify such irrelevant issue reports in our manual analysis.

when deciding whether to log the stack trace in an exception
logging statement.

: Summary of RQ1

Logging of exception stack traces is a popular prac-
tice in open-source projects while developers have
difficulties making appropriate logging of exception
stack traces in the first place. Developers are more
likely to log stack traces in low-level (e.g., debug)
and high-level (e.g., error) logging statements than in
median-level (e.g., info) logging statements. Generic
exceptions, as well as JDK and third-party-defined
exceptions are more likely than other exceptions to
be logged with a stack trace. Developers make the
most changes to adjust the logging of stack traces
at the warn and error levels, by adding or removing
a stack trace in warn and error-level logging state-
ments, or changing the level of a logged stack trace
between the warn and error levels. In addition, they
sometimes make back-and-forth changes to the stack
traces of the same logging statements. Our findings
indicate that developers face challenges when decid-
ing whether to log the stack trace in an exception
logging statement.

3.2 RQ2. Why do developers log or not log exception
stack traces?

Motivation

In the previous research question, we find that logging ex-
ception stack traces is a popular practice in software devel-
opment while developers have difficulties making appropri-
ate logging of exception stack traces in the first place. In this
research question, we aim to understand why developers
log or not log exception stack traces. As issue reports raised
in the development history of the studied projects usually
communicate developers’ reasons for making specific code
changes (e.g., adding or removing the logging of a stack
trace), we examine the issue reports that are related to the
logging of exception stack traces. The results may provide
insights for developers on whether they should log the
stack trace of an exception. The results may also provide
insights for future research to help developers balance the
benefits and costs of logging exception stack traces, e.g.,
by helping developers identify the inappropriate logging of
stack traces.

Approach

Table 7 shows the number of issue reports that we obtained
from each subject project. Below, we describe the process of

our qualitative analysis for studying developers’ rationale
for logging or not logging the stack trace of an exception.
Qualitative analysis of issue reports. We used an open card
sorting approach [50, 56, 64] to code the issue reports related
to the logging of stack traces. Open card sorting is widely
used in the software engineering community to deduce a
higher level of abstraction (i.e., categories or themes) from
lower level descriptions of data (e.g., survey responses) [41,
48, 51]. For each issue report, we examined the summary,
description, comments, and patches, aiming to understand
the reason why developers log or not log the stack trace of
an exception For each issue report, we assign one label (the
reason). When there are multiple reasons, we choose the
primary one. We also identify the issue reports that are not
related to the logging of exceptions stack traces and label
them as “irrelevant”. The first three authors of the paper
(i.e., coders) jointly performed the coding process, following
the steps listed below:

Step 1: Round-1 coding. We randomly and evenly dis-
tributed all the issue reports to the three coders. Each
coder coded one-third of the issue reports separately,
which took a few days for each coder to finish their
portion.

Step 2: Discussion after round-1 coding. The goal of the
discussion was to reach the same codes among the
coders. We had a meeting to discuss our resulting codes
and reached consensus. The meeting took about two
hours.

Step 3: Revisiting round-1 coding. Based the updated
codes from our discussion, we revisited our separate
round-1 coding results, which took a few hours for each
of us.

Step 4: Round-2 coding. Each coder coded another one-
third of the issue reports separately, based on the codes
resulting from round-1. Each portion of the issue re-
ports assigned to a coder in round-1 were randomly
and evenly distributed to the other two coders in
round-2. In this way, we made sure each issue report
was coded by two different coders in the two rounds.
Coders could add new codes in round-2. Round-2 cod-
ing took a few days for each of us to finish our separate
portion.

Step 5: Discussion after round-2 coding. We had one
more meeting to discuss our separate codes updated
in round-2 and reached consensus. The meeting took
about 1.5 hours. We finalized the codes after this step.

Step 6: Revisiting round-1 and round-2 coding. Based on
the updated codes from our discussion, we revisited
our round-1 and round-2 coding results, which took a
few hours for us to finish our respective portions. We
measured our inter-coder agreement after this step.

Step 7: Resolving disagreement. We discussed every con-
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flict in our coding results and reached an agreement.
Whenever there was a conflict, the two coders who
coded that particular response discussed and tried to
resolve it; if an agreement could not be reached, the
third coder was involved and voting was conducted if
necessary. We resolved the disagreement in a two-hour
meeting.

Measuring the reliability of our coding results. Reliability
is a prerequisite for ensuring the validity of the coding
results [1, 31]. The coding results are reliable if the coders
show a certain level of agreement on the categories assigned
to the coded instances (a.k.a., inter-coder agreement) [1, 31].

In this work, we use Krippendorff’s α [22, 31] to measure
the inter-coder agreement of our coding results. Krippen-
dorff’s α is a standard and flexible coefficient for measuring
inter-coder agreement [1, 22], which takes the form of:

α = 1− Do

De
(2)

where Do is the observed disagreement between coders and
De is the disagreement expected by chance. When coders
agree perfectly, α = 1; when coders agree as if chance had
produced the results, α = 0, which indicates the absence
of agreement [30]. The detailed methodology for calculating
Krippendorff’s α is described in prior work [30].

