
DeepLV: Suggesting Log Levels Using Ordinal
Based Neural Networks

Zhenhao Li∗, Heng Li†, Tse-Hsun (Peter) Chen∗, and Weiyi Shang∗
∗Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

{l zhenha, peterc, shang}@encs.concordia.ca
†Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montreal, Canada

heng.li@polymtl.ca

Abstract—Developers write logging statements to generate logs
that provide valuable runtime information for debugging and
maintenance of software systems. Log level is an important
component of a logging statement, which enables developers
to control the information to be generated at system runtime.
However, due to the complexity of software systems and their
runtime behaviors, deciding a proper log level for a logging
statement is a challenging task. For example, choosing a higher
level (e.g., error) for a trivial event may confuse end users and
increase system maintenance overhead, while choosing a lower
level (e.g., trace) for a critical event may prevent the important
execution information to be conveyed opportunely. In this paper,
we tackle the challenge by first conducting a preliminary manual
study on the characteristics of log levels. We find that the
syntactic context of the logging statement and the message to
be logged might be related to the decision of log levels, and
log levels that are further apart in order (e.g., trace and error)
tend to have more differences in their characteristics. Based on
this, we then propose a deep-learning based approach that can
leverage the ordinal nature of log levels to make suggestions on
choosing log levels, by using the syntactic context and message
features of the logging statements extracted from the source code.
Through an evaluation on nine large-scale open source projects,
we find that: 1) our approach outperforms the state-of-the-art
baseline approaches; 2) we can further improve the performance
of our approach by enlarging the training data obtained from
other systems; 3) our approach also achieves promising results
on cross-system suggestions that are even better than the baseline
approaches on within-system suggestions. Our study highlights
the potentials in suggesting log levels to help developers make
informed logging decisions.

Index Terms—logs, deep learning, log level, empirical study
I. INTRODUCTION

Software logs have been widely used in practice for various
maintenance activities, such as testing [1]–[5], failure diagno-
sis [6]–[9], and program comprehension [10], [11]. Developers
insert logging statements in the source code with different
verbosity levels (e.g., trace, debug, info, warn, error, and
fatal) to record system execution information and values of
dynamic variables. For example, in the logging statement:
LOG.info(“stopping server ”, + serverName), the static text
message is “stopping server ”, and the dynamic message is the
value of the variable serverName. The logging statement is at
the info level, which is the level for recording informational
messages that highlight the progress of the application at a
coarse-grained level [12].

Log levels enable developers to only print important log
messages (e.g., error or warning information) at runtime while

suppressing less important messages (e.g., debug messages).
It is important for developers to choose the right log levels
for their logging statements. On one hand, choosing a lower
log level (e.g., debug) for a critical event can hide important
runtime information and make it difficult to diagnose runtime
failures [8]. On the other hand, choosing a higher level (e.g.,
warn) for a trivial event can confuse end users and increase
the overhead of log management and analysis [13].

However, it is usually challenging for developers to choose
a proper log level for the logging statements [13]–[16]. Prior
studies shows that developers may not have sufficient under-
standing of the runtime behaviors of their systems and the pur-
poses of different log levels [13], [15], leading to suboptimial
choices of log levels. In particular, prior work [13], [14], [16]
observes that developers spend significant efforts in modifying
the levels of existing logging statements, as it is challenging
for them to make the right decisions in the first place.

In this paper, we conduct a study to help developers make
informed decisions on deciding proper log levels. Through a
preliminary manual study on the logging statements from nine
open source systems, we find that the decisions of log levels
might be related to the locations of the logging statements
and the messages to be recorded, and log levels that are
further apart in order (e.g., trace and error) tend to have more
differences in their characteristics of locations and messages.
We then extract syntactic context features (to represent the
location information) of the logging statements as well as their
log messages, and propose a deep-learning based approach
to automatically suggest log levels. Unlike other multi-class
classification tasks which consider the classes as independent,
log levels have an ordinal nature, i.e., the levels preserve an
order among each other. Therefore, we ordinally encode the
log levels to capture their ordinal nature.

We evaluate our approach on nine large-scale open source
systems and compare the results with two baseline approaches:
a state-of-the-art ordinal regression approach from a prior
study [16]; and a deep-learning based approach with standard
one-hot encoding. We find that, our models trained using
the syntactic context feature achieve an average AUC of
80.8, outperforming our models trained using the log message
feature (i.e., with an average AUC of 71.5) in suggesting log
levels. Combining both features in our approach would lead
to the best performance (i.e., with an average AUC of 83.7).

1

Trained from either the syntactic context feature (i.e., without
log message feature) or the combined feature (i.e., with log
message feature), our approach outperforms both baseline
approaches in all the studied systems. By further studying the
results of our approach, we find that the syntactic context and
combined features have a similar capability of distinguishing
different log levels; while the log message feature may only
be useful for specific levels such as error and warn.

Finally, we evaluate the benefit and applicability of using
data from other systems to enlarge the training data. We find
that by carefully choosing the training dataset from other
systems, the results of our approach can be further improved.
In addition, our approach can achieve encouraging results
on cross-system suggestions (e.g., on average 93.8% of the
accuracy of within-system suggestions), which still outperform
the baseline approaches on within-system suggestions.

The contributions of this paper are as follows:
• We propose an automated deep-learning based approach

that leverages the ordinal nature of log levels to make
suggestions on choosing log levels1. Our approach out-
performs the existing state-of-the-art approaches in sug-
gesting log levels.

• Our approach have encouraging cross-system suggestion
results, which can benefit the systems without long de-
velopment histories.

• Our manual study results can be leveraged as guidelines
in future research on suggesting and improving log levels.

In short, our findings highlight the potentials of leverag-
ing the characteristics of logging statements in suggesting
log levels that can help developers make informed logging
decisions. Our results also reveal the challenges and future
research directions in assisting developers with logging.
Paper Organization. Section II discusses the setup and results
of manually studying the characteristics of log levels. Sec-
tion III describes our deep learning approach on suggesting
log levels. Section IV presents the evaluation results of our
approach by answering three research questions. Section V
discusses the threats to the validity of our study. Section VI
summarizes the related work. Section VII concludes the paper.

II. PRELIMINARY STUDY ON LOG LEVELS

A. An Overview of the Studied Systems

Studied Systems. We conduct the study on nine large-scale
open source Java systems. Table I shows an overview of
the systems. The studied systems are in various sizes (LOC
from 97K to 1.5M, and NOL from 0.4K to 5.5K), have high
quality logging code, are commonly used in prior log-related
studies [17]–[20], and cover various domains (e.g., database
systems and search engines).
Log Level Distribution. Table I shows the distribution of the
log levels in the studied systems. We find that many logging
statements are used to show potential issues during system

1We share the data of this paper in the repository: https://github.com/
SPEAR-SE/ICSE2021 Log Level Data.

TABLE I
AN OVERVIEW OF THE STUDIED SYSTEMS AND THEIR LOG LEVEL

DISTRIBUTIONS (%)

System Version LOC NOL Trace Debug Info Warn Error Fatal
Cassandra 3.11.4 432K 1.3K 16.7% 10.9% 15.8% 16.8% 39.8% 0.0%
ElasticSearch 7.4.0 1.50M 2.5K 28.5% 32.4% 10.0% 19.2% 9.9% 0.0%
Flink 1.8.2 177K 2.5K 1.0% 30.8% 26.6% 23.7% 17.9% 0.0%
HBase 2.2.1 1.26M 5.5K 7.4% 17.3% 17.1% 24.4% 33.8% 0.0%
JMeter 5.3.0 143K 1.9K 0.7% 29.9% 16.9% 26.5% 26.0% 0.0%
Kafka 2.3.0 267K 1.5K 12.9% 28.5% 20.4% 15.3% 22.9% 0.0%
Karaf 4.2.9 133K 0.8K 0.9% 21.9% 23.1% 30.0% 23.6% 0.5%
Wicket 8.6.1 216K 0.4K 2.2% 39.3% 7.6% 28.5% 22.4% 0.0%
Zookeeper 3.5.6 97K 1.2K 2.2% 18.3% 19.3% 35.3% 24.9% 0.0%
Average —— 469K 2.0K 8.0% 25.5% 17.5% 24.5% 24.4% 0.1%

Note: LOC refers to the lines of code, NOL refers to the number of logging
statements.

execution (i.e., on average 24.5% are at the warn level and
24.4% are at the error level). Note that, in modern logging
frameworks such as SLF4J, fatal level is removed due to
its redundancy with other log levels such as error [21]. As
we found in the studied systems, only Karaf contains some
logging statements with fatal level and the number is very
small (only 0.5%). Therefore, we focus our study on the other
log levels. We find that there is also a large proportion of the
logging statements that are used for debugging (i.e., 25.5% for
debug). As mentioned by the instruction of SLF4J, the trace
level is not recommended since it has a high overlap with
the debug level [21]. Hence, it may be the reason that some
systems have noticeably fewer logging statements at the trace
level. In general, there are fewer logging statements that show
the general system execution (i.e., 17.5% are at the info level).
Our preliminary findings show that the studied systems have
a different distribution of log levels, and the levels are not
evenly distributed. Therefore, suggesting log levels accurately
either within the same or cross systems is a challenging task.

