
Noname manuscript No.
(will be inserted by the editor)

Which Log Level Should Developers Choose for a New
Logging Statement?

Heng Li · Weiyi Shang · Ahmed E.
Hassan

Received: date / Accepted: date

Abstract Logging statements are used to record valuable runtime informa-
tion about applications. Each logging statement is assigned a log level such
that users can disable some verbose log messages while allowing the printing
of other important ones. However, prior research finds that developers often
have difficulties when determining the appropriate level for their logging state-
ments. In this paper, we propose an approach to help developers determine the
appropriate log level when they add a new logging statement. We analyze the
development history of four open source projects (Hadoop, Directory Server,
Hama, and Qpid), and leverage ordinal regression models to automatically
suggest the most appropriate level for each newly-added logging statement.
First, we find that our ordinal regression model can accurately suggest the
levels of logging statements with an AUC (area under the curve; the higher
the better) of 0.75 to 0.81 and a Brier score (the lower the better) of 0.44 to
0.66, which is better than randomly guessing the appropriate log level (with an
AUC of 0.50 and a Brier score of 0.80 to 0.83) or naively guessing the log level
based on the proportional distribution of each log level (with an AUC of 0.50
and a Brier score of 0.65 to 0.76). Second, we find that the characteristics of
the containing block of a newly-added logging statement, the existing logging
statements in the containing source code file, and the content of the newly-
added logging statement play important roles in determining the appropriate
log level for that logging statement.

Heng Li, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University
Kingston, Ontario, Canada
E-mail: {hengli, ahmed}@cs.queensu.ca

Weiyi Shang
Department of Computer Science and Software Engineering
Concordia University
Montreal, Quebec, Canada
E-mail: shang@encs.concordia.ca

2 Heng Li et al.

1 Introduction

Logs are widely used by software developers to record valuable run-time infor-
mation about software systems. Logs are produced by logging statements that
developers insert into the source code. A logging statement, as shown below,
typically specifies a log level (e.g., debug/info/warn/error/fatal), a static text
and one or more variables (Fu et al., 2014; Gülcü and Stark, 2003; Yuan et al.,
2012b).

logger.error(“static text” + variable);

However, appropriate logging is difficult to reach in practice. Both logging
too little and logging too much is undesirable (Fu et al., 2014). Logging too
little may result in the lack of runtime information that is crucial for under-
standing software systems and diagnosing field issues (Yuan et al., 2012a,c).
On the other hand, logging too much may lead to system runtime overhead
and cost software practitioners’ effort to maintain these logging statements (Fu
et al., 2014). Too many logs may contain noisy information that becomes a
burden for developers during failure diagnosis (Yuan et al., 2014).

The mechanism of “log levels” allows developers and users to specify the
appropriate amount of logs to print during the execution of the software. Using
log levels, developers and users can enable the printing of logs for critical events
(e.g., errors), while suppressing logs for less critical events (e.g., bookkeeping
events) (Gülcü and Stark, 2003). Log levels are beneficial for both developers
and users to trade-off the rich information in logs with their associated over-
head. Common logging libraries such as Apache Log4j1, Apache Commons
Logging2 and SLF4J3 typically support six log levels, including trace, debug,
info, warn, error, and fatal. The log levels are ordered by the verbosity level
of a logged event: “trace” is the most verbose level and “fatal” is the least
verbose level. Users can control the verbosity level of logging statements to be
printed out during execution. For example, if a user sets the verbosity level to
be printed at the “warn” level, it means that only the logging statements with
the “warn” level or with a log level that is less verbose than “warn” (“error”
and “fatal”) would be printed out.

Prior research finds that developers often have difficulties when estimat-
ing the cost and benefit of each log level, and spend much effort on adjusting
the levels of logs (Yuan et al., 2012b). Oliner et al. (2012) explains this is-
sue by arguing that developers rarely have complete knowledge of how the
code will ultimately be used. For example, JIRA issues HADOOP-102744 and
HADOOP-100155 are both about an inappropriate choice of log level. The
logging statement was initially added with an error level. However, the log
level of the logging statement was later changed to the warn level (see code

1 http://logging.apache.org/log4j/2.x
2 http://commons.apache.org/proper/commons-logging
3 http://www.slf4j.org
4 https://issues.apache.org/jira/browse/HADOOP-10274
5 https://issues.apache.org/jira/browse/HADOOP-10015

Which Log Level Should Developers Choose for a New Logging Statement? 3

patch in Listing 1), as it was argued that “the error may not really be an error
if client code can handle it” (HADOOP-10274); the log level of the same log-
ging statement was finally changed to the debug level (see patch in Listing 2)
after active discussions among the stakeholders (Hadoop-10015). The discus-
sion involved eight people to decide on the most appropriate log level of the
logging statement and to make the code changes. Besides, as detailed in the
“Discussion” section (see Section 5), we observe 491 logging statements in the
studied projects that experienced at least a subsequent log level change after
their initial commits. These observations indicate that developers do maintain
and update log levels over the lifetime of a project.

Listing 1 Patch for JIRA issue HADOOP-10274 (svn commit number: 1561934).

} catch (PrivilegedActionException pae) {

Throwable cause = pae.getCause();

- LOG.error("PriviledgedActionException as:"+this+" cause:"+cause);

+ LOG.warn("PriviledgedActionException as:"+this+" cause:"+cause);

Listing 2 Patch for JIRA issue HADOOP-10015 (svn commit number: 1580977).

} catch (PrivilegedActionException pae) {

Throwable cause = pae.getCause();

- LOG.warn("PriviledgedActionException as:"+this+" cause:"+cause);

+ if (LOG.isDebugEnabled()) {

+ LOG.debug("PrivilegedActionException as:" + this + " cause:" + cause);

+ }

To the best of our knowledge, there exists no prior research regarding log
level guidelines. Yuan et al. (2012b) build a simple log level checker to detect
inconsistent log levels. Their checker is based on the assumption that if the
logging code within two similar code snippets have inconsistent log levels, at
least one of them is likely to be incorrect. In other words, the checker only
detects inconsistent levels but does not suggest the most appropriate log levels.

In this paper, we propose an automated approach to help developers de-
termine the most appropriate log level when adding a logging statement. Ad-
mittedly, it is hard, if not impossible, to evaluate whether the log level of a
logging statement is correct, because different projects would have different
logging requirements. However, we believe that it is a good practice for a
single project to follow a consistent approach for setting the log level for its
logging statements. In this paper, we assume that in most cases developers of a
project can keep consistent logging practices, and we define “appropriateness”
of a log level as whether the log level is consistent with the common practice
of choosing a log level within a project.

Our preliminary study shows that logging statements have a different dis-
tribution of log levels across the different containing code blocks, and particu-
larly, in different types of exception handling blocks. Based on our preliminary
study and our intuition, we choose a set of software metrics and build ordinal
regression models to automatically suggest the most appropriate level for a

4 Heng Li et al.

newly-added logging statement. We leverage ordinal regression models in au-
tomated log level prediction because log level has a small number (e.g., six) of
categorical values and the relative ordering among these categorical values is
important, hence neither a logistic regression model nor a classification model
is as appropriate as an ordinal regression model. We also carefully analyze our
models to find the important factors for determining the most appropriate log
level for a newly-added logging statement. In particular, we aim to address
the following two research questions.

RQ1: How well can we model the log levels of logging statements?
Our ordinal regression models for log levels achieve an AUC (the higher
the better) of 0.75 to 0.81 and a Brier score (the lower the better) of 0.44
to 0.66, which is better than randomly guessing the appropriate log level
(with an AUC of 0.50 and a Brier score of 0.80 to 0.83) or naively guessing
the log level based on the proportion of each log level (with an AUC of
0.50 and a Brier score of 0.65 to 0.76).

RQ2: What are the important factors for determining the log level of a logging
statement?
We find that the characteristics of the containing block of a newly-added
logging statement, the existing logging statements in the containing file,
and the content of the newly-added logging statement play important roles
in determining the appropriate log level for that particular logging state-
ment.

This is the first work to support developers in making informed decisions
when determining the appropriate log level for a logging statement. Develop-
ers can leverage our models to receive automatic suggestions on the choices
of log levels for their newly-added logging statements. Our results also pro-
vide an insight on the factors that influence developers when determining the
appropriate log level for a newly-added logging statement.

Paper organization. The remainder of the paper is organized as follows.
Section 2 describes the studied software projects and our experimental setup.
Section 3 performs an empirical study on the log level distribution in the
studied projects. Section 4 explains the approaches that we used to answer
the research questions and presents the results of our case study. Section 5
discusses the topics about cross-project evaluation and the log level changes.
Section 6 discusses threats to the validity of our findings. Section 7 surveys
recent work on software logs that has been done in the recent years. Finally,
section 8 draws conclusions.

2 Case Study Setup

This section describes the subject projects and the process that we used to
prepare the data for our case study.

Which Log Level Should Developers Choose for a New Logging Statement? 5

2.1 Subject Projects

We study how to determine the appropriate log level of a logging statement
through a case study on four open source projects: Hadoop, Directory Server,
Hama, and Qpid. We choose these projects as case study projects for the fol-
lowing reasons: 1) All four projects are successful and mature projects with
more than six years of development history. 2) They represent different do-
mains, which ensures that our findings are not limited to a particular domain.
Hadoop is a distributed computing platform, developed in Java; Directory
Server is an embeddable directory server written in Java; Qpid is an instant
message tool, developed in Java, C++, C#, Perl, Python and Ruby; Hama is
a general-purpose computing engine for speeding up computing-intensive jobs,
written in Java. 3) The Java source code of these projects makes extensive use
of standard Java logging libraries such as Apache Log4j, SLF4J and Apache
Commons Logging libraries, which support six log levels, i.e., from trace (the
most verbose) to fatal(the least verbose).