Our coding of the issue report data achieves a Krippen-
dorff’s α of 0.826. Krippendorff [31] suggests that α ≥ 0.800
indicates a reliable agreement. Thus, the result of our
manual coding is reliable.

Results
Table 8 shows the results of qualitative analysis: the ra-
tionale for logging or not logging exception stack traces.
We derived eight reasons for not logging exception stack
traces (i.e., the ones followed by a ↓ symbol), including
avoiding/downgrading stack trace for user errors, avoiding stack
trace in user interfaces, avoiding/downgrading stack trace for nor-
mal executions, avoiding flooding the logs, avoiding/downgrading
stack trace for expected exceptions, avoiding duplicated stack
traces, avoiding stack traces for security concerns, and reducing
performance overhead, ordered by their frequencies in our
studied issue reports. In addition, we derived four reasons
for logging exception stack traces (i.e., the ones followed
by a ↑ symbol), including assisting in general debugging,
logging stack trace for generic exceptions, reminding/alerting
severe runtime problems, and logging stack trace for unexpected
exceptions, ordered by their frequencies. Two reasons are
related to modifying the logging of exception stack traces
in general, including refactoring logging code and enhancing
the configurability of stack traces. Finally, there are 137 issue
reports that are not related to the logging exception stack
traces, though they are in the results of the keyword-based
filtering.
Exception stack traces should be avoided or logged at low
levels for user errors, normal executions, and expected
exceptions. The failure of an user operation can be caused
by either a software bug or a user error (e.g., providing the
wrong input or configuration). When the failure is caused
by a software bug, a stack trace can help developers find
the root cause of the bug. However, when the failure is
cased by a user error, what the user really needs is a

message alerting the usage problem. In this case, a stack
trace can not really help and it may negatively impact the
user’s experience. For example, in issue report HIVE-7737,
it is argued that the logging of stack traces when tables
cannot be found is “annoying” and “unnecessary”, because
the problem is usually caused by user errors. In addition,
developers argue that the logging of stack traces should
be avoided or downgraded when the exception is expected
or handled, or when the exception does not interrupt the
normal execution of software. For example, in issue report
CAMEL-6247, it is argued that the “ugly stack traces’ should
be avoided for “osgi blueprint shutdown” which does not
impact the normal execution.
Exception stack traces should be avoided in user in-
terfaces or when there is a security concern. Exception
stack traces are usually leveraged by developers to di-
agnose the root cause of a software bug. However, such
stack traces are undesirable in user interfaces (i.e., console,
STDOUT, STDERR) as the long stack traces can hide other
important information in the user interfaces. For example,
issue report HADOOP-15 suggests that stack traces “should
not be printed out” in the console when running Hadoop
key commands. In addition, as stack traces can expose
the implementation details in the source code, developers
should carefully avoid logging the stack traces when there
is a security concern. For example, in issue report AMQ-
7209, developers recommend that the stack traces for some
security-related exceptions should not be logged as they can
“leak some information about the implementation’.
Excessive logging of stack traces should be avoided as it
may pollute the logs and increase performance overhead.
As stack traces are usually much longer than regular log
messages, excessive logging of stack traces can grow log
files very fast, which can only only pollute the logs and
hide important log information, but also negatively impact
the performance of the software. For example, it is reported
in issue report KAFKA-1591 that unnecessary stack traces
can “easily pollute the log files”; issue report HDFS-4714
reported that the “major contributing factor” of a perfor-
mance slowdown is the long log messages that include full
stack traces. In addition, duplication of stack traces (e.g.,
caused by throwing and logging an exception at the same
time) should be carefully avoided as it leads to redundant
information.
Logging of stack traces for generic exceptions, severe
problems, and unexpected exceptions is recommended.
In general, developers add exception stack traces for de-
bugging purposes. In particular, it is recommended stack
traces be logged for generic exceptions (e.g., Throwable, Ex-
ception, Error). When an exception is caught by a catch block
that declares a generic exception class (i.e., a superclass),
it is not clear which specific exception (i.e., a subclass of
the generic exception or the superclass itself) has caused
the exception. Thus, logging the stack trace can provide
information about the specific exception information. For
example, in issue report KAFKA-6757, it is suggested to
log any “Throwable” exceptions (i.e., one type of generic
exceptions) as the specific causes of such exceptions are
unpredictable. In addition, logging of stack traces for severe
problems is recommended as as they can alert users of
such severe problems. For example, issue report HDFS-
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TABLE 8
The rationale for logging or not logging exception stack traces, derived from manually studying 385 issue reports that concern the logging of

exception stack traces.

Rationale1 Description (D) — Quote (Q) Freq.

Avoiding/downgrading stack
trace for user errors ↓

D: The logging of stack traces should be avoided or downgraded when the failures are caused
by users’ usage problems (e.g., invalid authentication or invalid syntax) instead of programming
bugs. 33
Q: [HIVE-7737] “Table not found is generally user error, the call stack is annoying and
unnecessary.”