B. Investigating Log-level-related Issues

We collect the most recently resolved issue reports (from
Jan. 2020 to Jul. 2020) in the bug tracking systems of our
studied systems, and identify the log-related issue reports by
examining if there are changes or patches on logging state-
ments (106 issue reports in total). We then manually examine
the changes and the discussions in those issue reports. We
find that a large portion (45/106, 42.5%) of the issue reports
have changes or discussions on log levels. Specifically, for
23/45 (51.1%) of the log-level-related issue reports, developers
suggested changes of log levels on existing logging statements.
For 22/45 (48.9%) of the log-level-related issue reports, devel-
opers suggested adding new logging statements and mentioned
the reasons of the log levels of those newly added logging
statements based on their execution point and the messages.
In short, the proper choice of log levels is important and
is actively considered by developers in both processes of
improving existing logging statements and composing new
ones. Both the locations and the messages of the logging
statements might be important for deciding log levels.

C. Manually Studying the Characteristics of Log Levels

Prior work [13], [14], [16] found that developers spend
significant efforts modifying the levels of existing logging

2

statements that were inserted previously, and they tend to
evaluate the impact of their logging statements and adjust their
log levels over time [13]. Motivated by the prior studies and
our investigation on log-level-related issue reports, we conduct
a manual study to investigate the characteristics of different
log levels, in order to better provide supports for developers
on deciding log levels. In particular, we study the message and
location of a logging statement to investigate if a log level is
implicitly or explicitly related to the context information or
the log message of the logging statement.

Manual Study Process. To prepare the data for our manual
study, we first extract the logging statements from the source
code using static analysis. We identify the method invoca-
tion statements that invoke common logging libraries (e.g.,
Log4j [12] and SLF4J [21]). Then, for each identified logging
statement, we extract its log message (including static message
and dynamic variables), verbosity level, and the method that
contains the logging statement. In total, we extract 17.6K
logging statements from the nine studied systems. Then, we
randomly sample 376 out of 17.6K logging statements based
on a 95% confidence level and a 5% confidence interval [22].
We apply stratified sampling to ensure the distribution of
logging statements from different systems and their log levels
in the sampled data is the same as the complete data [23]. Our
manual study contains the following three phases:

Phase I : We leverage the categories of logging locations
and messages that were derived in prior studies [24], [25]. Two
authors of this paper (i.e., A1 and A2) use the categories to
categorize 100 randomly sampled logging statements collabo-
ratively. During this phase, the categories of logging locations
and log messages are revised and refined. In the end, we
reused and revised three categories of logging locations and
three categories of log messages. We also derived two new
categories of logging locations in this phase.

Phase II : A1 and A2 independently categorized the rest of
the sampled logging statements (276 logging statements) by
using the categories derived in Phase I.

Phase III : A1 and A2 compared the results from Phase
II. Any disagreement of the categorization was discussed until
reaching a consensus. No new categories were introduced dur-
ing the discussion. The results in this phase have a substantial-
level of agreement [26] for both of the categorizations of
logging location and log message (Cohen’s Kappa of 0.82 and
0.88 for logging location and log message, respectively).

Manual Study Results. Table II shows the distribution of
the categories of logging locations and log messages for
different log levels. Each row represents the number of logging
statements that belong to each category, and each column
represents the number of logging statements with each log
level. The percentage in each cell shows the ratio between the
logging statements out of the total sampled logging statements
with the corresponding log level. Below, we discuss the results
by each category.

TABLE II
THE DISTRIBUTION OF THE CATEGORIES OF LOGGING LOCATIONS AND

LOG MESSAGES FOR EACH LOG LEVEL

Category Trace Debug Info Warn Error

Location

CT 2/39 (5.2%) 4/88 (4.6%) 12/70 (17.2%) 37/89 (41.6%) 52/90 (57.8%)

LB 14/39 (35.9%) 33/88 (37.5%) 29/70 (41.4%) 50/89 (56.2%) 31/90 (34.5%)

LP 3/39 (7.7%) 4/88 (4.6%) 1/70 (1.4%) 0/89 (0.0%) 0/90 (0.0%)

MT 10/39 (25.6%) 14/88 (15.8%) 6/70 (8.6%) 1/89 (1.1%) 3/90 (3.3%)

OP 10/39 (25.6%) 33/88 (37.5%) 22/70 (31.4%) 1/89 (1.1%) 4/90 (4.4%)

Message

OD 24/39 (61.5%) 42/88 (47.7%) 49/70 (70.0%) 27/89 (30.3%) 1/90 (1.1%)

VD 15/39 (38.5%) 37/88 (42.1%) 6/70 (8.6%) 7/89 (7.9%) 1/90 (1.1%)

ND 0/39 (0.0%) 9/88 (10.2%) 15/70 (21.4%) 55/89 (61.8%) 88/90 (97.8%)

Categories of Logging Locations v.s. Log Levels

Location 1: Catch Clause (CT). Catch clause is used for cap-
turing the exceptions raised during the execution. As shown
in the code snippet below, developers often log the exception
information (e.g., the context information of the execution
point) in catch clauses [24]. In our manual study, we find
that a large portion of the sampled warn (37/89, 41.6%) and
error (52/90, 57.8%) logging statements are in this category.
However, there are still a non-negligible number of logging
statements that have different log levels. The percentage for
the other three levels ranges from 4.6% (4/88 at the debug
level) to 17.2% (12/70 at the info level).
/* Location Category 1: Catch Block (CT) */

} catch (Exception ex) {
LOG.error("Failed to stop infoServer", ex);

}

Location 2: Logic Branch (LB). Logic branch is the code
statement that leads to different system execution paths (e.g.,
if-else and switch) [24]. Developers may insert logging state-
ments in the logic branches to help identify the execution path,
or record the information in some critical branches. As shown
in the code snippet below, developers added a warn logging
statement to record an unexpected branch execution. We find
that the distribution of the five log levels for the logging
statements in LB are similar. Each log level has many logging
statements in this category, the percentage ranges from 34.5%
(31/90 at the error level) to 56.2% (50/89 at the warn level).
/* Location Category 2: Logic Branch (LB) */

if (logFileReader == null) {
LOG.warn("Nothing to split in WAL={}", logPath);
return true;

} else {

Location 3: Looping Block (LP). Logging statements in loop-
ing blocks (e.g., for and while) may record the execution
state during iterating (e.g., recording the ith execution inside
a for block) or recording variable values as shown in the code
snippet below. We do not find any logging statements at the
warn or error level that belong to this category. The logging
statements that belong to this category generally have three
log levels: 7.7% (3/39) at the trace level, 4.6% (4/88) at the
debug level, and 1.4% (1/70) at the info level.
/* Location Category 3: Looping Block (LP) */

while (active) {
logger.trace("checking jobs [{}]",

clock.instant().atZone(ZoneOffset.UTC));
checkJobs();

Location 4: Method Start or End (MT). Logging statements
might reside at the beginning or the end of a method, mostly
for recording the program execution state or debugging pur-
poses. For example, the code snippet below logs the event

3

execution time whenever the method is executed. We find that
25.6% (10/39) of the logging statements are at the trace level,
15.8% (14/88) are at the debug level, and 8.6% (6/70) are
at the info level. However, logging statements with warn and
error level only have a small portion: 1/89 (1.1%) and 3/90
(3.3%), respectively.
/* Location Category 4: Method Start or End (MT) */
public void onEventTime(long timerTimestamp) {

logger.trace("onEventTime @ {}", timerTimestamp);