We analyze the log levels of the newly-added logging statements during
the development history of the studied projects, considering only the Java
source code (excluding the Java test code). We focus our study on the de-
velopment history of the main branch (trunk) of each project. We use the
“svn log”6 command to retrieve the development history for each project (i.e.,
the svn commit records). Some revisions import a large number of atomic re-
visions from a branch into the trunk (a.k.a. merge revisions), which usually
contain a large amount of code changes and log changes. Such merge revisions
would introduce noise (Zimmermann et al., 2004) in our study of log level in a
newly-added logging statement. We unroll each merge revisions into the vari-
ous revisions of which it is composed (using the “use-merge-history” option of
the “svn log” command).

Table 1 presents the size of these projects in terms of source lines of code
(SLOC), the studied development history, the number of added logging state-
ments in the history, and the number of added logging statements that expe-
rience a log level change afterwards. The Hadoop project is the largest project
with 458K of SLOC, while Hama is the smallest project, with an SLOC of
39K. In the studied history, the number of added logging statements within
these projects ranges from 1,683 (for Hama) to 5,388 (for Hadoop); 1.2% to
4.6% of the added logging statements experience a log level change eventually.

2.2 Data Extraction

Figure 1 presents an overview of our data extraction and model analysis ap-
proaches. From the version control repository of each subject project, we col-
lect all the revisions during the development history of the subject project.
For each revision, we use the “svn diff” command to obtain the code changes
in that revision. Then, we use a regular expression to identify the newly-added

6 svn log. http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html

6 Heng Li et al.

Table 1 Overview of the studied projects.

Project SLOC
Studied develop.

history
Added logging

statements
Log level
changes1

Hadoop 458 K 2009-05 to 2014-07 5,388 163 (3.0%)
Directory Server 119 K 2006-01 to 2014-06 5,035 58 (1.2%)
Hama 39 K 2008-06 to 2014-07 1,683 54 (3.2%)
Qpid 271 K 2006-09 to 2014-07 4,712 216 (4.6%)
TOTAL 887 K - 16,818 491 (2.9%)

1 The number of added logging statements that experience a modification of their log level
after their introduction

Log change
identification

Added logging
statements

Ordinal
Regression
Modeling

Log levels

RQ2:What are the
important factors

for determining the
log level of a

logging statement?

Data extraction

Metrics

RQ1:How well can
we model the log
levels of logging

statements?

Model Analysis

Code revisions from
the version control
repository of the
studied project

Fig. 1 An overview of our data extraction and analysis approaches.

logging statements in each revision and extract the log level of each logging
statement. The regular expression is derived from the format of the logging
statements as specified by the used logging libraries. To achieve an accurate
model, we remove all newly-added logging statements that experience a log
level change afterwards, because the levels of these changed logging statements
may have been inappropriate in the first place.

3 Preliminary Study

We first perform an empirical study on the usage of log levels in the four
studied open source projects.

3.1 Log level distribution in the studied projects

No single log level dominates all other log levels. As shown in Figure 2,
developers tend to use a variety of log levels. Compared to trace and fatal,
the four middle levels (debug, info, warn, and error) are used more frequently.
For the Directory Server, Hadoop and Hama projects, more than 95% of the
logging statements use one of the four middle levels. For the Qpid project,
86% of the logging statements use one of the four middle levels. As the least
verbose log level, the fatal level is the least frequently used level (less than 2%)
in the four projects. The reason may be that fatal issues are unlikely to appear
in these projects. As the most verbose log level, the trace level is only used in
less than 4% of the logging statements in the Directory Server, Hadoop and

Which Log Level Should Developers Choose for a New Logging Statement? 7

13(0%)

2330(47%)

549(11%) 430(9%)

1655(33%)

185(4%)

1257(24%)

1839(35%)

1149(22%)

722(14%)

73(1%)

2(0%)

477(29%)
541(33%)

169(10%)

408(25%)

32(2%)

648(14%)

1603(36%)

985(22%)

459(10%)
799(18%)

2(0%)

0

1000

2000

0

500

1000

1500

2000

0

200

400

600

0

500

1000

1500

D
irectoryS

erver
H

adoop
H

am
a

Q
pid

trace debug info warn error fatal
Log level

N
um

be
r

of
 lo

gs

Fig. 2 Log level distribution in the added logging statements.

Hama projects. The low usage of the trace level may be due to developers not
typically using logs to trace their software, but rather they might use existing
tracing tools such as JProfiler7. However, the trace level is used in 14% of the
logging statements in the Qpid project.

Each project exhibits a varying distribution of log levels. Three of
the four studied projects leverage all six log levels (trace, debug, info, warn,
error, and fatal), while Directory Server uses only five log levels (no fatal).
Directory Server shows frequent usages of the debug and error levels, while the
logging statements that are inserted in the Hadoop project are more likely to
use the info, debug and warn levels. For both Hama and Qpid, the debug, info
and error levels are most frequently used in their logging statements. On the
one hand, the different distributions can be explained by different usage of logs
in these open source projects that are from different domains. For example,
if logs are used mainly for bookkeeping purposes, there might be more info
logs; debug logs are widely used for debugging purposes; if developers use
logs for monitoring, there might be more warn and error logs. On the other
hand, such differences might be the results of a lack of standard guidelines
for determining log levels, which motivates our work to assist developers in
determining the most appropriate log level for their logging statements. Our
preliminary analysis highlights that each studied project appears to follow a
different pattern for its use of log levels. Hence, we believe that our choice of
projects ensure a heterogeneity in our studied subjects.

7 http://www.ej-technologies.com/products/jprofiler/overview.html

8 Heng Li et al.

3.2 Log level distribution in different blocks

Logging statements have different distribution of log levels across
the different containing blocks. In this paper, a “block” (or “code block”)
refers to a block of source code which is treated as a programming unit. For ex-
ample, a catch block is a block of source code which completes a catch clause.
The “containing block” of a logging statement is the smallest (or innermost)
block that contains the logging statement. In other words, there is no inter-
mediate block that is contained in the particular block and that contains the
particular logging statement. Similarly, when we say a logging statement is
“directly inserted into a block, we mean that there is no other intermediate
block that contains the particular logging statement. We use an abstract syn-
tax tree (AST) parser provided by the Eclipse JDT8 to identify the containing
block of each logging statement. We consider seven types of containing blocks
that cover more than 99% of all the logging statements inserted in the studied
projects: try blocks, catch blocks, if-else (or if for short) blocks, switch-case-
default (or switch for short) blocks, for blocks, while or do-while (using while
for short) blocks, and methods. We do not consider other types of blocks (e.g.,
finally blocks) because very few logging statements are inserted in the other
types of blocks (less than 1% in total). Figure 3 shows the distributions of
log levels for the logging statements that are inserted directly in the seven
types of blocks. The percentage numbers marked on the stacked bars describe
the distribution of log levels that are used in the logging statements that are
inserted in each type of block; the number above each stack shows the total
number of logging statements that are inserted in each type of block. We find
that the top two most-frequently used log levels for each type of block are used
in more than 60% of the logging statements that are inserted in that particular
type of block. In the Directory Server project, for example, more than 79%
of the logging statements that are inserted in each type of block use the top
two most-frequently used log levels. However, our findings highlight that the
choice of log level is not a simple one that can be easily determined by simply
checking the containing block of a logging statement. Instead determining the
appropriate log level requires a more elaborated model and such a model is
likely to vary across projects.

Logging statements that are directly inserted in catch blocks tend
to use less verbose log levels, while logging statements in try blocks
are more likely to use more verbose log levels. 77% to 91% of the
logging statements that are inserted in catch blocks use the warn, error and
even fatal log levels. In contrast, 96% to 100% of the logging statements in-
serted in try blocks adopt more verbose log levels (i.e., info, debug and trace).
Logging statements in try blocks are triggered during the normal execution
of an application, thus they usually print the normal run-time information of
the application using the more verbose log levels; while logging statements in

8 https://eclipse.org/jdt/

Which Log Level Should Developers Choose for a New Logging Statement? 9

74%

26%
1%

5%
4%

17%

74%

0%

49%

12%
9%

30%

63%

13%

23%

70%

17%
13%

50%

50%

0%

76%

10%
3%

11%
196 1073 2448 30 30 72 1093

6%

38%

55%

0%0%1%

1%7%
13%

40%

37%
3%

4%

22%

33%

29%

11%
1%

20%

49%

12%
18%

1%

14%

32%

49%

4%2%

8%

49%

37%

3%3%

5%

36%

51%

5%2%1%
235 1238 1957 97 57 150 1467

43%

53%

4%

3%
9%

18%

66%

4%

0%

33%

35%

17%
12%

3%

100%
24%

63%

9%
4%

49%

51%

0%

49%

48%

1%1%0%
70 534 358 1 54 47 564

20%

52%

24%
0%3%

2%
13%

8%

22%

55%

0%

4%

40%

28%

16%
12%

34%

38%

8%
20%

5%

54%

38%

3%

4%

63%

27%
4%1%

29%

41%

25%
2%3%

363 1049 1153 50 37 92 1732

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

D
irectoryS

erver
H

adoop
H

am
a

Q
pid

try catch if switch while for method
Innermost containing block

P
ro

po
rt

io
n

of
 e

ac
h

lo
g

le
ve

l
level fatal error warn info debug trace

Fig. 3 Log level distribution in the added logging statements in different types of blocks.

catch blocks are only triggered when exceptions occur, hence they often log
abnormal conditions using the less verbose log levels.

Logging statements that are directly inserted in loop blocks (i.e.,
for and while blocks) and methods are usually associated with more
verbose log levels. 87% to 97% of the logging statements that are directly
inserted in while blocks, 94% to 100% of the logging statements in for blocks
and 86% to 97% of the logging statements in methods choose more verbose
log levels (i.e., info, debug and trace). The logging statements in loop blocks
might be executed a large number of times, but they may not print logs in
field execution when the verbosity level is set at a less verbose level (e.g.,
warn); in other words, these logging statements will take effect only when the
verbosity level is set at a more verbose level (e.g., debug), i.e., when application
users need the detailed information from logs. The logging statements directly
inserted in methods typically record some expected runtime events, such as
startup or shutdown, thus they usually use more verbose log levels such as info
or debug. Figure 3 also shows that different projects log loops and methods
at different log levels. For example, Hadoop tends to log methods at the info
level, while DirectoryServer uses more debug level logging statements in the
method blocks. Again, this might be explained by different usage of logs in
these open source projects from different domains.