Avoiding stack trace in
user interfaces ↓

D: Stack traces should not be printed in user interfaces (e.g., console, STDOUT, STDERR) as they
can pollute other important information in the user interfaces. 30
Q: [HADOOP-15] “Stack trace should not be printed out when running hadoop key commands.”

Avoiding/downgrading stack
trace for normal executions ↓

D: Logging stack traces for normal executions can confuse users as stack traces usually suggest
runtime issues 29
Q: [CAMEL-6247] “We should avoid ugly stacktraces for osgi blueprint shutdown which we
don’t care about.”

Avoiding flooding the logs ↓ D: Too much logging of stack traces can pollute the log files. 17Q: [KAFKA-1591] “Some of the unnecessary stack traces in error / warning log entries can easily
pollute the log files.”

Avoiding/downgrading stack
trace for expected exceptions ↓

D: Expected exceptions or well-handled exceptions may not need detailed stack traces 10Q: “Ensure handled ioexceptions are not propagated back to client”

Avoiding duplicated stack traces ↓ D: Duplicated logging of the stack trace of the same exception (e.g., caused by throwing and
logging an exception at the same time) should be avoided. 6

Q: [HADOOP-14] “When there’s no bucket ends up double-listing the stack trace, which is
somewhat confusing.”

Avoiding stack trace for
security concerns ↓

D: The logging of stack traces may leak information about security-sensitive code. 3Q: [AMQ-7209] “For security exceptions this can leak some information about the implementa-
tion.”

Reducing performance overhead ↓ D: Excessive logging of stack traces can slow down system performance. 1Q: [HDFS-4714] “The major contributing factor in slow down is the long namenode log message,
which includes full stack trace.”

Assisting in general debugging ↑ D: Stack traces can in general help developers and users find the root cause of an exception. 76Q: [HIVE-14368] “The stack trace will be really helpful for client to debug failed queries.”

Logging stack trace for
generic exceptions ↑

D: Logging the stack trace of a generic exception (e.g., Throwable, Exception, Error) can provide
the concrete exception information. 12
Q: [KAFKA-6757] “Log any ’Throwable’ in order to catch these unpredictable errors.”

Reminding/alerting severe
runtime problems ↑

D: Severe exceptions are those that may break normal executions of the system and that need
user attention or actions. However, users may not be aware of a severe exception if the stack
trace is not printed out in log files.

10

Q: [HDFS-12683] “The ZKFC should log fatal exceptions before closing the connections and
terminating server.”

Logging stack trace for
unexpected exceptions ↑

D: Stack traces can help understand the cause of an unexpected exception. 9Q: [AMQ-5879] “The full stack trace should be logged when a transport fails and the exception
is unexpected.”

Refactoring logging code D: Developers sometimes review and change the logging code to improve the logging quality in
general. 7

Q: “Improve the error loggings for printing the stack trace.”
Enhancing the configurability

of stack traces
D: Enabling users to turn on / off the logging of stack traces on demand. 5Q: [HADOOP-87] “Provide an option for IPC server users to avoid printing stack information
for certain exceptions.”

Irrelevant
D: Some issue reports resulted from the keyword searching are not related to the logging
of exception stack traces. For example, they may be related to using existing stack traces for
diagnosing a bug.

137

1 A ↑ symbol indicates a rationale for logging an additional stack trace or increasing the log level of a logged stack trace; a ↓ symbol indicates a
rationale for removing a previously-logged stack trace or reducing the log level of a logged stack trace.

12683 suggests to log the stack traces of “fatal exceptions”
that cause the closing of connections and termination of
the server. Finally, developers suggest the logging of stack
traces for unexpected exceptions, as opposed to the sug-
gestion of avoiding/downgrading stack traces for expected
exceptions. For instance, issue report AMQ-5879 suggests
that the full stack trace should be logged when a transport
fails unexpectedly.
In order to balance the benefits and costs of logging excep-
tion stack traces, it is recommended to allow developers
and users to turn on or off the logging of exception stack
traces on demand. As the logging of exception stack traces

come with many costs (e.g., flooding the logs), developers
recommend to enhance the configurability of stack traces by
providing users the flexibility to turn on/off the stack traces.
For example, issue report HADOOP-87 demands “an option
for IPC server users to avoid printing stack information for
certain exceptions”. However, existing logging frameworks
(e.g., SLF4j) do not provide such an option. We recommend
that future logging frameworks improve their flexibility by
allowing developers and users to configure the logging of
stack traces.
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: Summary of RQ2

Stack traces can help developers debug the cause
of an exception. However, developers should pay
extra attention when deciding whether to log the
stack trace of an exception. In particular, logging
of stack traces should be avoided or downgraded
for user errors, normal execution, expected excep-
tions, in user interfaces, or when there is a secu-
rity concern. On the other hand, logging of stack
traces for generic exceptions, severe problems, and
unexpected exceptions is recommended. In addition,
logging frameworks should improve their flexibility
by allowing developers and users to configure the
logging of stack traces.