Location 5: Observation Point (OP). We categorize the rest
logging locations that do not belong to any of the above-
mentioned categories as Observation Point [24]. Logging
statements in this category may have various characteristics
of logging locations, such as locating before the entry point
or after the exit point of a code block to record the execution
status (as shown in the code snippet below). We find that a
large portion of logging statements that belong to this category
(from 25.6% to 37.5%) is at the trace, debug, and info level;
while only 1.1% (1/89) and 4.4% 4/90 are at the warn and
error level, respectively.
/* Location Category 5: Observation Point (OP) */

final BinaryInMemorySortBuffer buffer =
currWriteBuffer.buffer;

LOG.debug("Retrieved empty read buffer " +
currWriteBuffer.id + ".");

long occupancy = buffer.getOccupancy();
if (!buffer.write(current)) {

Categories of Log Messages v.s. Log Levels

Message 1: Operation Description (OD). Log messages in
this category summarize the actions or intentions of its sur-
rounding code [25]. Logging statements with this kind of log
message could be placed before, inside, or after the execution
point to record the status of an upcoming, ongoing, or a
completed operation. As shown in the example below, an info
logging statement logs the closing of a connection. We find
that most of the info logging statements (49/70, 70.0%) are in
this category. There are also a large portion of trace (24/39,
61.5%) and debug (42/88, 47.7%) logging statements in this
category. For warn and error level, 30.3% (27/89) and 1.1%
(1/90) of the logging statements belong to this category.
/* Message Category 1: Operation Descripion (OD) */

connectionTracker.closeAll();
logger.info("Stop listening for CQL clients");

Message 2: Variable Description (VD). Variable description
records the value of a variable during execution [25]. As shown
in the example below, a trace logging statement is placed after
defining the variable parameterMap to record its value. We
find that many logging statements at the trace (15/39, 38.5%)
and debug (37/88, 42.1%) level belong to this category. For
other levels, the percentage is noticeably smaller (from 1.1%
at the error level to 8.6% at the info level).
/* Message Category 2: Variable Description (VD) */

Map<String, List<String>> parameterMap =
request.getParameterMap();

LOG.trace("parameterMap: {}", parameterMap);
if (parameterMap != null) {

Message 3: Negative Execution Behavior Description (ND).
During the system runtime, some unexpected execution
behaviors may happen (e.g., an exception, or a failure).
Logging statements are often inserted into these unexpected

execution points to record the related information. Hence,
developers can then be aware of the problem and fix the issue.
We consider log messages as this category if they describe an
unsuccessful attempt or an unexpected situation, with some
specific negative words (e.g., fail, exception, unable). We find
that most of the error (88/90, 97.8%) and a large number of
warn (55/89, 61.8%) logging statements are in this category.
For info and debug level, there are 21.4% (15/70) and 10.2%
(9/88) of the logging statements in this category, respectively.
We do not find logging statements at the trace level that
belong to this category.
/* Message Category 3: Negative Execution Behavior

Description (ND) */
if (tokensIndex.isAvailable() == false) {

logger.warn("failed to get access token [{}]",
tokenId);

listener.onResponse(null);
} else {

Summary of the Manual Study Findings

As we found in our manual study, the information of logging
locations and log messages may be related to the decision
of log levels. For example, we find that developers are more
likely to set the log level to warn or error if the logging
statement resides in catch blocks (category CT). Moreover,
if the logging statements reside at the beginning or end of
a method (category MT), the log levels are more likely to
be trace or debug. Similarly, logging statements with certain
types of log messages, such as the category VD (variable
description), are more often set to trace or debug level. Log
levels that are further apart in order (e.g., trace and error)
tend to have more different characteristics to distinguish. Our
findings shed light on the relationship between log levels and
the categories of logging location and log messages, as well as
the ordinal nature of log levels, that may be further leveraged
to assist developers in determining log levels.

We find that log levels that are further apart in order tend
to have more different characteristics of logging locations
and log messages. Locations and messages of logging
statements, as well as the ordinal nature of log levels might
be leveraged to help decide log levels.

III. AUTOMATICALLY SUGGESTING LOG LEVELS

Inspired by our manual study findings, in this section, we
propose an approach that automatically suggests log levels. We
formulate the process of suggesting log levels as a multi-class
classification problem. Given the information of an existing
or a potential new logging statement (i.e., the structural
information, or the log message, or both), we apply deep
learning models to suggest which level to use. Below, we
discuss how we extract the features and the framework of our
deep learning approach for suggesting log levels.

A. Feature Extraction

For each logging statement, we extract three types of
features: syntactic context features (simplified as Syn in the
rest of paper), log message features (Msg), and combined
features of syntactic context and log messages (Comb).

4

public void notifyCheckPointComplete (long cp) {

boolean success = false;

if (isRunning) {
LOG.debug(“Notification of complete check point {}”, cp);

For (StreamOperator operator: opChain.getOperators()) {

1

2

3
4
5

6

}

process(operator);

7

…

： Scope of Basic Block

： Syntactic Context Feature Scope of Logging Statement

B0

B1

B2

Syntactic: [MethodDeclar(1), VarDeclar(2), BooleanLiteral(2), IfStm(3), LogStm(4), MethodInvoc(5)]

Message:

Combined:

[notif, complet, check, point]

[MethodDeclar(1), VarDeclar(2), BooleanLiteral(2), IfStm(3), LogStm(4), #MsgStart#,
 notif, complet, check, point, #MsgEnd#, MethodInvoc(5)]

Note 1: the number following syntactic token is only for indicating the line number in this example,
 it does not appear in the actual feature

Note 2: ‘#MsgStart#’ and ‘#MsgEnd#’ are the tokens inserted into Combined features, in order to help the
 model distinguish the message tokens from syntactic tokens

getStatus(cp);

8

Fig. 1. An example of the syntactic, log message, and combined features we
extracted for each logging statement

Syntactic Context Features. We extract the syntactic context
feature that represents the location information of a logging
statement. Specifically, we parse the Abstract Syntax Tree
(AST) of the source code and extract the AST nodes that are
related to the control flow of the code to capture the structural
information (e.g., IfStatement and CatchClause). We exclude
the AST nodes that do not contain structural information
of the code, such as SimpleName (i.e., identifier name) and
SimpleType (i.e., identifier type). We also exclude AST nodes
that are related to log guards (e.g., if(isTraceEnabled)).
For each logging statement, we count the occurrence of each
AST node from the start of the method, to the end of the basic
block in which the logging statement resides. We analyze the
AST nodes from the beginning of a method since the nodes
represent the syntactic context of the logging statement (e.g.,
the logical flow of the method). As we found in Section II,
such syntactic context have a certain relationships with log
levels. We choose to extract the features based on basic blocks
since they represent a sequence of code statements where there
is no branching in between (i.e., no other structural informa-
tion that can affect the decision of the level of a logging
statement in the block). Finally, we obtain a set of tokens
(i.e., AST nodes) for each logging statement that represents
the syntactic feature of the logging statement. Figure 1 shows
an example of the syntactic context feature that we extract for
the logging statement on line 4.

Log Message Features. We extract the log message features
from the textual information inside the logging statements.
We exclude the dynamic variables, since many variable names
in logging statements are not composed of natural language
words [27] (e.g., variable cp in the logging statement in
Figure 1, which is abbreviated from “check point”). For the
static message in each logging statement, we first split the
words using space and camel cases. We then follow common
text pre-processing techniques [28]: remove the punctuation,
convert the words into lower case, filter the common English
words [29] and apply stemming [30] on the filtered words [20],
[27], [31]. At the end of this process, we obtain a set of log

Source	Code

{ {[1 0 0 0 ...]
[0 0 1 0 ...]...

Feature	Vectors
(Interger	Representation)

Embedding	Layer

......

RNN	Layer	(Bi-LSTM)

Output	Layer	
(Ordinal	Representation)

Layer	Unit

RNN	Cell

......