10 Heng Li et al.

3.3 Log level distribution in catch blocks

A common best practice for exception-handling is to log the information as-
sociated with the exception (MSDN, 2011). Logging libraries like Log4j even
provide special methods for logging exceptions. In our preliminary study, we
also find that logging statements present much higher density in catch blocks
than any other blocks. However, experts argue that “not all exceptions are
errors” (Eberhardt, 2014), and that exceptions are sometimes anticipated or
even expected (Zhu et al., 2015). Therefore, blindly assigning the same log
level for all logging statements that are within catch blocks may result in
inappropriate log levels.

Logging statements that are directly inserted into catch blocks
present different distribution of log levels for different types of han-
dled exceptions. Figure 4 illustrates the log level distribution of the logging
statements inserted in the top 12 types of exception-catching blocks that con-
tain the most logging statements, for the Qpid project. For some types of
exception-handling blocks, such as the catch blocks that handle the Database-
Exception and the OpenDataException, all the inserted logging statements use
the error or warn levels, indicating that these exceptions lead to problems
and the developers or users may need to take care of the abnormal condition.
On the other hand, 89% of the logging statements inserted in catch blocks
dealing with the QpidException choose the debug log level, which implies that
the exception is not a serious one and that the code can itself handle the
condition; or that the exception is simply used by developers for debugging
purpose. For each exception type, the top two most-frequently used log lev-
els cover more than 60% of the logging statements that are inserted in the
particular exception handling blocks.

Not all the exceptions are logged as warn, error or fatal, which
matches with experts’ knowledge that “not all exceptions are er-
rors” (Eberhardt, 2014; Zhu et al., 2015). For most types of exceptions (10
out of 12 as shown in Figure 4), there are at least a small portion of logging
statements inserted in the handling catch blocks to choose more verbose log
levels (i.e., info, debug or trace). Therefore, developers should be careful when
they insert the warn or less verbose level logging statements into exception-
handling blocks.

4 Case Study Results

In this section, we present the results of our research questions. For each
research question, we present the motivation of the research question, the
approach that we used to address the research question, and our experimental
results.

Which Log Level Should Developers Choose for a New Logging Statement? 11

0%
7%
5%

20%

68%

1%

10%

14%

21%

13%

43%

4%
8%

19%

69%

8%
4%

24%

64%

89%

11%

20%

80%

22%

17%

14%

47%

21%

18%

32%

29%

5%
5%

90%

15%

85%

7%

14%

79%

46%

54%

320 101 84 72 64 46 36 34 20 20 14 13

0%

20%

40%

60%

80%

100%

Q
pid

Exc
ep

tio
n

JM
SExc

ep
tio

n

AM
QExc

ep
tio

n

IO
Exc

ep
tio

n

Qpid
Exc

ep
tio

n

Dat
ab

as
eE

xc
ep

tio
n

Thr
ow

ab
le

In
te

rru
pt

ed
Exc

ep
tio

n

JM
Exc

ep
tio

n

Run
tim

eE
xc

ep
tio

n

SQLE
xc

ep
tio

n

Ope
nD

at
aE

xc
ep

tio
n

Type of logged exception

P
ro

po
rt

io
n

of
 e

ac
h

lo
g

le
ve

l

level fatal error warn info debug trace

Fig. 4 Log level distribution in the added logging statements in different types of exception-
catching blocks (Qpid).

RQ1: How well can we model the log levels of logging statements?

Motivation

In order to help developers select the appropriate log level for a newly-added
logging statement, we build a regression model to predict the appropriate log
level using a set of software metrics. Developers can leverage such a model to
receive suggestions on the most appropriate log level for a newly-added logging
statement or to receive warnings on an inappropriately selected log level.

Approach

In order to model the log levels of the newly-added logging statements, we
extract and calculate five dimensions of metrics: logging statement metrics,
file metrics, change metrics, historical metrics, and containing block metrics.

– Logging statement metrics measure the characteristics of the newly-
added logging statement itself. It is intuitive that the level of a logging
statement is highly influenced by the content of the logging statement
itself, e.g., the static text.

– Containing block metrics characterize the blocks that contain the newly-
added logging statements. The containing block determines the condition
under which a logging statement would be triggered, thus it is reasonable
to consider the containing block when choosing the log level for a logging
statement.

– File metrics measure the characteristics of the file in which the logging
statement is added. Logging statements in the same file may share the same
purpose of logging or log the same feature. Hence information derived from
the containing file may influence the choice of the appropriate log level.

12 Heng Li et al.

– Change metrics measure information about the actual code changes asso-
ciated with the newly-added logging statement. The characteristics of the
code changes in a revision might indicate developers’ purpose of adding
logging statements in that revision thereby affecting the choice of log lev-
els.

– Historical metrics record the code changes in the containing file in the
development history. Stable code might no longer need detailed logging,
hence the newly-added logging statements in stable code are more likely to
use less verbose log levels (e.g., error, warn). The source code undergoing
frequent changes might contain logging statements with more verbose log
levels for debugging purposes.

Table 2 presents a list of all the metrics that we collected along the five
dimensions. Table 2 describes the definition of each metric and explains our
motivation behind the choice of each metric.

Re-encoding categorical metrics. In order to integrate the containing
block type metric (with categorical values) as an independent variable in our
regression analysis, we need to convert the categorical metric to a quantitative
variable. A categorical variable of k categories can be coded into k−1 dummy
variables, which contain the complete information of the categorical variable.
In this paper we use the weighted effect coding method, since it is most appro-
priate when the values of a categorical variable have a substantially unbalanced
distribution (e.g., the unbalanced distribution of the containing blocks of log-
ging statements, as shown in Figure 3) (Aguinis, 2004; Cohen et al., 2013).
We use the weighted effect coding method to convert the categorical variable
containing block type (with seven categories) into six dummy variables: try
block, catch block, if block, switch block, for block, and while block, where each
of them represents whether a logging statement is directly inside the corre-
sponding code block; and we use the “method block” value of the containing
block type metric as a “reference group” (Aguinis, 2004; Cohen et al., 2013).
For example, if the value of the containing block type metric is “try block”, we
code the six dummy variables as 1, 0, 0, 0, 0, and 0, respectively; if the value of
the containing block type metric is “method block”, we code the six variables
as −nt/nm, −nc/nm, −ni/nm, −ns/nm, −nf/nm and −nw/nm, respectively,
where nm, nt, nc, ni, ns, nf and nw represent the number of instances of the
containing block type metric that have the value of method block, try block,
catch block, if block, switch block, for block and while block, respectively.

Interaction between metrics. The excecption type metric is only valid
when a logging statement is enclosed in a catch block. Therefore, there is
a significant interaction between the exception type metric and the encoded
variable catch block. We use the interaction (i.e., the product) between these
two variables in our modeling analysis, and ignore the two individual variables.
We hereafter use the term “catch block” to represent the interaction.

Correlation analysis. Before constructing our ordinal regression models,
we calculate the pairwise correlation between our collected metrics using the
Pearson correlation test (r). Specifically, we use the varclus function (from

Which Log Level Should Developers Choose for a New Logging Statement? 13

Table 2 Software metrics used to model log levels.

Dimension Metric name Definition (d) — Rationale (r)
Logging

statement
metrics

Text length
d: The length of the static text of the logging statement.
r: Longer logging statements are desirable for debugging pur-
poses where detailed log information is needed; however, a
too long logging statement might cause noise in scenarios like
event monitoring where only less verbose log information is
needed.

Variable number
d: The number of variables in the logging statement.
r: Logging more variables is desirable for debugging purposes
while too many logged variables might cause noise in scenarios
in need of only less verbose log information.

Log tokens1
d: The tokens that compose the content (static text and vari-
ables) of the logging statement, represented by the frequency
of each token in the logging statement.
r: The content of a logging statement communicates the log-
ging purpose thereby affecting the log level.

Containing
block

metrics

Containing
block SLOC

d: Number of source lines of code in the containing block.
r: The length of code in the containing block of the logging
statement indicates the amount of effort that is spent on han-
dling the logged event, which might be associated with the
seriousness (i.e., verbosity) level of the logged event.

Containing
block type

(Categorical)2

d: The type of the containing block of the logging statement,
including seven categories: try block, catch block, if block,
switch block, for block, while block and method block.
r: Different types of blocks tend to be logged with different
log levels. For example, catch blocks are more likely to be
logged with less verbose log levels; logging statements inside
try blocks are more likely to have more verbose log levels; and
logging statements inside a loop are more likely to have more
verbose log levels.

Exception
type

d: The exception type of the containing catch block, repre-
sented by the average level of other logging statements that
are inserted in the catch blocks that handle the same type of
exception. This metric is only valid when a logging statement
is enclosed in a catch block.
r: Different types of exceptions are logged using different log
levels.

File
metrics

Log density
d: The number of logging statements divided by the number
of lines of code in the containing file.
r: Source code with denser logs tends to record detailed run-
time information and have more verbose logging statements.

Log number
d: The number of logging statements in the containing file.
r: Source code with more logs tend to record detailed run-time
information and have more verbose logging statements.

Average
log length

d: Average length of the static text of the logging statements
in the containing file.
r: The average log length in a file might indicate the overall
logging purpose in the file, e.g., having shorter and simpler log
text is more likely to be associated with debugging purpose.
The overall logging purpose affects the choice of log level for
individual logging statements.

Average
log level

d: Average level of other logging statements in the containing
file, obtained by quantifying the log levels into integers and
calculating the average.
r: The level of the added logging statement is likely to be
similar with other existing ones in the same file.