3.3 RQ3. Which factors impact the logging of exception
stack traces?

Motivation
Logging the stack traces of exceptions is beneficial to de-
velopers in failure diagnosis. However, stack traces can
easily cause excessive logging and hide other important
information in logs. As discussed in RQ1, developers have
difficulties making appropriate logging of exception stack
traces in the first place and they make many changes to
adjust the logging of exception stack traces. As discussed in
RQ2, developers raise many concerns (in the form of issue
reports) regarding the logging of exception stack traces,
which indicates the logging of exception stack traces is an
important yet challenging task for developers. Therefore, in
this research question, we propose an automated solution
for suggesting the logging of exception stack traces and
study the factors that have the most important influence
in determining the logging of exception stack traces. We
build machine learning models to explain the logging of
exception stack traces using a set of metrics extracted from
the source code. However, the logging of exception stack
traces in the source code of the studied projects may not
be optimal, which can impact our results. We emphasize
that our models and findings are derived from the common
exception logging practices exhibited in the existing source
code of the studied projects. Developers can leverage such
an automated solution to guide their logging practices. The
understanding of the influential factors can provide insights
for future work to derive guidelines for the logging of
exception stack traces.

Approach
Based on our insights obtained from the results of RQ1 and
RQ2, we design a set of code metrics to explain the likeli-
hood of logging the stack trace of an exception. For each
studied project, we use the static code analysis approach
that is described in Section 2.3 to extract all the exception
logging statements in the source code and their contex-
tual information. For each exception logging statement, we
extract a set of code metrics that capture the contextual
information of the logging statement. Based on the extracted
metrics, we then build a machine learning model to explain
the relationship between the the likelihood of logging an

exception stack trace and the set of code metrics. Below, we
explain the code metrics that we extract for each exception
logging statement.

Code metrics. We extracted a number of code metrics for
each exception logging statement to explain the likelihood
of logging a stack trace in the logging statement. Table 9 lists
our code metrics for each exception logging statement and
explains our rationale for choosing each of these metrics.
These metrics fall into five dimensions:

• Logging statement metrics capture the characteristics
of an exception logging statement (e.g., log level) and its
local code context (e.g., whether the logging statement
is inside a loop). As discussed in RQ1, the log level of an
exception logging statement impacts the likelihood of
logging an exception stack trace. More importantly, the
impact of logging an exception stack trace or not largely
depends on the log level, for example, logging an excep-
tion stack trace at the trace level may have a negligible
impact as the stack trace is usually not printed (i.e., the
trace level logging statements are usually suppressed at
runtime), while logging an exception stack trace at the
info level could have a much larger impact. Besides,
the log level can be useful in the models for automated
suggestions of exception stack trace logging, as the log
level is typically specified earlier than the exception
stack trace in a logging statement.
In addition, the local context of exception logging state-
ments may impact the likelihood of logging the stack
trace. For example, those within a loop may be less
likely to log the stack traces as they may flood the logs
(as discussed in RQ2).

• Exception metrics capture the characteristics of the
exception that is caught by the containing catch block of
an exception logging statement. As discussed in RQ1,
the characteristics of the exception (e.g., exception type
and exception source) statistically significantly impact
the likelihood of logging the stack trace. If there are
multiple exceptions caught by the same catch block
(which only accounts for 2% of the cases), we use the
first one.

• Catch block metrics capture the characteristics of the
containing catch block of an exception logging state-
ment. As discussed in RQ2, developers suggest that
expected or well-handled exceptions should avoid or
downgrade the logging of stack traces. We measure the
number of lines of code and the number of method calls
before and after the exception logging statement, as-
suming that more lines of code or method calls indicate
that an exception is expected and handled.

• Exception-throwing method metrics capture the char-
acteristics of the method in the try block that can
throw the caught exception (i.e., declared in the throws
clause). As discussed in RQ2, the logging of exception
stack traces should be avoided or downgraded for user
errors, normal executions, security concerns, and it is
recommended for severe runtime problems. We assume
that the characteristics of the method that throws the
exception can capture some of these information. For
example, the method may indicate the severity of the
exception thrown by the method. If there are multiple
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TABLE 9
Selected code metrics that are relevant to the likelihood of logging the stack trace of an exception in an exception logging statement.

Dimension Metric Definition (D) — Rationale (R)

Logging
statement

metrics

Log level D: The verbosity level of the logging statement
R: Logging statements at certain levels (e.g., info) are less likely than other levels to log stack traces (see
Section 3.1)

Log in loop
D: Is the logging statement contained in a loop?
R: Logging statements in loops are more likely to produce excessive logging [35] thus might be less likely to log
stack traces

Log in branch D: Is the logging statement contained in a branch inside the containing catch block?
R: Logging statements in a branch might be related to a branching condition instead of the exception [18]

Exception
metrics

Exception
type

D: Type of the exception that is caught by the containing catch block
R: Some exception types are more likely than others to be logged with a stack trace (see Section 3.1)

Exception
source

D: Source of the exception (i.e., JDK, libraries, or the studied project)
R: Problems related to different sources might be handled differently (e.g., logging the stack trace or not)

Exception
package

D: The containing package of the exception class
R: Exceptions that are defined in the same package might indicate similar problems thus being handled similarly