Fig. 2. Overall framework of our approach

message tokens, which represents its log message feature, for
each logging statement.
Combined Features. As we found in Section II, both the
logging locations and log messages may have a certain rela-
tionship with the log levels, as they capture different aspects of
a logging statement. Therefore, we combine both the syntactic
information and the log message, by following an approach
that is similar to prior studies [32], [33]. For each logging
statement, we add the log message feature to the syntactic
feature and preserve their actual order in the source code
(i.e., the log message feature is added to the place that the
logging statement appears in the source code). We then add
a special token at the beginning and the end of the log
message feature to help the model distinguish it with syntactic
information. Finally, we obtain a set of tokens for each logging
statement that represents the combined feature of the logging
statement. Figure 1 shows an example of how do we combine
the syntactic context feature and log message feature for the
logging statement in line 4.
Ordinally Encoding Log Levels. One-hot encoding is widely
used by prior studies for multi-class classification prob-
lems [27], [34], [35]. However, log levels, by nature, have an
ordinal relationship. For example, if the system is configured
to run and record debug logs, the system would also enable
logging statements that are at the info, warn, and error levels
and record logs in those levels. Therefore, we ordinally encode
the log levels to preserve such ordinal relationship when
suggesting log levels. Table III shows the comparison between
the vectors of each log level that are ordinally encoded
and encoded by standard one-hot encoding. Our encoding
preserves the ordinal characteristics of log levels, where when
a system is configured to record a certain log level (e.g., info),
the system would also record all logs that have a higher log
level (e.g., warn and error).

B. Deep Learning Framework and Implementation

Overall Architecture. Figure 2 shows the overall architecture
of our approach. The deep learning framework contains an
embedding layer, an RNN layer, and an output layer. Given
the syntactic features, log message features, or combined
features of logging statements, the embedding layer learns
the relationship among the input vectors and transform each
vector to a distributed representation based on probability. We

5

then use a recurrent neural network (RNN) layer to learn the
relationship between the log level and the embedded vectors
returned from the embedding layer. After that, the output layer
gives an ordinal vector as the suggestion result. Finally, we
map the ordinal vector returned from the output layer to a
real log level as the final result. Below, we discuss the details
of each component of our approach.
Embedding Layer. Our extracted features (i.e., Syn, Msg,
and Comb) are represented in the form of vectors. Each
dimension represents the unique tokens of the corresponding
feature (e.g., the types of AST node in Syn), and each element
represents the number of occurrences of the token for each
logging statement. We then feed the feature vectors into the
embedding layer. The embedding layer captures the linear
relationships among the tokens in the feature vectors, and
outputs the probabilistic representations of the vectors (i.e.,
word embeddings [36]). In other words, word embeddings
learn the similarities among the tokens to create a more concise
representation of the features [37]–[39].
RNN Layer. We model the source code and log message as
sequential data (i.e., the order of the tokens that appear in
the source code is preserved) by following prior studies [40]–
[43]. We employ a layer of Bidirectional Long Short Term
Memory (Bi-LSTM) in the deep learning model, which is
widely used by prior studies to process source code and
natural language [31], [44]. Bi-LSTM is a variant of RNN
that concatenates the outputs of two RNNs, one processing
the sequence of input vector from the beginning to the end,
the other one from the end to the beginning. Each RNN is
composed of recurrent units including a memory cell and gate
mechanisms to preserve long term dependencies of the given
input. While training the model, we encode the log level of a
logging statement into its ordinal representation (as discussed
in Subsection III-A).
Output Layer. We then use a five-dimension dense layer as
the output layer. Specifically, the output layer takes the high-
dimensional output vectors from the previous layer (i.e., the
RNN layer) to the five neurons in this layer. Each of the
five neuron represents one number in our ordinally encoded
vector of log level. Then each neuron gives the result of the
corresponding number (i.e., the probability of this digit to be 1)
in the vector. After that, we accept the output vector and map
the vector into an actual log level as the final suggestion result.
For example, if the returned vector from the output layer is
[1.0, 0.8, 0.6, 0.3, 0.1], we check each probability value from
the start to the end of the vector. If a probability is larger than
0.5, the number is mapped to 1. If a probability that is smaller
than 0.5 is encountered, the rest numbers will be mapped to
0. In the above-mentioned example, the output vector will be
mapped to [1, 1, 1, 0, 0], as discussed in Subsection III-A,
which is an info level.
Implementation and Training We use Keras [45] to imple-
ment our deep learning framework. We use Skip-gram from
Word2vec [46] in the embedding layer and set the dimension
to 100 by following prior work [27]. We obtain the word

TABLE III
A COMPARISON BETWEEN THE VECTORS OF LOG LEVELS THAT ARE

ORDINALLY-ENCODED AND ONE-HOT ENCODED

Ordinally Encoded One-hot Encoded
Trace [1, 0, 0, 0, 0] [1, 0, 0, 0, 0]
Debug [1, 1, 0, 0, 0] [0, 1, 0, 0, 0]
Info [1, 1, 1, 0, 0] [0, 0, 1, 0, 0]
Warn [1, 1, 1, 1, 0] [0, 0, 0, 1, 0]
Error [1, 1, 1, 1, 1] [0, 0, 0, 0, 1]

embeddings for each type of features (i.e., syntactic context,
log message, and combined features) separately. For the RNN
layer, we set the number of units (i.e., the dimension of hidden
states) as 128 and attach a dropout layer with a 0.2 dropout
rate, in order to reduce the potential impact of overfitting
on the trained system [47]–[49]. For each training process,
we set the number of epochs as 100 and the batch size as
24 [27]. Since the model learns and predicts on each digit of
the ordinally encoded vector, we use sigmoid as the activation
function and use binary cross entropy as the loss function.
Note that the distribution of log levels is noticeably different
(e.g., on average, only 8.0% of the logging statements are
in trace while 24.4% of the logging statement are in error
level), as discussed in Section II. Hence, we apply stratified
random sampling [23] while splitting the training, validation,
and testing data to ensure the sampled data set has the same
distribution of log levels as the original data.

IV. EVALUATION

A. Evaluation Metrics

We use Accuracy and Area Under the Curve (AUC), which
are widely used by prior multi-class classification studies, to
evaluate our approach [16], [27]. According to the ordinal
nature of log levels, we also propose a new metric, Aver-
age Ordinal Distance Score (AOD), to measure the average
distance between the actual level and the suggested level.

Accuracy. Similar to the usage in prior classification stud-
ies [27], [42], Accuracy in our study is the percentage of
correctly suggested log levels out of all the suggestion results.
A higher accuracy means a model can correctly suggest the
log levels for more logging statements. As a reference, the
accuracy of a 5-category random guess is around 20%.

Area Under the Curve (AUC). AUC is the area under the
ROC (receiver operating characteristic) curve that plots the
true positive rate against the false positive rate, which evaluates
the ability of a model in discriminating different classes. AUC
ranges between 0 and 1: a high value for the AUC indicates
a high discriminative ability of a model; an AUC lower than
0.5 indicates a performance that is not better than random
guessing. Following prior work [16], we use a multiple-class
version of the AUC defined by Hand et al. [50]. The AUC
gives us the insight about how well the model can discriminate
different log levels, e.g., how likely a model is able to predict
an actual info level as info (i.e., true positive), rather than
predict an actual debug level as info (i.e., false positive).

Average Ordinal Distance Score (AOD). The prior two met-
rics consider different log levels as independent classes (i.e.,

6

TABLE IV
THE RESULTS OF SUGGESTING LOGGING LEVELS USING SYNTACTIC CONTEXT (Syn), LOG MESSAGE (Msg), AND A COMBINATION OF BOTH (Comb),

COMPARED WITH ORDINAL REGRESSION (OR) AND ONE-HOT ENCODING NEURUAL NETWORK (OEN)
Accuracy AUC AOD

Systems Syn Msg Comb OR OEN Syn Msg Comb OR OEN Syn Msg Comb OR OEN
Cassandra 53.7 52.6 60.6 43.2 39.9 78.8 77.0 84.2 75.6 70.9 78.9 77.9 80.5 70.3 65.6
Elasticsearch 51.9 40.4 57.7 49.8 37.8 77.9 66.4 81.3 75.8 72.6 77.6 69.1 80.2 76.8 41.7
Flink 52.5 35.5 65.2 50.1 42.0 78.2 69.9 85.1 74.1 73.5 78.7 72.4 83.8 78.5 43.9
HBase 55.9 50.7 60.3 51.0 49.5 83.1 74.3 84.2 79.4 78.3 81.4 72.8 81.7 78.9 62.7
JMeter 55.1 52.1 62.3 53.9 47.2 83.5 79.3 83.9 80.7 76.5 82.3 77.2 80.9 78.9 56.2
Kafka 50.7 38.5 51.8 42.3 41.8 78.7 71.5 79.5 74.1 69.2 76.9 68.6 77.5 72.2 59.4
Karaf 56.5 30.3 67.2 49.0 30.3 84.3 67.2 85.6 83.2 68.1 80.6 67.2 81.6 76.8 30.9
Wicket 57.3 28.1 63.8 46.1 39.0 83.1 61.6 85.0 80.7 76.4 78.9 62.1 79.3 67.8 54.5
Zookeeper 52.8 50.1 60.9 41.3 35.1 79.6 76.1 84.8 79.1 69.2 78.8 73.0 82.0 77.0 36.8
Average 54.0 42.0 61.1 47.4 40.3 80.8 71.5 83.7 78.8 72.7 79.3 71.1 80.8 75.2 50.2