Average
log variables

d: Average number of variables in the logging statements in
the containing file.
r: The average number of log variables in a file might indi-
cate the overall logging purpose in the file, e.g., having more
and detailed log variables is more likely to be associated with
debugging purpose. The overall logging purpose affects the
choice of log level for individual logging statements.

SLOC
d: Number of source lines of code in the containing file.
r: Large source code files are often bug-prone (D’Ambros et al.,
2012; Shihab et al., 2010), thus they are likely to have more
verbose logging statements for debugging purposes.

McCabe
complexity

d: McCabe’s cyclomatic complexity of the containing file.
r: Complex source code files are often bug-prone (D’Ambros
et al., 2012; Shihab et al., 2010), thus they are likely to have
more verbose logging statements for debugging purposes.

Fan in
d: The number of classes that depend on (i.e., reference) the
containing class of the logging statement.
r: Classes with a high fan in, such as library classes, are likely
to use less verbose logging statements; otherwise these logging
statements will generate noise in the dependent code.

14 Heng Li et al.

Dimension Metric name Definition (d) — Rationale (r)

Change
metrics

Code churn
d: Number of changed source lines of code in the revision.
r: When developers change a large amount of code, they might
add more-verbose log information (i.e., for tracing or debug-
ging purposes).

Log churn
d: Number of changed logging statements in the revision.
r: When many logging statements are added in a revision,
these loggings statements tend to record detailed run-time
information and have more verbose levels. For example, de-
velopers are more likely to add a large number of debugging
or tracing logging statements rather than a large number of
logging statements that record error information.

Log churn ratio
d: Ratio of the number of changed logging statements to the
number of changed lines of code.
r: A lower log churn ratio indicates that developers only use
logging statements for more important events (i.e., using less
verbose log levels), while a high log churn ratio indicates
that developers also use logging statements for less important
events (i.e., using more verbose log levels).

Historical
metrics

Revisions
in history

d: Number of revisions in the development history of the con-
taining file.
r: Frequently-changed code is often bug-prone (D’Ambros
et al., 2012; Graves et al., 2000; Hassan, 2009). Such code
tends to have more more-verbose level logging statements for
debugging purpose.

Code churn
in history

d: The total number of lines of code changed in the develop-
ment history of the containing file.
r: Source code that experienced large code churn in history is
often bug-prone (D’Ambros et al., 2012; Graves et al., 2000;
Hassan, 2009). Such code tends to have more more-verbose
level logging statements for debugging prupose.

Log churn
in history

d: The total number of logs changed in the development his-
tory of the containing file.
r: The log churn in history might reflect the overall logging
purposes thereby affecting the choices of log levels. For exam-
ple, frequently-changed logging statements are more likely to
be used by developers for debugging or tracing purposes, and
the logging statements that generate less verbose information
are expected to be stable.

Log churn ratio
in history

d: Ratio of the number of changed logging statements to the
number of changed lines of code in the development history of
the containing file.
r: The log churn ratio in history might reflect the overall log-
ging purposes thereby affecting the choices of log levels. For
example, a high log churn ratio in history might indicate that
logging statements are used to record detailed events thus
more verbose log levels should be used.

Log-changing
revisions
in history

d: Number of revisions involving log changes in the develop-
ment history of the containing file.
r: The number of log-changing revisions in history might re-
flect the overall logging purposes thereby affecting the choices
of log levels. For example, a file that experienced many log-
changing revisions might indicate that the functionalities in
the file is not stable, thus more detailed logging statements
might be used for debugging or tracing purposes.

1 Each token actually represents an independent variable (i.e., taken-based variable) in the ordinal
regression model, and the value of a token-based variable is the frequency of the token in the logging
statements, or zero if the token does not exist in the logging statement. The vast majority of these
token-based variables are filtered out in the “backward (step-down) variable selection” step.
2 The metric is re-encoded into several dummy variables to be used int the ordinal regression model.
This section has a detailed description about the re-encoding approach.

Which Log Level Should Developers Choose for a New Logging Statement? 15

the R package Hmisc (Harrell et al., 2014)) to cluster metrics based on their
Pearson correlation. In this work, we follow prior work (McIntosh et al., 2014)
and choose the correlation value of 0.7 as the threshold to remove collinear
metrics; Kuhn and Johnson (2013) also suggests a similar choice of the thresh-
old value (0.75). If the correlation between a pair of metrics is greater than 0.7
(|r| > 0.7), we only keep one of the two metrics in the model. Figure 5 shows
the result of the correlation analysis for the Directory Server project, where
the horizontal bridge between each pair of metrics indicates the correlation,
and the red line represents the threshold value (0.7 in our case). To make
the model easy to interpret, from each group of highly-correlated metrics, we
try to keep the one metric that is more directly associated with logs. For ex-
ample, the log churn and code churn metrics have a correlation higher than
0.7, thus we keep the log churn metric and drop (i.e., do not consider in the
model) the code churn metric. Based on the result shown in Figure 5, we drop
the following metrics: code churn, SLOC, McCabe complexity, code churn in
history, log-changing revisions in history and revisions in history, due to the
high correlation between them and other metrics. We find that our selected
metrics present similar patterns of correlation across all four studied projects,
thus we drop the same metrics for all the studied projects. Dropping the same
set of metrics for the projects enables us to compare the metric importance
of different projects (in “RQ2”) and perform cross-project evaluation (in the
“Discussion” section).

Ordinal regression modeling. We build ordinal regression models (Mc-
Cullagh, 1980; McKelvey and Zavoina, 1975), to suggest the most appropriate
log level for a given logging statement. The ordinal regression model is an
extension of the logistic regression model; instead of predicting the dichoto-
mous values as what the logistic regression does, the ordinal regression model
is used to predict an ordinal dependent variable, i.e., a variable with categor-
ical values where the relative ordering between different values is important.
In our case, the ordinal response variable (log level) has six values, i.e., trace,
debug, info, warn, error and fatal, from more verbose levels to less verbose
levels. We use the “orm” function from the R package “rms” (Harrell, 2015b).
The outcome of an ordinal regression model is the cumulative probabilities of
each ordinal value9. Specifically, in this case the ordinal regression model gen-
erates the cumulative probability of each log level, including P [level ≥ debug],
P [level ≥ info], P [level ≥ warn], [level ≥ error] and P [level ≥ fatal]. The
list does not include P [level ≥ trace] because the probability of log levels
greater than or equal to trace is always 1.

We calculate the predicted probability of each log level by subtracting
between the cumulative probabilities:

– P [level = trace] = 1− P [level ≥ debug]
– P [level = debug] = P [level ≥ debug]−P [level ≥ info]
– P [level = info] = P [level ≥ info]−P [level ≥ warn]
– P [level = warn] = P [level ≥ warn]−P [level ≥ error]
9 http://www.inside-r.org/packages/cran/rms/docs/orm

16 Heng Li et al.

lo
g

ch
ur

n
ra

tio
 in

 h
is

to
ry

lo
g

ch
ur

n
co

de
 c

hu
rn

av
er

ag
e

lo
g

le
ve

l
lo

g
de

ns
ity

lo
g

ch
ur

n
ra

tio
fa

n
in

lo
g

nu
m

be
r

S
LO

C
M

cC
ab

e
co

m
pl

ex
ity

lo
g

ch
ur

n
in

 h
is

to
ry

co
de

 c
hu

rn
 in

 h
is

to
ry

re
vi

si
on

s
in

 h
is

to
ry

lo
g−

ch
an

gi
ng

 r
ev

is
io

ns
 in

 h
is

to
ry

va
ria

bl
e

nu
m

be
r

av
er

ag
e

lo
g

va
ria

bl
es

te
xt

 le
ng

th
av

er
ag

e
lo

g
le

ng
th

fo
r

bl
oc

k
if

bl
oc

k
co

nt
ai

ni
ng

 b
lo

ck
 S

LO
C

ca
tc

h
bl

oc
k

w
hi

le
 b

lo
ck

tr
y

bl
oc

k
sw

itc
h

bl
oc

k

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

P
ea

rs
on

 r

Fig. 5 Correlation analysis using Spearman hierarchical clustering (for Directory Server).
The red line indicates the threshold (0.7) that is used to remove collinear metrics.

– P [level = error] = P [level ≥ error]−P [level ≥ fatal]
– P [level = fatal] = P [level ≥ fatal]

We then select the log level with the highest probability as the predicted log
level.

Backward (step-down) variable selection. We use the metrics de-
fined in Table 2 as the independent (predictor) variables to build the ordinal
regression models. However, not all the independent variables are statistically
significant in our models. Therefore, we use the backward (step-down) vari-
able selection method (Lawless and Singhal, 1978) to determine the statis-
tically significant variables that are included in our final regression models.
The backward selection process starts with using all the variables as predictor
variables in the model. At each step, we remove the variable that is the least
significant in the model. This process continues until all the remaining vari-
ables are significant (i.e., p < 0.05). We choose the backward selection method
since prior research shows that backward selection method usually performs
better than the forward selection approach (i.e., adding one statistically sig-
nificant variable to the model at a time) (Mantel, 1970). We use the fastbw

(Fast Backward Variable Selection) function from the R package rms (Harrell,
2015b) to perform the backward variable selection process.

Which Log Level Should Developers Choose for a New Logging Statement? 17

Evaluation technique. We measure the performance of our ordinal re-
gression models using the multi-class Brier score and AUC metrics.

Brier score (BS) is commonly used to measure the accuracy of proba-
bilistic predictions. It is essentially the mean squared error of the probability
forecasts (Wilks, 2011). The Brier score was defined by Brier (1950) to evaluate
multi-category prediction. It is calculated by

BS =
1

N

N∑
i=1

R∑
j=1

(fij − oij)2 (1)

where N is the number of prediction events (or number of added logging
statements in our case), R is the number of predicted classes (i.e., or number
of log levels in the level modeling case), fij is the predicted probability that the
outcome of event i falls into class j, and oij takes the value 1 or 0 according
to whether the event i actually occurred in class j or not. The Brier score
ranges from 0 to 2 (Brier, 1950). The lower the Brier score, the better the
performance of the model.