Catch
block

metrics

LOC before
logging

D: Number of lines of code in the containing catch block that are prior to the logging statement
R: A logging statement that is further from the start of a catch block might be less related to the caught exception

LOC after
logging

D: Number of lines of code in the containing catch block that are after the logging statement
R: Indicates how well the exception is handled. Well-handled exceptions are less likely to need stack traces for
debugging

Method calls
before logging

D: Number of method calls in the containing catch block that are prior to the logging statement
R: A logging statement that is more operations from the start of a catch block might be less related to the caught
exception

Method calls
after logging

D: Number of method calls in the containing catch block that are after the logging statement
R: Indicates how well the exception is handled

Exception-
throwing
method
metrics

Exception
method

d: The method that may have thrown the caught exception, or the containing method if the exception is thrown
by the try block
r: The exceptions that are triggered by the same method call might be logged in similar ways

Exception
method source

d: The source of the exception-throwing method (i.e., from the JDK, libraries, or the studied project)
r: Exceptions that are triggered by different sources might have different level of severity

Exception
method package

d: The containing package of the method that may have thrown the exception
r: Exceptions that are triggered by methods from the same package might be logged in similar ways

Containing
code

metrics

Containing
file

D: The containing file of the logging statement
R: Logging statements in the same file might share similar logging patterns [35]

Containing
package

D: The containing package of the logging statement
R: Logging statements in the same package might share similar logging patterns

methods that can throw the caught exception (which
accounts for 28% of the cases), we use the first one.

• Containing code metrics capture the characteristics of
the code units that contain the exception logging state-
ment, including the containing file and the containing
package. We assume that exception logging statements
in the same files or packages may exhibit similar pat-
terns of logging exception stack traces no not.

Model fitting. Using these code metrics as explanatory
variables, we train random forest models to suggest the
likelihood of logging an exception stack trace in an excep-
tion logging statement. We choose random forest models for
three reasons: 1) many of our code metrics are categorical
variables (e.g., the exception type), and a tree-based model
such as random forest can handle such categorical vari-
ables naturally; 2) random forest is naturally robust against
overfitting [7] and it usually perform very well in software
engineering tasks [19, 38]; and 3) random forest provides us
a way to do sensitivity analysis on the metrics so that we
can understand the most influential factors for explaining
the likelihood of logging exception stack traces [7, 39]. We
use a 10-time repeated 10-fold cross-validation to estimate
the efficacy of our models. In each repetition of a 10-fold
cross-validation, the whole data set is randomly partitioned
into 10 sets of roughly equal size. One subset is used as the
testing set (i.e., the held-out set) and the other nine subsets
are used as the training set. We train our models using the
training set and evaluate the performance of our models

on the held-out set. We use precision, recall, and AUC
(Area Under the ROC Curve) to measure the performance
of our models. The process repeats 10 times until all subsets
are used as testing set once. We repeat the 10-fold cross-
validation 10 times. In total, 100 different held-out sets are
used to estimate the efficacy of our models.
Variable importance. We measure the importance of a
variable by permuting the values of the variable while
keeping the values of the other variables unchanged in the
testing data (i.e., the so-called “OOB” data) [7, 39]. The
importance score of a variable measures the impact of such
a permutation of the variable on the classification error rate.
For each of the 100 folds in our repeated 10×10-fold cross-
validation, we measure the importance score of each of our
metrics (i.e., variables in the model). As a result, we get 100
importance scores for each metric.
Double Scott-Knott clustering. In order to understand the
important factors that explain the likelihood of logging an
exception stack trace, we compare the average importance
of our metrics in the random forest models. However, the
differences among the importance of some metrics might
actually be due to random variability. Therefore, for each
studied project, we use a Scott-Knott (SK) algorithm [53] to
partition all the metrics into statistically ranked groups. The
SK algorithm hierarchically cluster the metrics into groups
and uses the likelihood ratio test to judge the significance of
the difference of the importance scores among the metric
groups [24]. Specifically, the SK algorithm first sorts the
metrics by their means and creates k-1 (k is the number
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of metrics) candidate 2-group partitions formed by dividing
the metrics between two successive ones. Then, the partition
with the maximum between-groups-sum-of-squares is cho-
sen and a likelihood ration test is performed to determine
if the two groups resulted from the partition are statistically
significantly different. The two groups are kept if the test
shows statistical significance. The process repeats for the
partitioned groups in a top-down manner until statistically
distinct group of metrics are produced, i.e., the importance
scores of the metrics in two different groups are significantly
different (i.e., p-value < 0.05), while the importance scores
of the metrics within the same group are not significantly
different (i.e, p-value ≥ 0.05).

Each metric might have different importance ranks in
different projects. Therefore, we use another SK clustering
to further group the metrics into ranked groups by sta-
tistically comparing their ranks in different projects (a.k.a.,
double Scott-Knott clustering [19, 57]). As a result, we get
an overall rank of each metric’s importance across all the
studied projects for determining the likelihood of logging
an exception stack trace.