Note: The number that is higher than both of the baselines is marked in bold, the best result is marked in italic-bold.

the ordinal nature of log levels, as discussed in Section III, is
not considered). Hence, we propose Average Ordinal Distance
Score (AOD) which measures the average distance between the
actual log level and the suggested log level for each logging
statement. It is computed as:

AOD =

∑N
i=1 (1−Dis(ai, si)/MaxDis(ai))

N
,

where N is the total number of logging statements in the
results. For each logging statement and its suggested log level,
Dis(a, s) is the distance between the actual log level ai and
the suggested log level si (e.g., the distance between error
and info is 2). MaxDis(a) is the maximum possible distance
of the actual log level ai. For example, the maximum possible
distance for trace is 4 (i.e., from trace to error), for info is
2 (i.e., from info to trace or error). A higher AOD indicates
suggested log levels are closer to their actual log levels.
B. Case Study Results

RQ1: How effective is our approach in suggesting log
levels?
Motivation. As we found in the manual study, the decision
of log level may be related to the syntactic information in the
code and the log message. In this RQ, we want to evaluate the
performance of our deep learning models trained using each
of the three features (i.e., syntactic context, log message, and
combined, as described in Section III-A).
Approach. We first apply stratified random sampling [23]
to split the input data into training set (60%), validation set
(20%), testing set (20%) [27], [42], and ensure each of the
sampled datasets has the same distribution of log levels as the
original data. We compare our approach with two baselines
described below. We then train our deep learning framework
and the two baselines on the training data using each of the
three features. Below, we describe the two baselines in details.
Baseline 1: Ordinal Regression (OR) model. We use ordinal
regression (OR) models [51] to suggest log levels by following
a prior study [16]. OR considers the orders of the log levels
(e.g., error is more severe than info) when training the model
and predicting the log level given a new logging statement.
In this work, we migrate the OR approach to our problem
context: suggesting the log level of each logging statement
in the static code. We consider all the metrics used in the
prior work [16] except those related to code changes, as the

code change related metrics are irrelevant in our context: we
suggest the log level of each logging statement in the static
code. Besides, prior work finds that the influence of the metrics
related to the code changes is negligible [16].
Baseline 2: One-hot Encoding RNN (OEN). As discussed in
Section III, the standard one-hot encoding treats all the classes
as independent classes without considering the ordinal relation
among them. In order to understand the effectiveness of our
encoding on log levels, we would like to compare the perfor-
mance of the models using our ordinally encoded log level
vectors with the models using standard one-hot encoded log
level vectors. Different from our approach that uses sigmoid
as the activation function and binary cross entropy as the
loss function to predict the value of each number in the
ordinally encoded vector (as discussed in Section III), to
adopt standard one-hot encoding, we change the activation
function to softmax and the loss function to categorical cross
entropy [34], [35]. Hence, the goal of the baseline model is to
predict the one-hot encoded vector (as shown in Table III)
which can be mapped back to a log level. Similar to our
approach, we train the baseline on the Syn, Sem, and Comb
features, respectively.
Results and Discussions.
Our approach can effectively suggest log levels for the
studied systems. Our best models (i.e., using the combined
feature) achieve an average AUC of 83.7. Table IV presents
the results of our models trained using the syntactic feature
(Syn), the log message feature (Msg), and the combined
feature (Comb). Table IV shows that the models trained using
the Syn feature perform better than the models using the Msg
feature in terms of all the three evaluation metrics. Specifically,
the average accuracy, AUC, and AOD of the models trained
using the Syn feature are 54.0, 80.8, and 79.3, respectively;
while the average accuracy, AUC, and AOD of the models
trained using the Msg feature are only 42.0, 71.5, and 71.1.
More importantly, for all the three evaluation metrics, the
models trained using the Comb feature have better results than
the models trained only using Syn or Msg. Specifically, on
average, the accuracy, AUC, and AOD of the models trained
using Comb are 61.1, 83.7, and 80.8, respectively. Our results
show that the Syn and Msg features both provide valuable
information that can complement each other in our models.
Our approach outperforms the two baseline approaches

7

TABLE V
THE DISTRIBUTION OF INCORRECTLY SUGGESTED LOG LEVELS FOR EACH

ACTUAL LOG LEVEL (THE FIRST COLUMN)
Syntactic Context Log Message Combined

Trace Debug Info Warn Error Trace Debug Info Warn Error Trace Debug Info Warn Error
Trace — 53.8 25.4 16.7 4.1 — 47.6 30.1 20.7 1.6 — 52.4 21.1 18.7 7.8
Debug 5.4 — 53.7 33.6 7.3 7.3 — 48.1 41.7 2.9 7.5 — 43.6 32.6 16.3
Info 3.6 38.8 — 48.9 8.7 6.6 37.9 — 52.2 3.3 8.6 43.0 — 38.1 10.3
Warn 1.6 27.8 28.7 — 41.9 3.2 36.4 22.4 — 38.0 4.1 20.5 27.0 — 48.4
Error 0.9 7.7 20.7 70.7 — 0.4 8.2 12.9 78.5 — 3.9 12.3 10.4 73.4 —

Note: For each feature and each actual log level, the highest percentage of incorrectly
suggested log level is marked in bold.

(OR and OEN). For the baselines, due to the limitation of
space, we only discuss the results of the models trained using
the comb feature, which lead to the best results among the
three features. For the the results of two baselines, the average
accuracy are 47.4 for OR and 40.3 for OEN, the average
AUC are 78.8 for OR and 72.7 for OEN, and the average
AOD are 75.2 and 50.2, respectively. For every system, our
models using Syn or Comb features always outperform the
two baselines in the three evaluation metrics (as shown in
Table IV). The results demonstrate the higher capability of
our neural networks with ordinally encoded log levels than
the ordinal regression and the standard one-hot encoding in
suggesting log levels.

Our approach outperforms the two baseline approaches in
suggesting log levels. In particular, our approach achieves
the best performance when both the syntactic and log
message features are considered.

RQ2: What is the performance of our approach on
different log levels?
Motivation. In RQ1, we find that our approach can effectively
suggest the log level of a logging statement, and that the
models trained using the syntactic, message, and combined
information show different performance. However, for the
logging statements with different log levels, choosing an
inappropriate log level may have different costs. For example,
choosing the error level for an info message may be worse
(i.e., cause user confusion [13]) than choosing the info level for
a debug message. Besides, different stakeholders may be more
interested in certain log levels. For example, operators may
be most interested in the warn and error levels which need
their immediate actions; while developers doing debugging
activities may be most interested in the debug level. Therefore,
in this RQ, we further investigate the performance of our
approach in providing suggestion for each log level.
Approach. We first analyze the overall performance of our
models for each log level. We group the logging statements
in our test datasets by their actual log level. Then, for each
group of actual log level, we measure the accuracy of our
approach for suggesting the log levels. We then investigate
how our models mis-classify each log level by computing the
distribution of the incorrectly suggested log levels. In this RQ,
we train the models and analyze the results of the three features
(i.e., Syn, Msg, or Comb), respectively.
Results and Discussions.
The syntactic and combined features show more consistent
performance than the log message feature among suggest-

Trace Debug Info Warn Error0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (\
%

)

10.1

46.2 47.0

58.8

52.5

8.9

16.7 16.8

72.0

61.5

20.5

55.3

42.6

59.6

77.4Syntactic
Message
Combined

Fig. 3. The accuracy of our approach on each log level

ing different log levels. For each log level and each feature,
we present the results by showing the average accuracy of
the models trained using different systems. Figure 3 shows
the accuracy of the trained models using syntactic context
feature (red bar), log message feature (blue bar), and combined
features (purple bar) for each log level. Overall, the syntactic
context and combined features have a similar trend on the
results for different levels, while log message features have a
notable difference. The log message feature has a relatively
high accuracy on suggesting the warn and error levels, but
has a very low accuracy on other levels (ranges from 8.9% to
16.8%). The potential reason might be that, warn and error
level might contain some specific words that can be used to
distinguish them from other levels. As we found in Section II,
61.8% and 97.8% of the log messages at warn and error level
describe negative execution behaviors. However, syntactic and
combined feature also achieve relatively good results on these
two levels (range from 58.8% to 59.6% for warn level, and
from 52.5% to 77.4% for error level). Both the syntactic and
combined features also have reasonable results on suggesting
debug and info levels (range from 42.6 to 55.3 accuracy).