AUC (area under the curve) is used to evaluate the degree of discrimina-
tion that is achieved by a model. The AUC is the area under the ROC (re-
ceiver operating characteristic) curve that plots the true positive rate against
the false positive rate. The AUC value ranges between 0 and 1. A high value
for the AUC indicates a high discriminative ability of a model; an AUC of 0.5
indicates a performance that is no better than random guessing. In this paper,
we use an R implementation (Cullmann, 2015) of a multiple-class version of
the AUC, as defined by Hand and Till (2001).

The Brier score measures the error between the predicted probabilities
and the actual observations, i.e., how likely the predicted log level is equal
to the actual log level. A probabilistic prediction may assign an extremely
high possibility (e.g., 100%) to the correct log level, or assign a probability
to the correct category that is only slightly higher than the probability of
an incorrect log level. The Brier score evaluation favors the former case to
measure the model’s ability to predict the correct category accurately.

The AUC give us an insight on how well the model can discriminate the log
levels, e.g., how likely a model is able to predict an actual error level as error
correctly, rather than predict an actual info level as error with false positive.
In particular, the AUC provides a good performance measure when the dis-
tribution of the predicted categories is balanced (Kuhn and Johnson, 2013).
Figure 2 shows that some log levels are less frequently used in the studied
projects, hence harder to predict. A higher AUC ensures the model’s perfor-
mance when predicting such log levels. A prior study (Mant et al., 2009) also
uses a combination of AUC and Brier score to get a more complete evaluation
of the performance of a model.

Bootstrapping and optimism. The Brier score and AUC provide us
an insight on how well the models fit the observed dataset, but they might
overestimate the performance of the models when applied to future obser-
vations (Efron, 1986; McIntosh et al., 2015). Bootstrapping (Efron, 1979) is

18 Heng Li et al.

a general approach to infer the relationship between sample data and the
population, by resampling the sample data with replacement and analyzing
the relationship between the resample data and the sample data. In order to
avoid overestimation (or optimism), we subtract the bootstrap-averaged op-
timism (Efron, 1986) from the original performance measurement (i.e., Brier
score and AUC). The optimism values of the Brier score and AUC are calcu-
lated by the following steps, similar to prior research (McIntosh et al., 2015):

– Step 1. From the original dataset with N logging statements (i.e., in-
stances), we randomly select a bootstrap sample of N instances with re-
placement. On average, 63.2% of the logging statements in the original
dataset are included in the bootstrap sample for at least once (Kuhn and
Johnson, 2013).

– Step 2. We build an ordinal regression model using the bootstrap sample
(which contains averagely 63.2% of the logging statements in the original
dataset).

– Step 3. We test the model (built from bootstrap sample) on the bootstrap
and original datasets separately, and calculate the Brier score and AUC on
both datasets.

– Step 4. We measure the optimism by calculating the difference between
the model’s performance (Brier score and AUC) on the bootstrap sample
and on the original dataset.

The steps are repeated for 1,000 times to ensure that our random sampling
is not biased (Harrell, 2015a). We calculate the average optimism values of the
Brier score and AUC, and then obtain the optimism-reduced Brier score and
AUC by subtracting the optimism from the original values. The optimism-
reduced Brier score and AUC values give us an indication of how well we can
expect the model to fit to the entire dataset (but not just the sample or the
observed data).

Baseline models. We compare the performance of our ordinal regression
models with two baseline models: a random guessing model, and a naive model
based on the proportional distribution of log levels. The random guessing
model predicts the log level of a logging statement to be each candidate level
with a identical probability of 1/R, where R is the number of candidate levels.
The intuition of the naive model is that when a developer does not know
the appropriate log level, a default log level of the project may be chosen
for the logging statement. However, we do not know the default log level
of each project. Therefore, for each project we calculate the proportion of
each log level used in the logging statements, and use the proportion as the
predicted probability of that particular level. In other words, the naive model
allocates the predicted probability of the candidate log levels according to the
proportional distribution of the log levels in that particular project.

Results

The ordinal regression model achieves an optimism-reduced Brier
score of 0.44 to 0.66 and an optimism-reduced AUC of 0.75 to 0.81.

Which Log Level Should Developers Choose for a New Logging Statement? 19

An AUC of 0.75 to 0.81 indicates that the ordinal regression model performs
well in discriminating the six log levels, and that the model can accurately
suggest log levels for newly-added logging statements. As shown in Table 3,
the original Brier score for the ordinal regression model, which measures the
model’s performance when both of the training data and the testing data is the
whole data, ranges from 0.43 to 0.65. The optimism-reduced Brier score of the
ordinal regression model, which measures the model’s performance when the
model is trained on a subset (bootstrapped resample) of the data while tested
on the whole data, ranges from 0.44 to 0.66, with only a difference between 0
and 0.01. The difference between the original AUC and the optimism-reduced
AUC is also very small, ranging from 0 to 0.01. The negligible difference be-
tween the original and the optimism-reduced performance values indicates that
the model is not over-fitted to the training data. Instead the model can also
be effectively applied to a new data set. In other words, the performance of
our models, when applied on new data in practice, would only exhibit very
minimal degradation.

We also measure the computational cost for determining the appropriate
log level for a newly-added logging statement. On average, training an ordinal
regression model for a large project like Hadoop on a workstation (Intel i7
CPU, 8G RAM) takes less than 0.3 seconds, and predicting the log level for a
newly-added logging statement takes less than 0.01 seconds. For each commit,
we would only need to perform the prediction step in real-time, while the
training can be done offline. Our approach can provide suggestions for log
levels in an interactive real-time manner.

The performance of the ordinal regression model outperforms
that of the naive model and the random guessing model. For all the
four studied projects, as presented in Table 3, the ordinal regression model
achieves a higher AUC than the baseline models (the random guessing model
and the naive model), by 0.25 to 0.31. The significantly higher AUC of the
ordinal regression model indicates that it outperforms the baseline models in
discriminating the six log levels. For three out of the four studied projects,
Directory Server, Hama and Qpid, the Brier score of the ordinal regression
model is better than that of the baseline models. The Brier score of the ordinal
regression model outperforms the random guessing model by 0.28 to 0.36. The
Brier score of the ordinal regression model outperforms the naive model by
0.21 to 0.22.

For the Hadoop project, the Brier score of the ordinal regression model is
less significantly higher than that of the baseline models: the ordinal regression
model gets a Brier score of 0.66, while the naive model and the random guessing
model get a Brier score of 0.75 and 0.83, respectively. A possible reason for the
ordinal regression model’s performance degradation in the Hadoop project is
that the Hadoop project presents a more variant usage of log levels in each type
of block. As shown in Figure 3, for the Hadoop project, the most-frequently
used log level in each type of block only covers 33% to 55% of the logging
statements that are inserted in that particular type of block. However, the
proportions of the most-frequently used log level in each type of block are more

20 Heng Li et al.

Table 3 Comparing the performance of the ordinal regression model with the random
guessing model and the naive model.

Project
Ordinal model Naive model Random guess

Brier Score AUC Brier Score AUC Brier Score AUC
D. Server 0.44 (0.43)1 0.78(0.78)2 0.65 0.50 0.80 0.50
Hadoop 0.66 (0.65) 0.76(0.76) 0.75 0.50 0.83 0.50
Hama 0.51 (0.50) 0.75(0.76) 0.73 0.50 0.83 0.50
Qpid 0.55 (0.55) 0.81(0.82) 0.76 0.50 0.83 0.50

1 The value outside the parenthesis is the optimism-reduced Brier score, and the value
inside the parenthesis is the original Brier score.
2 The value outside the parenthesis is the optimism-reduced AUC, and the value inside
the parenthesis is the original AUC.

dominating in other studied projects, ranging 49% - 76%, 35% - 66%, and 38%
- 63% for the Directory Server, Hamma and Qpid projects, respectively. For
the Hadoop project, the top two most-frequently used log levels in each type
of block are used in 62% to 93% of the logging statements that are inserted
in that particular type of block. The top two most-frequently used log levels
in each type of block cover 79% to 100%, 68% to 100%, and 68% to 92%
of the logging statements for the Directory Server, Hama, and Qpid projects,
respectively. The variant usage of log levels in each type of block makes it hard
for a model to achieve an accurate probabilistic prediction. However, a high
AUC of 0.76 still indicates that the ordinal regression model performs well
in discriminating the six log levels for the logging statements in the Hadoop
project.�

�

�

�
The ordinal regression models can effectively suggest log levels with
an AUC of 0.75 to 0.81 and a Brier score of 0.44 to 0.66, which
outperforms the performance of the naive model based on the log
level distribution and a random guessing model.

RQ2: What are the important factors for determining the log level of a logging
statement?

Motivation

In order to understand which factors (metrics) play important roles in deter-
mining the appropriate log levels, we analyze the ordinal regression models
to get the relative importance of each variable. Understanding the important
factors can provide software practitioners insight regarding the selection of the
most appropriate log level for a newly-added logging statement.

Approach

Wald Chi-Square (χ2) test. We use the Wald statistic in a Wald χ2 max-
imum likelihood test to measure the importance of a particular variable (i.e.,

Which Log Level Should Developers Choose for a New Logging Statement? 21

calculated metric) on model fit. The Wald test tests the significance of a par-
ticular variable against the null hypothesis that the corresponding coefficient
of that variable is equal to zero (i.e., H0 : θ = 0) (Harrell, 2015a). The Wald

statistic about a variable is essentially the square of the coefficient mean (θ̂)

divided by the variance (var(θ)) of the coefficient (i.e., W = θ̂2

var(θ)). A larger

Wald statistic indicates that an explanatory variable has a larger impact on
the model’s performance, i.e., model fit. The Wald statistic can be compared
against a chi-square (χ2) distribution to get a p-value that indicates the sig-
nificance level of the coefficient. We use the term “Wald χ2” to represent the
Wald statistic hereafter. Prior research has leveraged Wald χ2 test in measur-
ing the importance of variables (McIntosh et al., 2015; Sommer and Huggins,
1996). We perform the Wald χ2 test using the anova function provided by the
rms package (Harrell, 2015b) of R.