Results
Our code metrics can accurately explain the likelihood of
logging a stack trace in an exception logging statement,
with an average precision of 0.87, an average recall of
0.87, and an average AUC of 0.88. Table 10 shows the per-
formance of our random forest models for the ten studied
projects. The results indicate that our models can accurately
distinguish exception logging statements that need to log
stack traces and that do not. Our models also achieve
fairly consistent performance on the studied projects (i.e.,
a precision of 0.83 to 0.90, a recall of 0.83 to 0.91, and an
AUC of 0.83 to 0.93). Table 10 also shows the performance
of our random forest models when only considering the
top-ranked metrics (i.e., the metrics that are ranked in the
first group from our double Scott-Knott results, as shown
in Figure 14). Using only the five top-ranked metrics, the
models achieve an average precision, recall, and AUC of
0.86, 0.82, and 0.84, respectively. The results indicate that
using only a few metrics can achieve a relatively accurate
suggestion of whether to log a stack trace in an exception
logging statement. Developers can leverage the accurate
models to guide their logging practices. For example, the
models can be applied directly to data from new source code
to provide automated suggestions on whether an exception
logging statement needs to log a stack trace. In the future,
we plan to integrate the models into an IDE plugin to
provide real-time coding suggestions.
The type of an exception and the method that throws
the exception are among the most important factors for
explaining the likelihood of logging the stack trace of the
exception. Figure 14 shows the ranks of the importance of
our metrics in our random forest models. The exception type
and the exception package metrics from the exception metrics
dimension are ranked in the first and the second groups
by their importance, respectively. Similarly, the exception
method package and the exception method metrics from the
exception-throwing method metrics dimension are ranked in
the first and the second groups, respectively. The type of
an exception and the method that throws the exception

TABLE 10
The performance of our random forest models for suggesting the

likelihood of logging a stack trace in an exception logging statement.

Project With all metrics With 5 top-ranked metrics
Precision Recall AUC Precision Recall AUC

Hadoop 0.83 0.83 0.86 0.82 0.79 0.83
DirectoryServer 0.85 0.84 0.93 0.85 0.79 0.90
Hive 0.86 0.86 0.89 0.85 0.80 0.85
ZooKeeper 0.88 0.88 0.84 0.86 0.83 0.79
Kafka 0.87 0.88 0.86 0.86 0.79 0.78
QpidBroker 0.87 0.89 0.83 0.88 0.81 0.80
ActiveMQ 0.90 0.91 0.87 0.89 0.88 0.84
Camel 0.90 0.89 0.93 0.88 0.87 0.89
CloudStack 0.88 0.87 0.90 0.85 0.81 0.86
JMeter 0.88 0.89 0.90 0.84 0.83 0.86

Average 0.87 0.87 0.88 0.86 0.82 0.84
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Fig. 14. The distribution of the importance ranks of the metrics in the
studied projects. A box-plot shows the distribution of the importance
ranks of a metric in the studied projects. A red diamond indicates
the average rank of a metric in the studied projects. The overall rank
indicates the overall importance rank of a metric across all the studied
projects (i.e., the double Scott-Knott ranking results).

capture the nature and the severity of the exception. We
recommend that organization-wide or global guidelines for
logging exception stack traces should be derived primarily
based on the exception type and the method that throws the
exception.
The containing files and packages also play one of the
most important roles in explaining the likelihood of
logging exception stack traces. As shown in Figure 14, the
containing file and containing package metrics from the dimen-
sion of containing code metrics are ranked in the first group
for determining whether an exception logging statement
need to log a stack trace or not. In other words, these projects
tend to follow similar logging practices (i.e., in terms of
logging stack traces) within the same files and packages.
However, the consistent logging practices within the same
files or packages may be due to the lack of company-wide
or global guidelines, thus developers tend to follow similar
practices in the same files or packages.
The log level of an exception logging statement is also
a top influential factor for explaining the likelihood of
logging a stack trace in the logging statement. As shown in
Figure 14, the log level metric from the dimension of logging
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statement metrics is ranked as one of the most important
metrics (i.e., ranked in the first group) in our random forest
models. As discussed in Section 3.1, developers are less
likely to add stack traces in logging statements with some
levels (e.g., info) than in logging statements with other lev-
els (e.g., warn). Therefore, guidelines for logging exception
stack traces should consider the log level as an important
factor.
The lines of code in the exception catch block after the
exception logging statement is an influential factor for the
logging of exception stack traces. As shown in Figure 14,
the LOC after logging metric from the dimension of catch block
metrics is ranked in the second group in our random forest
models. LOC after logging can be considered as an indicator
of how well the exception is handled. As discussed in RQ2,
the logging of stack traces should be avoided or down-
graded for expected or well-handled exceptions. Therefore,
guidelines for logging exception stack traces should also
consider the exception handling code.

: Summary of RQ3

As it is challenging for developers to make appro-
priate decisions for the logging of exception stack
traces, they can leverage our random forest models
to provide automated suggestions. Developers tend
to follow similar practices for logging exception
stack traces within the same files or packages, which
may be due to the lack of company-wide or global
guidelines. Our results suggest that the exception
type and the method that throws the exception
should be considered as the primary factors for
determining the logging of exception stack traces.
The log level and how well the exception is handled
should also be considered when making such deci-
sions. Such influential factors offer insights for future
research and practices to derive global or company-
wide guidelines for the logging of exception stack
traces.