Most of the incorrectly suggested log levels provided
by our approach are close to their actual log levels.
Table V presents the distribution of incorrectly suggested log
levels for each actual log level (the first column, marked in
bold). All the numbers are the percentage of an incorrectly
suggested log level over all the incorrect suggestions for each
actual log level. Overall, there is only a small portion of
logging statements that are incorrectly suggested as trace level
(range from 0.4% to 8.6% across all the three features). In
comparison, most of the incorrect suggestions on error logging
statements are suggested as warn level (over 70% for all the
three features). Reversely, many warn logging statements are
incorrectly suggested as error level (which is also the most
common incorrectly suggested log level). We find that for
each feature and each actual log level, the most common
incorrect suggestions are one of their neighbouring log levels
(i.e., the closest log levels). In particular, some log levels
(e.g., warn and error levels) might be hard to distinguish.
Future studies could conduct in-depth investigations on more
characteristics of different log levels and help provide a more
accurate suggestion correspondingly.

8

TABLE VI
THE RESULTS OF COMPARING ENLARGING TRAINING DATA (RQ3-A) ON SYNTACTIC (S-enlarge.) AND COMBINED FEATURE (C-enlarge.) AND

CROSS-PROJECT PREDICTION (RQ3-B) ON SYNTACTIC (S-cross.) AND COMBINED FEATURE (C-cross.) WITH THE WITHIN PROJECT PREDICTION IN RQ1
Accuracy AUC AOD

Systems S-enlarge C-enlarge S-cross C-cross S-enlarge C-enlarge S-cross C-cross S-enlarge C-enlarge S-cross C-cross
Cassandra 58.5 (+4.8) 63.5 (+2.9) 45.9 (85.5%) 58.9 (97.2%) 79.7 (+0.9) 84.9 (+0.7) 74.6 (94.7%) 82.7 (98.2%) 82.1 (+3.3) 85.2 (+4.7) 76.3 (96.7%) 80.1 (99.5%)
Elasticsearch 41.7 (-10.2) 49.1 (-8.6) 47.3 (91.1%) 55.7 (96.5%) 75.2 (-2.7) 76.9 (-4.4) 75.1 (96.4%) 80.2 (98.6%) 73.3 (-4.3) 78.1 (-2.2) 77.5 (99.8%) 78.4 (97.8%)
Flink 54.4 (+1.9) 66.1 (+0.9) 45.2 (86.1%) 63.7 (97.7%) 81.5 (+3.3) 85.5 (+0.4) 74.4 (95.1%) 83.5 (98.1%) 78.8 (+0.1) 83.9 (+0.1) 76.8 (97.6%) 82.3 (98.2%)
HBase 57.3 (+1.4) 64.0 (+3.7) 40.3 (72.1%) 55.2 (91.5%) 84.2 (+1.1) 85.3 (+0.9) 72.5 (87.2%) 80.2 (95.2%) 82.0 (+0.6) 84.1 (+2.4) 73.9 (90.8%) 76.7 (93.9%)
JMeter 56.5 (+1.4) 63.7 (+1.4) 44.3 (80.4%) 53.6 (86.0%) 84.0 (+0.5) 84.6 (+0.7) 73.8 (88.4%) 76.8 (91.5%) 82.9 (+0.6) 83.8 (+2.9) 75.6 (91.9%) 76.3 (94.3%)
Kafka 51.1 (+0.4) 52.8 (+1.0) 45.7 (90.1%) 50.8 (98.1%) 79.3 (+0.6) 80.2 (+0.7) 74.8 (95.0%) 76.8 (96.6%) 77.5 (+0.6) 78.9 (+1.4) 75.2 (97.8%) 75.9 (97.9%)
Karaf 57.9 (+1.4) 68.9 (+1.7) 45.3 (80.2%) 62.1 (92.4%) 85.1 (+0.8) 86.2 (+0.6) 74.7 (88.6%) 83.8 (97.9%) 82.6 (+2.0) 83.5 (+1.9) 77.1 (95.7%) 81.2 (99.5%)
Wicket 58.9 (+1.6) 65.9 (+2.1) 45.1 (78.7%) 58.3 (91.4%) 83.8 (+0.7) 86.1 (+1.1) 74.6 (89.8%) 81.0 (95.3%) 80.0 (+1.1) 84.3 (+5.0) 76.7 (97.2%) 78.8 (99.4%)
Zookeeper 54.5 (+1.7) 61.8 (+0.9) 45.0 (85.2%) 57.8 (94.9%) 80.3 (+0.7) 85.6 (+0.8) 73.5 (92.3%) 79.7 (94.0%) 79.9 (+1.1) 83.3 (+1.3) 76.1 (96.6%) 79.8 (97.3%)
Average 54.5 (+0.5) 61.8 (+0.7) 44.9 (83.1%) 57.3 (93.8%) 81.5 (+0.7) 83.9 (+0.2) 74.2 (91.8%) 80.5 (96.2%) 79.9 (+0.6) 82.8 (+2.0) 76.1 (96.0%) 78.8 (97.5%)
Note: The +/- number after each data in the columns of B-enlarge and C-enlarge indicates the improve or decrease compared with within-system prediction in RQ1. The

percentage in the columns of B-cross and C-cross represents the ratio against the results of within-system prediction in RQ1.

The syntactic context and combined features show more
consistent capability in making suggestion among different
log levels, while the log message feature may only provide
helpful suggestion on specific levels (e.g., warn and error).
Many of the incorrectly suggested log levels are close
to their actual log levels. Future work could investigate
opportunities that leverage the characteristics of different
log levels to distinguish log levels that are close in order.

RQ3: Can our approach benefit from transfer learning?
Motivation. The success of deep neural networks often re-
quires a large dataset in order to provide sufficient information
for training [52], [53]. However, as presented in Section II, the
amount of logging statements in the studied systems ranges
from 0.4K to 5.5K, i.e., small datasets compared to other areas,
such as computer vision, where these deep neural networks are
extensively leveraged [54]. Moreover, different from mature
systems with a long period of development and maintenance
history, new software systems may not have enough existing
logging statements to train a deep neural network. Transfer
learning techniques are often used to address the challenge
of limited dataset [55]. In particular, one may use data from
other projects to complement the existing dataset to train
a better model. In this RQ, we investigate whether using
transfer learning among different studied systems can benefit
our approach. In particular, we study two sub-RQs:
RQ3-A: Can we improve the performance of our approach by
including more training data from other studied systems?
RQ3-B: How accurate is our approach in cross-system sug-
gestions?
Approach. We choose to study the use of transfer learning
with Syn and Comb features of our approach, since both
outperform the baselines, as discussed in RQ1. Below, we
describe the approach of each sub-RQ.
RQ3-A: We enlarge the dataset by combing the data from
all the studied systems. For each system, we follow stratified
sampling to split the data into training data (60%), validation
data (20%), and testing data (20%). We then merge the training
data from all studied systems and train a deep learning model,
while using the 20% validation data set (combined from every
studied system) to validate the model during the training
process. Finally, we apply the model trained using the enlarged