Joint Wald Chi-Square (χ2) test. In order to control for the effect of
multiple metrics in each dimension, we use a joint Wald χ2 test (a.k.a, “chunk
test”) (Harrell, 2015a) to measure the joint importance of each dimension of
metrics. For example, we test the joint importance of the text length, variable
number and log tokens metrics, and get a single Wald χ2 value to represent
the joint importance of the logging statement metrics dimension. The Wald
χ2 value resulted form a joint Wald test on a group of metrics is not simply
the sum of the Wald χ2 values that are resulted from testing the importance
of the corresponding individual metrics; instead, the Wald test measures the
joint importance of a group of metrics by testing the null hypothesis that all
metrics in the group have a coefficient of zero (i.e., H0 : θ0 = θ1 = ...θk−1 = 0,
where k is the number of metrics in the group for joint Wald test) (Harrell,
2015a). The larger the Wald χ2 value, the larger the joint impact that a group
of metrics have on the model’s performance. We also use the anova function
from the R package rms (Harrell, 2015b) to perform the joint Wald χ2 test.

Results

The containing block metrics, which characterize the surrounding
block of a logging statement, play the most important roles in the
ordinal regression models for log levels. Table 4 shows the Wald χ2 test
results for all the individual metrics that are used in our final ordinal regres-
sion models. As listed in the “Sig.” columns, all the final metrics that we used
in our ordinal regression models are statistically significant in our models (i.e.,
p < 0.05), since we used the backward variable selection approach to remove
those insignificant metrics. Table 5 shows the joint Wald χ2 test results for each
dimension of metrics. The dimension of containing block metrics is the most
important one (i.e., with the highest χ2) in the models for the Haodop and the
Hama projects; and it is the second most important dimension of metrics in
the models for the Directory Server and the Qpid projects. Specifically, both
the containing block type and the containning block SLOC metrics are statis-
tically significant in the models for all four studied projects. Moreover, the

22 Heng Li et al.

containing block type metric as a individual metric plays the most important
role in the models for the Hama project; and it is the second most important
metric for the models for the other three projects. The containing block SLOC
metric is the fourth important metric in the models for the Hadoop and Hama
projects, while it plays less important roles in the models for the other two
projects. Developers need to consider the characteristics of the surrounding
block (e.g., block type) of a newly-added logging statement to determine the
most appropriate log level for the particular logging statement.

Table 4 Variables’ importance in the ordinal models, represented by the Wald Chi-square.
The percentage following a Wald χ2 value is calculated by dividing that particular Wald χ2

value by the “TOTAL” Wald χ2 value.

Directory Server Qpid
Variable name Wald χ2 Sig.1 Variable name Wald χ2 Sig.
Log tokens 555 (29.3%) *** Average log level 937 (34.8%) ***
Containing block type 507 (26.8%) *** Containing block type 460 (17.1%) ***
Variable number 217 (11.4%) *** Log number 238 (8.8%) ***
Average log level 200 (10.6%) *** Log tokens 207 (7.7%) ***
Text length 123 (6.5%) *** Log churn 78 (2.9%) ***
Average log variable 46 (2.4%) *** Average log variable 37 (1.4%) ***
Average log length 24 (1.3%) *** Containing block SLOC 27 (1.0%) ***
Log number 23 (1.2%) *** Fan in 20 (0.7%) ***
Log density 23 (1.2%) *** Log density 11 (0.4%) **
Containing block SLOC 8 (0.4%) ** Text length 9 (0.3%) **
Fan in 5 (0.3%) * TOTAL 2692 (100.0%) ***
Log churn ratio 5 (0.3%) *
TOTAL 1894 (100.0%) ***

Hadoop Hama
Variable name Wald χ2 Sig. Variable name Wald χ2 Sig.
Average log level 494 (23.1%) *** Containing block type 257 (29.4%) ***
Containing block type 385 (18.1%) *** Log tokens 96 (10.9%) ***
Log tokens 171 (8.0%) *** Average log level 88 (10.1%) ***
Containing block SLOC 136 (6.4%) *** Containing block SLOC 37 (4.2%) ***
Log number 76 (3.6%) *** Log number 20 (2.2%) ***
Log churn in history 42 (2.0%) *** TOTAL 876 (100.0%) ***
Text length 29 (1.4%) ***
Average log variable 20 (0.9%) ***
Log churn ratio in hist. 14 (0.6%) ***
TOTAL 2134 (100.0%) ***

1 Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

Table 5 The joint importance of each dimension of metrics in the ordinal models, calculated
using the joint Wald test. The percentage following a Wald χ2 value is calculated by dividing
that particular Wald χ2 value by the “TOTAL” Wald χ2 value.

Directory Server Hadoop Hama Qpid
Metric dimension Wald χ2 Sig.1 Wald χ2 Sig. Wald χ2 Sig. Wald χ2 Sig.
Containing block metrics 640 (33.8%) *** 894 (41.9%) *** 577 (65.8%) *** 723 (26.9%) ***
File metrics 258 (13.6%) *** 549 (25.7%) *** 91 (10.3%) *** 1134 (42.1%) ***
Logging statement metrics 889 (46.9%) *** 189 (8.9%) *** 96 (10.9%) *** 224 (8.3%) ***
Change metrics 5 (0.3%) * 0 (0.0%) o 0 (0.0%) o 78 (2.9%) ***
Historical metrics 0 (0.0%) o 67 (3.1%) *** 0 (0.0%) o 0 (0.0%) o
TOTAL 1894 (100.0%) *** 2134 (100.0%) *** 876 (100.0%) *** 2692 (100.0%) ***

1 Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

Which Log Level Should Developers Choose for a New Logging Statement? 23

The file metrics, which capture the overall logging practices in
the containing files, are also important factors for predicting the
log level of a newly-added logging statement. As shown in Table 5, the
file metrics is the most important dimension in the ordinal regression mod-
els for the Qpid project, the second most important for the Hadoop project,
and the third most important for the Directory Server and Hama projects.
As shown in Table 4, in particular, the average log level metric is the most
important individual metric for determining the log levels for the Hadoop and
Qpid projects; and it is the third and fourth important one in the Hama and
Directory Server projects, respectively. Such a result suggests that the logging
statements that are inserted in the same file are likely to use similar log levels;
this might be explained by the intuition that these logging statements share
the same purposes of logging and they log the same or closely-connected fea-
tures. Other metrics in the file metrics dimension - the log number, log density,
average log variables, average log length and fan in metrics - are also statis-
tically significant in the log level models. These metrics together capture the
overall characteristics of the logging practices in a source code file. Developers
should always keep in mind the overall logging characteristics (e.g., the log
level of the existing logging statements) in the same file when determining the
appropriate log level for a newly-added logging statement.

The logging statement metrics, which measure the content of a
logging statement, also play important roles in explaining the log
level for a newly-added logging statement. As shown in Table 5, the
logging statement metrics is the most important dimension for explaining the
log level for a newly-added logging statement in the Direcotory Server project.
It is the second most important metric for explaining the log levels for the
Hama project, and the third important metric for explaining the log levels
for the Hadoop and Qpid projects. In particular, the log tokens metric is the
most import individual metric for explaining the log levels for the Directory
Server project; and it is the second, third, and forth most important metric for
explaining the log levels for the Hama, Hadoop and Qpid projects, respectively.
We investigated why the log tokens metric is more important for explaining
the log levels for the Directory Server project than other projects. We find that
the Directory Server project uses the least variety of tokens in their logging
statements. Specifically, on average each logging statement in the Directory
Server project contribute 0.08 unique tokens, while on average each logging
statement contributes 0.12 to 0.21 unique tokens in other studied projects. The
uniqueness of tokens in Directory Server makes it more certain to determine
the appropriate log levels using such information. Other metrics in the logging
statement metrics dimension - the text length and variable number metrics -
are also among the most important metrics for explaining the log levels for
the Directory Server project; however, these two metrics are less important
or even not statistically significant for explaining the log levels for the other
three projects. In order to find the root cause of this discrepancy, we dig into
the text length and variable number metrics for the four studied projects. We
find that the Directory Server project generally uses significantly shorter text

24 Heng Li et al.

but more variables in the error level logs which are the most popular ones
in the Directory Server project (see Figure 2). Therefore, these two metrics
have great explanatory power to the levels of the logging statements in the
Directory Server project. However, we do not find similar patterns in the
other three projects. In order to determine the most appropriate log level
for a newly-added logging statement, developers should not only refer to the
overall logging characteristics of the containing file and the containing block,
but should also pay attention to the content of the logging statement itself.

The change metrics and historical metrics are the least impor-
tant in explaining the choices of log levels. As shown in Table 5, the
change metrics and historical metrics are the least important dimensions in
the ordinal regression models for all studied projects. The log level of a newly-
added logging statement is not significantly impacted by the characteristics
of the code change that introduces the logging statement. The log level of a
newly-added logging statement is also not significantly impacted by the char-
acteristics of the previous code changes that affect the containing file of the
logging statement. The appropriate log level is more likely to be influenced by
the static characteristics of the source code, rather than the change history of
the source code. These results suggest that we should focus our effort on the
current snapshot of the source code, rather than the development history, to
determine the appropriate log level for a newly-added logging statement.�

�

�

�

The characteristics of the containing block, the existing logging
statements in the containing file, and the content of a newly-added
logging statement play important roles in determining the appropri-
ate log level for the newly-added logging statement. The appropriate
log level is more likely to be influenced by the current snapshot of
the source code, rather than the development history of the source
code.