4 THREATS TO VALIDITY

External validity. This work performs a case study on ten
open-source Java projects. Our findings may not generalize
to other projects. In particular, as the number of stack trace
modifications is relatively small across the studied projects,
our findings in RQ1 regarding how developers modify the
logging of exception stack traces may not generalize to other
projects. Considering a wider range of projects, in particular,
closed-sourced projects and non-Java projects, could benefit
the results of our work. To mitigate the generalizability
issue, we selected eight different types of projects (e.g.,
distributed computing and network server) as our subject
projects. We also ensured that our selected projects are ma-
ture projects with many years of development history, such
that our findings represent state-of-the-art logging practices
of successful long-lived projects.

This work studies the practices of logging exception
stack traces through examining the source code, code
change history, and issue reports of open-source software
projects. In the future, we will validate our findings through

communications with developers. Specifically, we will share
our findings with developers in the open-source community
and perform a survey of developers to validate our findings,
as well as further understand their challenges and identify
opportunities to help them improve their practices.
Internal validity. The internal validity of our findings is
concerned with correlation vs. causation. In RQ1, we study
the correlation between the likelihood of logging a stack
trace in a logging statement and the context information of
that logging statement (e.g., the log level, and the exception
type). However, the correlation does not necessarily suggest
causation. For example, developers may not necessarily con-
sider log levels or exception types when logging stack traces.
In RQ3, we analyze the important factors in our models
that impact the logging of exception stack traces. However,
the important factors in the models are not necessarily the
actual drivers behind developers’ decisions of whether to
log the stack trace of an exception.

In RQ3, we build machine learning models to explain
the logging of exception stack traces using a set of metrics
extracted from the source code. Although we studied ma-
ture projects with many years of development history, the
logging of exception stack traces in the source code of these
projects may not be optimal, which can impact our models
and our findings derived from them. This is a common
issue in empirical studies of logging that are based on the
source code. We call for future collaborative efforts among
researchers and practitioners to derive polished versions of
logging code to improve the studies of software logging,
including our work.
Construct validity. In RQ1, we derive our findings from
quantitatively analyzing the code and the code change his-
tory. We explained some of our quantitative findings (e.g.,
generic exceptions, JDK and third-party-defined exceptions
are more likely than other exceptions to be logged with
a stack trace) based on our expertise and intuition. Other
researchers may have different explanations for the quali-
tative results. Nevertheless, in RQ2, we performed a large-
scale qualitative study of related issue reports, in order to
understand why developers log or not log exception stack
traces.

In RQ2, we performed a qualitative analysis on 385
issue reports that are related to the logging of exception
stack traces, in order to understand why developers log
or not log exception stack traces. Other research methods
(e.g., surveys or interviews) may also be used to study
developers’ rationale for logging or not logging exception
stack traces. We opted for studying the issue reports instead
of conducting surveys or interviews as issue reports provide
better context about developers’ rationale for logging or not
logging specific exception stack traces. In order words,
issue reports communicate developers’ concerns on their
familiar code in a real development scenario. In contrast,
surveys or interviews may not provide such a real and spe-
cific context and developers may not pay their full attention
in a survey or interview.

In RQ3, we extract a set of code metrics and construct
random forest models to explain the likelihood of logging
an exception stack trace. Selecting other code metrics or
other models may lead to different results. Nevertheless,
using the selected code metrics and the random forest
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models, we achieve an average precision, recall and AUC
of 0.87, 0.87 and 0.88, respectively, which suggest that
our analysis of the important factors is based on accurate
models. Some of the code metrics (e.g., containing file and
containing package) used for building the models cannot
apply to different projects, thus, a model trained from one
project cannot be applied to a different project. However,
the insights derived from the models are general among the
studied projects, e.g., the exception type and the method
that throws the exception are among the most important
factors for explaining the likelihood of logging the stack
trace of the exception. Such general insights can benefit
future research and practices in deriving global or company-
wide guidelines for the logging of exception stack traces.
Other limitations. Some of our findings may be known to
the researchers and practitioners in the community. Never-
theless, there exists no prior work that studied the problem
or collected data to demonstrate these findings. Besides, de-
velopers’ faced challenges in the logging of exception stack
traces indicate the need to help them better understand the
“seemly obvious” observations and improve their practices.
As we discussed in RQ1 and RQ2, developers still have
difficulties making appropriate logging of exception stack
traces and they make many changes to adjust their logging
of exception stack traces, sometimes back-and-forth, and
they raised many concerns (in the form of issue reports)
regarding the logging of exception stack traces. Thus this
work makes the first effort to study the practices of log-
ging exception stack traces, aiming to raise awareness of
the importance of the problem and help developers and
researchers better understand the practices.