dataset separately on the testing data of each studied system.
RQ3-B: For each target system, we combine the data from the
remaining eight systems together and apply stratified sampling
to split 80% of the data combined from the eight systems as
training data, and 20% as validation data. We then use the
complete data of the target system as the testing data and
apply the model trained using the combined data from the
other eight studied systems.
Results and Discussions.
RQ3-A: Our approach can benefit from the enlarged
training data from other systems. Table VI shows the results
of enlarging the training set using the syntactic context features
(S-enlarge) and the combined features (C-enlarge). The +/-
number after each data indicates the improve or decrease com-
pared to within-system suggestion in RQ1. Overall, for both of
the two features, the performance is improved in eight of the
studied systems on all of the evaluation metrics. Specifically,
for syntactic context features (i.e., S-enlarge in Table VI),
the improvement of accuracy ranges from 0.4 in Kafka to
4.8 in Cassandra. The average AUC and AOD also improve
by 0.7 and 0.6, respectively. For combined features (i.e., C-
enlarge in Table VI), the improvement of accuracy ranges
from 0.9 in Flink and Zookeeper, to 3.7 in HBase. The average
AUC and AOD also improve by 0.2 and 2.0, respectively. On
the other hand, the performance in Elasticsearch is decreased
after enlarging the training data from other systems (accuracy
decreases by 10.2 on S-enlarge, and by 8.6 on C-enlarge).
As shown in Table I, Elasticsearch has considerably different
log level distribution compared to other systems. In particular,
there exist considerably more trace level logging statements
than other systems (28.5% versus 5.5%); while much fewer
error level logging statements (9.9% versus 26%). Hence, the
data from other systems may not be able to complement the
data from Elasticsearch in the model training. Our finding
shows that, while enlarging the training data may improve
suggestion performance, practitioners should carefully and
tactically choose the data when enlarging the training set.
RQ3-B: Our approach achieves encouraging results in
cross-system log level suggestions. Table VI shows the
results of cross-system suggestions using the syntactic context
features (S-cross) and the combined features (C-cross). The
percentage following each number represents the ratio of the

9

corresponding evaluation metric against the results of within-
system prediction in RQ1. For example, the accuracy of
C-cross in Cassandra is 58.9. Compared with the original
within-system accuracy of Comb in Cassandra, i.e., 60.6,
the accuracy ratio of C-cross against Comb in Cassandra
is 97.2% (58.9/60.6).

Overall, the cross-system suggestions achieve 83.1% accu-
racy on average for S-cross compared to Syn in RQ1, and
achieve 93.8% accuracy on average for C-cross compared to
Comb in RQ1. We also find that the results of cross-system
suggestions on combined features are still higher than the
results of the two baselines in RQ1. In other words, even with
cross-system suggestions, our approach can still outperform
the two baseline approaches that are trained and tested with
data from the same system.

Our approach can benefit from transfer learning. By en-
larging the training set, the performance of our approach
can be improved in eight out of nine studied systems. Our
approach also has an encouraging performance for cross-
system log level suggestions, which still outperforms the
within-system suggestions by the baseline approaches.

V. THREATS TO VALIDITY

Construct Validity. To mitigate the fluctuation caused by
different testing data set, we follow prior studies to split
the training, validation, and testing data [27], [42] and apply
stratified random sampling [23], [27], [42] to ensure each
randomly sampled data set has the same distribution of log
levels as the original data. Our approach presumes that the
training data has high-quality source code and follows good
logging practice. However, there is no “golden rule” for how
to write logging statements, which may affect the stability
of logging statements [56], [57]. To mitigate this threat,
we choose nine well-maintained, large-scale systems across
various domains, with different sizes to conduct our study.
They are commonly used in prior log-related studies and are
considered as following good logging practice [13], [17]–[20].

Internal Validity. Different hyper-parameters used in the neu-
ral networks might affect the effectiveness of the trained mod-
els. We follow the advanced practices from prior studies [27],
[42], [58] to set the hyper-parameters for our deep learning
framework. We conduct manual studies to investigate whether
log level is implicitly or explicitly related to log message or
the structural information of the logging statement. To avoid
biases, two of the authors examine the data independently.
For most of the cases, the authors reach an agreement. Any
disagreement is discussed until a consensus is reached with
a substantial-level agreement (Cohen’s Kappa of 0.82 and
0.88 for logging location and log message, respectively) [26].
Involving third-party logging experts to verify our manual
study results may further mitigate this threat.

External Validity. Our studied systems are all implemented in
Java, the results and models may not be transferable to systems
in other programming languages. We conducted our study

on nine large-scale open source systems only. However, we
selected the studied systems that are across various domains,
different sizes, and different amount of logging statements
in order to improve the representativeness of our studied
systems. Future studies should validate the generalizability of
our findings and the transferability of our models in systems
that are implemented in other programming languages.

VI. RELATED WORK

Studies on Logging Practices. Chen et al. [59] and Yuan
et al. [14] conducted quantitative studies on logging state-
ments in large-scale open source C/C++ and Java systems,
respectively. They found that logs are essential for debugging
and maintenance purposes. Fu et al. [24] studied the logging
practices in Microsoft software systems. They investigated
what categories of code blocks (e.g., catch blocks) are logged.
Li et al. [13] summarized the benefits and costs of logging
through a qualitative study. Zhi et al. [60] studied how logging
configurations are used in practice with respect to logging
management, storage, and formatting. In this paper, we focus
on studying the characteristics of log levels, specifically, their
explicit or implicit relationship with the syntactic context or
message of a logging statement. The findings of our study
could complement prior studies in providing more compre-
hensive logging supports to developers.
Improving Logging Practices. Given the importance of log-
ging, some studies try to help developers improve logging
practices. Yuan et al. [7] proposed an approach that can au-
tomatically insert additional variables into logging statements
to enhance the error diagnostic information. Zhu et al. [61]
proposed an automated tool for suggesting logging locations.
Li et al. [62], [63] proposed a deep learning framework for
suggesting logging locations at the code block level. Liu et
al. [27] proposed a deep learning framework to suggest the
variables that should be recorded in logging statements. Chen
et al. [17] found that developers commonly make some mis-
takes when writing logging statements (e.g., logging objects
whose values may be null) and concluded five categories of
logging anti-patterns from code changes. Li et al. [19], [64],
[65] uncovered potential problems with logging statements that
have the same text message and developed an automated tool
to detect the problems. Hassani et al. [66] identified seven root-
causes of the log-related issues from log-related bug reports
and found that inappropriate log messages and missing log
statements are the most common issues. Different from prior
studies, we focus on suggesting log levels by using features
extracted from the source code. We conduct a manual study
on the characteristics of log levels and propose a deep learning
based approach to provide automated suggestions.

VII. CONCLUSION

Deciding proper log levels for logging statements is a
challenging task. In this paper, we tackle the challenges in two
steps. First, we conduct a manual study on the characteristics
of log levels. We find that the syntactic context of logging
statements and their messages, as well as the ordinal nature

10

of log levels might be leveraged to help determine proper
log levels. We then propose a deep-learning based approach
to automatically suggest log levels for logging statements.
Our approach ordinally encodes log levels and leverages the
syntactic context information and the log message information
of each logging statement to provide log level suggestions. Our
approach outperforms the baseline approaches and are effec-
tive at suggesting log levels in both within-system and cross-
system scenarios. Our results also highlight future research
opportunities on improving logging decisions, for example,
by leveraging the characteristics of different log levels to help
distinguish similar log levels. Practitioners may also benefit
from our findings to make better logging decisions.

REFERENCES

[1] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An automated
approach to estimating code coverage measures via execution logs,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, 2018, pp. 305–316.

[2] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Cacheop-
timizer: Helping developers configure caching frameworks for hibernate-
based database-centric web applications,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016, 2016, pp. 666–677.

[3] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion, ser. ICSE ’16, 2016, pp. 102–111.

[4] J. Chen, W. Shang, A. E. Hassan, Y. Wang, and J. Lin, “An experience
report of generating load tests using log-recovered workloads at vary-
ing granularities of user behaviour,” in 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, 2019, pp.
669–681.

[5] Z. Li, “Towards providing automated supports to developers on writing
logging statements,” in ICSE ’20: 42nd International Conference on
Software Engineering, Companion Volume, 2020, pp. 198–201.

[6] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “La-
tent error prediction and fault localization for microservice applications
by learning from system trace logs,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
2019, pp. 683–694.

[7] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” in ASPLOS ’11: Proceedings of the
16th international conference on Architectural support for programming
languages and operating systems. ACM, 2011, pp. 3–14.

[8] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: Error diagnosis by connecting clues from run-time logs,”
in Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2010, pp. 143–154.

[9] D. Schipper, M. F. Aniche, and A. van Deursen, “Tracing back log data
to its log statement: from research to practice,” in Proceedings of the
16th International Conference on Mining Software Repositories, MSR
2019, 2019, pp. 545–549.