5 Discussion

Cross-project Evaluation. Since small projects or new projects might not
have enough history data for log level prediction, we also evaluate our model’s
performance in cross-project prediction. We train a model using a combo data
of N −1 projects (i.e., the training projects), and use the model to predict the
log levels of the newly-added logging statements in the remaining one project
(i.e., the testing project). We use the AUC and the Brier score to evaluate the
performance of the cross-project prediction models.

To avoid the unbalanced number of newly-added logging statements for
each project in the training data, we leverage up-sampling to balance the
training data such that each project has the same number of newly-added
logging statements in the training data. Specifically, we keep unchanged the
largest training project in the training data; while we randomly up-sample the
entries of the other training projects with replacement to match the number of

Which Log Level Should Developers Choose for a New Logging Statement? 25

entries of the largest training project. In order to reduce the non-determinism
caused by the random sampling, we repeat the “up-sampling - training - test-
ing” process for 100 times and calculate the average AUC and Brier score
values.

Table 6 lists the performance of the cross-project models. Each row of the
table shows the performance of the model that uses the specified project as
testing data and all the other projects as training data. The cross-project
models reach a Brier score of 0.57 to 0.77 and an AUC of 0.71 to 0.80.

Table 6 The results of the cross-project evaluation.

Project Brier score AUC
DirectoryServer 0.67 0.76
Hadoop 0.77 0.72
Hama 0.57 0.71
Qpid 0.70 0.80

Comparing Table 6 and Table 3, we find a significant performance degrada-
tion of the ordinal regression model when applied in cross-project prediction.
The accuracy of probability prediction decreases significantly: the Brier score
increases by 0.06 to 0.23. A likely explanation for the performance degradation
is about the different distribution of log levels in different projects, as shown
in Figure 2. Another explanation might be that the most important factors
for the log level models are different among the studied projects. However,
the AUC only decreases by 0.01 to 0.04. The cross-project models still have
the ability to discriminate different log levels for newly-added logging state-
ments. Overall, our cross-project evaluation results suggest that one is better
off building separate models for each individual project.
Log Level Changes. We have left out all the newly-added logging statements
that experience a later log level change in our study, as the levels of these
logging statements may have been inappropriate in the first place. Developers
change the log level of a logging statement either to fix an inappropriate log
level or because the logging requirement has changed.

As shown in Table 1, there are 491 added logging statements that experi-
ence a later log level change in the four studied projects. Table 7 summarizes
the patterns of log level changes that these 491 logging statements experience.
Each row in the table represents the original level of an added logging state-
ment, and each column represents the final level of the logging statements after
one or more log level changes. 211 out of the 491 logging statements undergo
a log level change from the info level to the debug level. On the other hand, 41
out of the 491 logging statements have their log level changed from the debug
level to the info level. It seems that developers often change between the info
and debug levels; the changes between info and debug levels represent 51% of
all the log level changes. Other notable level change patterns include: warn
to info, trace to debug, warn to debug, error to info, error to warn, warn to
error, and debug to trace.

26 Heng Li et al.

Table 7 Summary of the patterns of log level changes in the four studied projects. Each
row represents a original log level and each column represents a new log level.

trace debug info warn error fatal
trace 0 25 2 0 0 0

debug 16 91 41 3 7 1
info 8 211 7 13 4 0

warn 0 23 35 0 16 3
error 0 12 23 23 2 4
fatal 0 1 0 1 1 0

1 Sometimes a log level is eventually changed back to the
same level after some changes.

We notice that 354 (72%) out of the 491 logging statements have undergone
a log level change from a less verbose level to a more verbose level (e.g., from
info to debug); these changes will cause the software systems to generate lesser
log information when more verbose log levels are not enabled. 119 (24%) out of
the 491 logging statements have their log levels changed from a more verbose
log level to a less verbose log level (e.g., from debug to info); these changes
will cause the software systems to generate more log information when more
verbose log levels are not enabled. 18 (4%) out of the 491 logging statements
have their log levels changed to a different level, but eventually changed back
to their initial log levels.

We also find that 385 (78%) out of the 491 logging statements have un-
dergone a log level change to a log level that is only one level away from the
original log level (e.g., from debug to info or from error to warn). 470 (96%)
out of the 491 logging statements have their log levels changed to a level
that is no more than 2 levels away (e.g., from warn to debug). Developers are
likely to adjust their log levels between adjacent log levels rather than between
log levels that are far apart. In this paper we study the log levels of logging
statements generally; however, future study should explore the confusion and
distinction between adjacent log levels.

6 Threats to Validity

External Validity. The external threat to validity is concerned with the
generalization of our results. In our work, we investigate four open source
projects that are of different domains and sizes. However, since other software
projects may use different logging libraries and apply different logging rules,
the results may not generalize to other projects. Further, we only analyze Java
source code in this study, thus the results may not generalize to projects pro-
grammed in non-Java languages. For example, other logging libraries in other
programming languages may not support all the six log levels. Findings from
more case studies on other projects, especially those with other programming
languages and other logging libraries, can benefit our study.

Our preliminary study finds that different projects have different distribu-
tion of log levels. The results for RQ2 shows that the most important factors

Which Log Level Should Developers Choose for a New Logging Statement? 27

for the log level models are different among the studied projects. Besides,
our cross-project evaluation highlights a significant performance degradation
when our ordinal regression models are applied across projects. Therefore, in
order to provide the most appropriate suggestion for the log level of a newly-
added logging statement, it is recommended to build separate models for each
individual project.
Internal Validity. The ordinal regression modeling results show the relation-
ship between log levels and a set of software metrics. The relationship does
not represent the casual effects of these metrics on log levels. The choice of
log levels can be associated with many factors other than the metrics that we
used to model log level. Future studies may extend our study by considering
other factors.

In this paper we study the appropriate choice of log level for a newly-
added logging statement. We assume that in most cases developers of the
studied projects are able to determine the most appropriate (i.e., consistent)
log levels for their logging statements. However, the choices of log levels in the
studied projects might not be always appropriate. To address this issue, we
choose several successful and widely-used open source projects, and we remove
all newly-added logging statements that experience a log level change later on
in their lifetime.

This paper studies the log level, which is fixed in the code, for a logging
statement. The users of software systems that leverage log levels can configure
at which verbosity level the logging statements should be printed, for different
usage scenarios (e.g, debugging). In this paper we do not capture the usage
scenarios of the logging statements of these software systems. We may need to
consider different usage scenarios of the logging statements to better determine
the appropriate log levels in future work.
Construct Validity. This paper proposes an approach that can provide de-
velopers with suggestions on the most appropriate log level when they add
a new logging statement. Future work should conduct user studies with real
developers to better evaluate how well our approach would perform in a real
life setting.

We choose five dimensions of software metrics to model the appropriate log
level of a logging statement. However, there might be other metrics, such as the
characteristics of the logged variables, that can help improve the performance
of our models. We expect future work to expand this study and consider more
relevant software metrics.

7 Related Work

In this section, we discuss the prior research with regards to leveraging logs,
improving logs, and empirical studies of logs.
Leveraging logs. A large amount of log-related research work focuses on
postmortem diagnosis of logs (Mariani and Pastore, 2008; Mariani et al., 2009;
Oliner et al., 2012; Xu et al., 2009; Yuan et al., 2010). Since console logs that

28 Heng Li et al.

are generated in large-scale data centers often consist of voluminous messages
and it is difficult for operators to detect noteworthy logs, Xu et al. (2009)
propose a method to mine the rich source of log information in order to au-
tomatically detect system runtime problems within a short time. As field logs
and source code are usually the only resources for developers to diagnose a
production failure, Yuan et al. (2010) propose a tool named SherLog, which
leverages run-time log information and source code to infer the execution path
during a failed production run. The tool needs neither reproducing the fail-
ure nor expert knowledge of the product. Mariani and Pastore (2008) propose
a technique, which automatically analyzes log files and retrieves valuable in-
formation, to assist developers in identifying failure causes. The wide usage
of logs highlights the importance of proper logging practices, and motivates
our work to provide automated suggestions for the appropriate log level of a
newly-added logging statement.

Improving logs. Several prior research efforts focus on improving logging
practices. In order to address the issue of lacking of log messages for fail-
ure diagnosis, Errlog (Yuan et al., 2012a) analyzes the source code to detect
unlogged exceptions (abnormal or unusual conditions) and automatically in-
sert the missing logging statements. LogEnhancer(Yuan et al., 2012c), on the
other hand, automatically adds causally-related information on existing log-
ging statements to aid in future failure diagnosis. A recent tool named LogAd-
visor (Zhu et al., 2015) aims to provide developers with suggestions on where
to log. LogAdvisor extracts contextual features (such as textual features) of a
code snippet (exception snippet or return-value-check snippet) and leverages
the features to suggest whether a logging statement should be added to a code
snippet. These tools try to improve logs by adding additional logged informa-
tion or suggesting where to log. In this paper, we attempt to support logging
practices by suggesting the appropriate log level of newly-added logging state-
ments.

Empirical studies of logs. Researchers have conducted several empirical
studies on logging practices. Fu et al. (2014) study the logging practices in
two industrial software projects. They investigate what kinds of code snippet
contain logs in order to provide a guideline on where to log. A recent empir-
ical study (Kabinna et al., 2016b) highlights that developers should carefully
estimate the benefits and effort for migrating from an old logging library to a
new logging library. Another recent work (Kabinna et al., 2016a) studies how
likely a logging statement is going to be changed after the initial commit. In
contrast, we aim to provide developers on the choice of log level when they
initially add a logging statement. A recent study on industry logging prac-
tices (Pecchia et al., 2015) highlights that the logging behavior is strongly
developer dependent, and there is a need to establish a standard logging pol-
icy in a company. Such prior findings motivate our study towards improving
current logging practices. Prior research shows that logs are often changed by
developers without considering the needs of other stakeholders (Shang et al.,
2011, 2014), and the changes to logs often break the functionality of log pro-
cessing applications that are highly depending on the format of logs. Similarly,

Which Log Level Should Developers Choose for a New Logging Statement? 29

Yuan et al. (2012b) studies the logging practices in four open source projects.
They study the modification of logging statements over time. They examine
the amount of effort that developers spend on modifying logging statements.
Yuan et al. build a simple log-level checker to detect problematic log levels.
Their checker is based on the assumption that if two logging statements within
similar code snippets have inconsistent log levels, then at least one of them
is likely to be incorrect. Our study differs from their work in two dimensions:
1) our model predicts actual log levels while the log-level checker only detects
inconsistent levels; 2) the checker is based on identifying similar source code
but our model considers a large number of software metrics that are relevant
to log levels.