5 RELATED WORK

In this section, we discuss prior studies that examined soft-
ware logging practices, proposed automated solutions for
logging improvement, and that studied exception handling
in the source code.
Empirical studies of logging practices. Fu et al. [18] and
Pecchia et al. [49] studied the logging practices in industrial
software projects. Fu et al. [18] investigated what types of
code snippets were logged and analyzed the factors that
impact developers’ logging decisions. Pecchia et al. [49]
observed that the logging practices are strongly developer
dependent, and highlights the need to establish standard
company-wide logging practices. Yuan et al. [61], Chen et
al. [8], Kabinna et al. [27, 28] and Shang et al. [55] studied
the evolution of logging code in open-source projects. They
observed that developers spend many efforts on updating
their logging code (e.g., modifying logging statements or
upgrading logging libraries). Chen et al. [9] and Hassani
et al. [21] characterized logging-related issues in open-
source projects and proposed automated solutions to detect
logging-related issues. Recently, Li et al. [34] performed a
qualitative study on the benefits and costs of logging in
general, which found that developers consider a wide range
of benefits and costs when making their logging decisions.
Our work complements the existing studies by studying
the practices of logging exception stack traces, which is an
important yet under-investigated area.

Automated solutions for logging improvements. Yuan et
al. proposed Errlog [60] and LogEnhancer [62] that proac-
tively log additional log information to the source code. Er-
rlog [60] detects unlogged exceptions (abnormal or unusual
conditions) and automatically insert the missing logging
statements. LogEnhancer [62] automatically adds causally-
related information on existing logging statements to aid in
future failure diagnosis. Prior studies also leverage statisti-
cal models to learn where to log. LogAdvisor [63], LogOpt [32],
SmartLog[25] and Li et al. [33] extracted contextual features
of a code snippet (e.g., a exception catch snippet), then
learned statistical models to suggest whether a logging
statement should be added to such a code snippet. Our
work is different from the “where to log” papers from
two important aspects. First, our work suggests whether an
exception logging statement needs a stack trace, whereas
the “where to log” approaches suggest which code snippet
needs a logging statement. Second, although some of our
features (e.g., exception type) are similar to the ones used in
the “where to log” approaches, most of our features are very
different. Li et al. [35] also proposed an approach to automat-
ically suggest the most appropriate log level for a logging
statement, based on its contextual features. Similarly, a
recent study by Li et al. [37] leverages deep neural networks
to suggest log levels. In addition, prior work proposed
approaches to automatically suggest the content of logging
(e.g., log variables [40] and log text [23]). In addition to prior
work, our work proposes an automated solution to help
developers make informed decisions for logging the stack
trace of an exception. Our work encourages future work on
automated solutions for logging improvements to consider
the aspect of logging exception stack traces, as stack traces
can usually grow log files much faster than regular log
messages, which can leverage the insights provided in this
work (e.g., the factors that impact the logging of exception
stack traces).
Studies on exception handling practices. There are many
studies on the handling of exceptions in the source code.
Prior studies examined exception handling practices and
patterns in the source code [11, 12, 13, 42, 44, 54, 58].
For example, Nakshatri et al. [44] studied exception han-
dling patterns in open-source Java projects. They found
that logging and printing stack traces are two of the top
operations for exception handling, which reflects the im-
portance of studying the logging of exception stack traces.
De Pádua et al. [11] studied exception handling practices
in Java and C# projects. They found that only a small
portion of exceptions are handled in a specific way, while the
majority of exceptions are handled with a generic strategy
(i.e., handling generic exceptions instead of specific excep-
tions). Our work recommends that stack traces should be
logged for such generic handling strategy. Sena et al. and De
Pádua et al. studied exception handling anti-patterns [54]
and the prevalence of the anti-patterns [12]. Prior work
also studied program bugs that are related to exception
handling [10, 15, 16, 29, 47]. For example, Ebert et al. [15, 16]
studied exception handling bugs in Java programs and
proposed a classification of exception handling bugs (e.g.,
general catch block). In addition, prior work proposed ap-
proaches to improve the adoption of exception handling
policies [4, 43] and recommend exception handling strate-
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gies [36] or code [2, 3, 46]. While these studies focus on
exception handling practices in the source code and their
impact on program behaviors, we studied the handling
of exceptions from the logging point of view, which has
a minimum impact on the source code but poses a large
impact on the generation, analysis, and management of log
data.

6 CONCLUSIONS

Logging of exception stack traces is a popular practice in
open-source projects. However, due to the lack of guide-
lines, developers log the exception stack traces in an ad
hoc manner and they make many changes to modify their
logging of exception stack traces. Through a comprehensive
study of the source code, code change history, and issue
reports of ten open-source Java projects, we present a first
picture of developers’ practices of logging exception stack
traces. We recommend that developers should pay extra
attention when deciding whether to log the stack trace of
an exception. In particular, logging of stack traces should be
avoided or downgraded for user errors, normal execution,
expected exceptions, in user interfaces, or when there is a se-
curity concern. On the other hand, logging of stack traces for
generic exceptions, severe problems, and unexpected excep-
tions is recommended. We encourage that guidelines for the
logging of exception stack traces be developed company-
wide or globally, which should consider several important
factors such as the exception type, the method that throws
the exception, and the log level. We also recommend that
logging frameworks improve their flexibility by allowing
developers and users to configure the logging of stack traces
on demand.
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