[10] K. Nagaraj, C. E. Killian, and J. Neville, “Structured comparative anal-
ysis of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI ’12, 2012, pp. 353–366.

[11] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting opera-
tional profiles from execution logs using suffix arrays,” in ISSRE’09:
Proceedings of the 20th IEEE International Conference on Software
Reliability Engineering. IEEE Press, 2009, pp. 41–50.

[12] “Log4j,” http://logging.apache.org/log4j/2.x/.
[13] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qualitative

study of the benefits and costs of logging from developers’ perspectives,”
IEEE Transactions on Software Engineering, pp. 1–17, 2020.

[14] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in ICSE 2012: Proceedings of the 2012
International Conference on Software Engineering. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 102–112.

[15] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Commun. ACM, vol. 55, no. 2, pp. 55–61, Feb. 2012.

[16] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering,
vol. 22, no. 4, pp. 1684–1716, Aug 2017.

[17] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-patterns
in the logging code,” in Proceedings of the 39th International Confer-
ence on Software Engineering, ser. ICSE ’17, 2017, pp. 71–81.

[18] ——, “Extracting and studying the logging-code-issue- introducing
changes in java-based large-scale open source software systems,” Em-
pirical Software Engineering, vol. 24, no. 4, pp. 2285–2322, Aug 2019.

[19] Z. Li, T. P. Chen, J. Yang, and W. Shang, “DLFinder: characterizing
and detecting duplicate logging code smells,” in Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, 2019,
pp. 152–163.

[20] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan, “Studying software
logging using topic models,” Empirical Software Engineering, Jan 2018.

[21] “Simple logging facade for java (slf4j),” http://www.slf4j.org/faq.html,
last checked Aug. 2020.

[22] S. Boslaugh and P. Watters, Statistics in a Nutshell: A Desktop Quick
Reference, ser. In a Nutshell (O’Reilly). O’Reilly Media, 2008.

[23] H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, and A. Mehrabian, “The
concept of stratified sampling of execution traces,” in The 19th IEEE
International Conference on Program Comprehension, ICPC 2011,
2011, pp. 225–226.

[24] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices
in industry,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE-SEIP ’14, 2014, pp. 24–33.

[25] H. Pinjia, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd IEEE international conference on Automated software
engineering, 2018, pp. 1–11.

[26] J. Sim and C. C. Wright, “The kappa statistic in reliability studies: Use,
interpretation, and sample size requirements,” Physical Therapy, vol. 85,
no. 3, pp. 257–268, March 2005.

[27] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Which variables
should i log?” IEEE Transactions on Software Engineering, 2019, early
Access.

[28] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software
Engineering, vol. 21, no. 5, pp. 1843–1919, 2016.

[29] “Corpus of contemporary american english,” https://www.
english-corpora.org/coca/, last checked Aug. 2020.

[30] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[31] Y. Huang, X. Hu, N. Jia, X. Chen, Y. Xiong, and Z. Zheng, “Learning
code context information to predict comment locations,” IEEE Trans.
Reliability, vol. 69, no. 1, pp. 88–105, 2020.

[32] B. Li, H. Liu, Z. Wang, Y. Jiang, T. Xiao, J. Zhu, T. Liu, and
C. Li, “Does multi-encoder help? A case study on context-aware neural
machine translation,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020, 2020, pp. 3512–3518.

[33] J. Tiedemann and Y. Scherrer, “Neural machine translation with ex-
tended context,” in Proceedings of the Third Workshop on Discourse in
Machine Translation, DiscoMT@EMNLP 2017, Copenhagen, Denmark,
September 8, 2017, 2017, pp. 82–92.

[34] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
2016, pp. 1287–1293.

[35] M. L. Vásquez, C. McMillan, D. Poshyvanyk, and M. Grechanik, “On
using machine learning to automatically classify software applications
into domain categories,” Empir. Softw. Eng., vol. 19, no. 3, pp. 582–618,
2014.

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference
on Learning Representations, ICLR 2013, 2013.

[37] P. D. Turney and P. Pantel, “From frequency to meaning: Vector space
models of semantics,” J. Artif. Intell. Res., vol. 37, pp. 141–188, 2010.

11

[38] X. Li, H. Jiang, Y. Kamei, and X. Chen, “Bridging semantic gaps
between natural languages and apis with word embedding,” IEEE
Transactions on Software Engineering, 2020.

[39] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “Patchnet:
Hierarchical deep learning-based stable patch identification for the linux
kernel,” IEEE Transactions on Software Engineering, 2019.

[40] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM
40th International Conference on Software Engineering, ICSE 2018,
2018, pp. 933–944.

[41] Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-
end program repair,” CoRR, vol. abs/1901.01808, 2019.

[42] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in Pro-
ceedings of the 41st International Conference on Software Engineering,
ICSE 2019, 2019, pp. 783–794.

[43] B. D. Q. Nghi, Y. Yu, and L. Jiang, “Bilateral dependency neural
networks for cross-language algorithm classification,” in 26th IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2019, 2019, pp. 422–433.

[44] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin, “Classifying rela-
tions via long short term memory networks along shortest dependency
paths,” in Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2015, 2015, pp. 1785–1794.

[45] “Keras: The python deep learning library,” https://keras.io/, last checked
Aug. 2020.

[46] “gensim Word2vec embeddings,” https://radimrehurek.com/gensim/
models/word2vec.html, last checked Feb. 2020.

[47] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[48] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 2019, pp. 34–45.

[49] T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An empirical study
of common challenges in developing deep learning applications,” in 30th
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2019, 2019, pp. 104–115.

[50] D. J. Hand and R. J. Till, “A simple generalisation of the area under the
ROC curve for multiple class classification problems,” Machine learning,
vol. 45, no. 2, pp. 171–186, 2001.

[51] P. McCullagh, “Regression models for ordinal data,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 42, no. 2, pp.
109–127, 1980.

[52] H. Ha and H. Zhang, “Deepperf: performance prediction for configurable
software with deep sparse neural network,” in Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, 2019,
pp. 1095–1106.

[53] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”

in Proceedings of the 41st International Conference on Software Engi-
neering, ICSE 2019, 2019, pp. 25–36.

[54] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2009),
2009, pp. 248–255.

[55] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, 2014, pp. 3320–3328. [Online]. Available: http://papers.nips.
cc/paper/5347-how-transferable-are-features-in-deep-neural-networks

[56] S. Kabinna, C. Bezemer, W. Shang, M. D. Syer, and A. E. Hassan,
“Examining the stability of logging statements,” Empir. Softw. Eng.,
vol. 23, no. 1, pp. 290–333, 2018.

[57] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J. Lou, M. Chintalapati, F. Shen,
and D. Zhang, “Robust log-based anomaly detection on unstable log
data,” in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, 2019, pp. 807–817.

[58] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, 2017, pp. 135–146.

[59] B. Chen and Z. M. (Jack) Jiang, “Characterizing logging practices in
java-based open source software projects – a replication study in apache
software foundation,” Empirical Software Engineering, vol. 22, no. 1,
pp. 330–374, Feb 2017.

[60] C. Zhi, J. Yin, S. Deng, M. Ye, M. Fu, and T. Xie, “An exploratory study
of logging configuration practice in java,” in 2019 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2019,
2019, pp. 459–469.

[61] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to
log: Helping developers make informed logging decisions,” in Proceed-
ings of the 37th International Conference on Software Engineering, ser.
ICSE ’15, 2015, pp. 415–425.

[62] Z. Li, T. Chen, and W. Shang, “Where shall we log? studying and
suggesting logging locations in code blocks,” in 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2020,
2020, pp. 361–372.

[63] Z. Li, “Studying and suggesting logging locations in code blocks,”
in ICSE ’20: 42nd International Conference on Software Engineering,
Companion Volume, 2020, pp. 125–127.

[64] ——, “Characterizing and detecting duplicate logging code smells,” in
Proceedings of the 41st International Conference on Software Engineer-
ing: Companion Proceedings, ICSE 2019, 2019, pp. 147–149.

[65] Z. Li, T. P. Chen, J. Yang, and W. Shang, “Studying duplicate logging
statements and their relationships with code clones,” IEEE Transactions
on Software Engineering, pp. 1–19, 2021.

[66] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis, “Studying and
detecting log-related issues,” Empirical Software Engineering, 2018.

12