8 Conclusions

Prior studies highlight the challenges that developers face when determining
the appropriate log level for a newly-added logging statement. However, there
is no standard or detailed guideline on how to use log levels appropriately;
besides, we find that the usage of log levels varies across projects. We pro-
pose to address this issue (i.e., to provide suggestions on the choices of log
levels) by learning from the prior logging practices of software projects. We
firstly study the development history of four open source projects (Directory
Server, Hadoop, Hama, and Qpid) to discover the distribution of log levels in
various types of code snippets in these projects. Based on the insight from
the preliminary study and our intuition, we propose an automated approach
that leverage ordinal regression models to learn the usage of log levels from
the existing logging practices, and to suggest the appropriate log levels for
newly-added logging statements. Some of the key findings of our study are as
follows:

– The distribution of log levels varies across different types of blocks, while
the log levels in the same type of block show similar distributions across
different projects.

– Our automated approach based on ordinal regression models can accurately
suggest the appropriate log level of a newly-added logging statement with
an AUC of 0.76 to 0.81 and a Brier score of 0.44 to 0.66. Such perfor-
mance outperforms the performance of a naive model based on the log
level distribution and a random guessing model.

– The characteristics of the containing block of a newly-added logging state-
ment, the existing logging statements in the containing source code file, and
the content of the newly-added logging statement play important roles in
determining the appropriate log level for that logging statement.

Developers can leverage our models to receive automatic suggestions on the
choices of log levels or to receive warnings on inappropriate usages of log levels.
Our results also provide an insight on which factors (e.g., the containing block
of a logging statement, the existing logging statements in the containing source

30 Heng Li et al.

code file, and the content of a logging statement) that developers consider when
determining the appropriate log level for a newly-added logging statement.

References

Aguinis, H. (2004). Regression analysis for categorical moderators. Guilford
Press.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability.
Monthly weather review , 78(1), 1–3.

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2013). Applied multiple
regression/correlation analysis for the behavioral sciences. Routledge.

Cullmann, A. D. (2015). HandTill2001: Multiple Class Area under ROC
Curve. R package version 0.2-10.

D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating defect prediction
approaches: a benchmark and an extensive comparison. Empirical Software
Engineering , 17(4-5), 531–577.

Eberhardt, C. (2014). The art of logging. http://www.codeproject.com/

Articles/42354/The-Art-of-Logging. Accessed 12 May 2016.
Efron, B. (1979). Bootstrap methods: another look at the jackknife. The

annals of Statistics, pages 1–26.
Efron, B. (1986). How biased is the apparent error rate of a prediction rule?

Journal of the American Statistical Association, 81(394), 461–470.
Fu, Q., Zhu, J., Hu, W., Lou, J.-G., Ding, R., Lin, Q., Zhang, D., and Xie, T.

(2014). Where do developers log? An empirical study on logging practices
in industry. In Companion Proceedings of the 36th International Conference
on Software Engineering , ICSE Companion ’14, pages 24–33, New York,
NY, USA. ACM.

Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Predicting fault
incidence using software change history. IEEE Trans. Softw. Eng., 26(7),
653–661.

Gülcü, C. and Stark, S. (2003). The complete log4j manual . Quality Open
Software.

Hand, D. J. and Till, R. J. (2001). A simple generalisation of the area under
the ROC curve for multiple class classification problems. Machine learning ,
45(2), 171–186.

Harrell, Jr., F. E. (2015a). Regression modeling strategies: with applica-
tions to linear models, logistic and ordinal regression, and survival analysis.
Springer.

Harrell, Jr., F. E. (2015b). rms: Regression Modeling Strategies. R package
version 4.4-1.

Harrell, Jr., F. E., with contributions from Charles Dupont, and many others.
(2014). Hmisc: Harrell Miscellaneous. R package version 3.14-5.

Hassan, A. E. (2009). Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software Engineer-
ing , ICSE ’09, pages 78–88, Washington, DC, USA. IEEE Computer Society.

Which Log Level Should Developers Choose for a New Logging Statement? 31

Kabinna, S., Bezemer, C.-P., Hassan, A. E., and Shang, W. (2016a). Exam-
ining the stability of logging statements. In Proceedings of the 23rd IEEE
International Conference on Software Analysis, Evolution, and Reengineer-
ing , SANER ’16.

Kabinna, S., Bezemer, C.-P., Shang, W., and Hassan, A. E. (2016b). Log-
ging library migrations: A case study for the Apache software foundation
projects. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR ’16.

Kuhn, M. and Johnson, K. (2013). Applied predictive modeling . Springer.
Lawless, J. and Singhal, K. (1978). Efficient screening of nonnormal regression

models. Biometrics, pages 318–327.
Mant, J., Doust, J., Roalfe, A., Barton, P., Cowie, M. R., Glasziou, P., Mant,

D., McManus, R., Holder, R., Deeks, J., et al. (2009). Systematic review
and individual patient data meta-analysis of diagnosis of heart failure, with
modelling of implications of different diagnostic strategies in primary care.

Mantel, N. (1970). Why stepdown procedures in variable selection. Techno-
metrics, 12(3), 621–625.

Mariani, L. and Pastore, F. (2008). Automated identification of failure causes
in system logs. In Proceedings of the 2008 19th International Symposium on
Software Reliability Engineering , ISSRE ’08, pages 117–126, Washington,
DC, USA. IEEE Computer Society.

Mariani, L., Pastore, F., and Pezze, M. (2009). A toolset for automated failure
analysis. In Proceedings of the 31st International Conference on Software
Engineering , ICSE ’09, pages 563–566, Washington, DC, USA. IEEE Com-
puter Society.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the royal
statistical society. Series B (Methodological), pages 109–142.

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2014). The impact
of code review coverage and code review participation on software quality:
A case study of the Qt, VTK, and ITK projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, pages
192–201, New York, NY, USA. ACM.

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2015). An empirical
study of the impact of modern code review practices on software quality.
Empirical Software Engineering , pages 1–44.

McKelvey, R. D. and Zavoina, W. (1975). A statistical model for the analysis of
ordinal level dependent variables. Journal of mathematical sociology , 4(1),
103–120.

MSDN (2011). Logging an exception. https://msdn.microsoft.com/en-us/
library/ff664711(v=pandp.50).aspx. Accessed 12 May 2016.

Oliner, A., Ganapathi, A., and Xu, W. (2012). Advances and challenges in log
analysis. Communications of the ACM , 55(2), 55–61.

Pecchia, A., Cinque, M., Carrozza, G., and Cotroneo, D. (2015). Industry
practices and event logging: Assessment of a critical software development
process. In Proceedings of the 37th International Conference on Software
Engineering - Volume 2 , ICSE ’15, pages 169–178, Piscataway, NJ, USA.

32 Heng Li et al.

IEEE Press.
Shang, W., Jiang, Z. M., Adams, B., Hassan, A. E., Godfrey, M. W., Nasser,

M., and Flora, P. (2011). An exploratory study of the evolution of commu-
nicated information about the execution of large software systems. In Pro-
ceedings of the 18th Working Conference on Reverse Engineering , WCRE
’11, pages 335–344, Washington, DC, USA. IEEE Computer Society.

Shang, W., Jiang, Z. M., Adams, B., Hassan, A. E., Godfrey, M. W., Nasser,
M., and Flora, P. (2014). An exploratory study of the evolution of commu-
nicated information about the execution of large software systems. Journal
of Software: Evolution and Process, 26(1), 3–26.

Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B., and Hassan, A. E.
(2010). Understanding the impact of code and process metrics on post-
release defects: A case study on the Eclipse project. In Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement , ESEM ’10, pages 4:1–4:10, New York, NY, USA.
ACM.

Sommer, S. and Huggins, R. M. (1996). Variables selection using the Wald
test and a robust CP. Applied statistics, pages 15–29.

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences, volume
100. Academic press.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. (2009). Detecting
large-scale system problems by mining console logs. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, SOSP ’09,
pages 117–132. ACM.

Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., and Pasupathy, S. (2010).
Sherlog: error diagnosis by connecting clues from run-time logs. In ACM
SIGARCH Computer Architecture News, volume 38, pages 143–154. ACM.

Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M. M., Tang, X., Zhou, Y., and
Savage, S. (2012a). Be conservative: Enhancing failure diagnosis with proac-
tive logging. In Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, volume 12 of OSDI ’12 , pages 293–
306.

Yuan, D., Park, S., and Zhou, Y. (2012b). Characterizing logging practices in
open-source software. In Proceedings of the 34th International Conference
on Software Engineering , ICSE ’12, pages 102–112. IEEE Press.

Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage, S. (2012c). Improving
software diagnosability via log enhancement. ACM Transactions on Com-
puter Systems, 30(1), 4.

Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G. R., Zhao, X., Zhang, Y., Jain,
P. U., and Stumm, M. (2014). Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive sys-
tems. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’14, pages 249–265, Berkeley, CA, USA.
USENIX Association.

Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M. R., and Zhang, D. (2015). Learning
to log: Helping developers make informed logging decisions. In Proceedings

Which Log Level Should Developers Choose for a New Logging Statement? 33

of the 37th International Conference on Software Engineering - Volume 1 ,
ICSE ’15, pages 415–425, Piscataway, NJ, USA. IEEE Press.

Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A. (2004). Mining
version histories to guide software changes. In Proceedings of the 26th In-
ternational Conference on Software Engineering , ICSE ’04, pages 563–572,
Washington, DC, USA. IEEE Computer Society.

