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Abstract—Prior work shows that misleading logging texts
(i.e., the textual descriptions in logging statements) can be
counterproductive for developers during their use of logs. One
of the most important types of information provided by logs is
the temporal information of the recorded system behavior. For
example, a logging text may use a perfective aspect to describe
a fact that an important system event has finished. Although
prior work has performed extensive studies on automated logging
suggestions, few of these studies investigate the temporal relations
between logging and code. In this work, we make the first attempt
to comprehensively study the temporal relations between logging
and its corresponding source code. In particular, we focus on
two types of temporal relations: (1) logical temporal relations,
which can be inferred from the execution order between the
logging statement and the corresponding source code; and (2)
semantic temporal relations, which can be inferred based on
the semantic meaning of the logging text. We first perform
qualitative analyses to study these two types of logging-code
temporal relations and the inconsistency between them. As a
result, we derive rules to detect these two types of temporal
relations and their inconsistencies. Based on these rules, we
propose a tool named TempoLo to automatically detect the
issues of temporal inconsistencies between logging and code.
Through an evaluation of four projects, we find that TempoLo can
effectively detect temporal inconsistencies with a small number of
false positives. To gather developers’ feedback on whether such
inconsistencies are worth fixing, we report 15 detected instances
from these projects to developers. 13 instances from three projects
are confirmed and fixed, while two instances of the remaining
project are pending at the time of this writing. Our work lays the
foundation for describing temporal relations between logging and
code and demonstrates the potential for a deeper understanding
of the relationship between logging and code.

Index Terms—software logging, logging text, temporal relations

I. INTRODUCTION

Logging statements are inserted by developers in the source
code to record important runtime behaviors of software sys-
tems. Logging statements execute and produce useful infor-
mation (i.e., logs) while systems are running. These generated
logs are used in a variety of software engineering activities,
such as failure diagnosis and system monitoring [1], [2], [3].
Listing 1 shows an example code snippet, which contains a
logging statement (line 3). The logging statement has four
components: (1) a logging object “LOG”, (2) a verbosity level
“info”, (3) a dynamic variable “this.rmAddress”, and (4)
a logging text, “Connected to ResourceManager at ”. The

content of a logging statement is typically written by devel-
opers.

Listing 1 A code snippet from Hadoop with a logging state-
ment (line 3).

1 private void registerWithRM( ... {
2 this.resourceTracker = getRMClient();
3 LOG.info("Connected to ResourceManager at " +

this.rmAddress); ...
4 RegistrationResponse regResponse =

this.resourceTracker.registerNodeManager(request)
.getRegistrationResponse();

5 ...}

Logging texts provide high-level human-readable informa-
tion and are usually written to describe the behaviors of the
corresponding source code. Well-written logging texts can pro-
vide developers and other software practitioners with valuable
information for system comprehension or failure diagnosis.
Thus, it is important for developers to write proper logging
texts for their logging statements. Recent work shows that
incorrect logging texts often make the use of logs counterpro-
ductive [2], [4], [5], [6]. For example, according to a Hadoop
issue report1, the logging text of the logging statement in
Listing 1 is misleading: the logging text indicates a perfective
action (“connected”), while the source code corresponding to
the action (line 4) is placed after the logging statement, causing
an inconsistency between the textual description of the logging
statement and its logical relationship with the corresponding
source code. When the logging statement is executed and
a log message is produced, the log message will provide
the misleading information that the “connection” has been
established while it is not. To avoid such confusion, the word
“connected” in the logging text was changed to “connecting”
(indicating a progressive action) in the patch that fixed the
issue.

Prior work has performed extensive studies on software
logging, including the studies that perform empirical investi-
gations of logging practices [7], [8], [9], [10], that characterize
and detect logging-related issues, as well as the studies that
propose automated tools to support where to log [11], [12],
[13], [14], what to log [7], [15], [16], and how to choose log
levels [17], [18]. While a few studies indicate and discuss the
importance of the relationship between logging and code [7],
[2], none of them offer a satisfactory solution to address this

1https://issues.apache.org/jira/browse/MAPREDUCE-4262
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issue. For example, a recent study by He et al. [7] finds
that developers insert logging statements to describe three
types of program operations (i.e., completed, current, and next
operations). In their study, only the relative position between
the logging statement and its corresponding code is considered,
while the underlying intention in the developer-written logging
text is ignored. However, both aspects are critical for logging
quality and various log analysis tasks. As explained previously
in the Hadoop logging example (Listing 1), the inconsistency
between these two aspects can mislead practitioners who
rely on analyzing logs for various tasks (e.g., debugging).
Specifically, four of the logging benefits (e.g., knowing the
status of an ongoing event) observed in a recent survey [2]
would be impaired with such inconsistency. Moreover, by
carefully examining real-life log anti-patterns [8] and log bugs
data [4], we observe many real-world cases (over 20) fixing
such inconsistency.

Therefore, in this work, we make the first attempt to
comprehensively study the relationship between logging and
its corresponding code. In particular, we focus on the temporal
relations. Specifically, we study the logging-code temporal re-
lations from two perspectives: (1) logical temporal relations,
which can be inferred from the execution order between the
logging statement and its corresponding source code; and (2)
semantic temporal relations, which can be inferred based
on the semantic meaning of the logging text. While the
logical temporal relations describe what the actual order is
in the code, the semantic temporal relations describe what
the order is inferred from the generated logs. When there is
an inconsistency between these two relations (i.e., temporal
inconsistency), it is misleading to practitioners who rely on
the clues provided by logs to understand system runtime
behaviors [19], [20]. In this work, we first perform qualitative
analyses to study these two types of logging-code temporal
relations and the issues of temporal inconsistency. Based on
the observations from our qualitative analyses, we also propose
a tool (named TempoLo) to automatically detect the issues of
temporal inconsistency in the source code.

We evaluate our tool on four open-source projects. Our
evaluation contains three parts: (1) applying our tool to the
logging statements used in our qualitative study, which shows
that the tool can cover a majority (78.8%) of the manually
identified temporal inconsistencies; (2) applying our tool to the
remaining logging statements that are not manually analyzed,
which shows that the tool can successfully detect another 326
inconsistencies with a relatively small number of false positive
cases (48 cases and almost half are caused by the dependent
NLP library); and (3) applying the tool to another dataset of
temporal inconsistencies which we collected from the commit
history of the studied projects, which shows that our tool
can detect 83.3% of the inconsistencies. To gather developers’
feedback on whether such inconsistencies are worth fixing, we
report 15 detected instances from these projects to developers.
13 instances from three projects are confirmed and fixed, while
two instances of the remaining project are still pending at the
time of this writing.

The contributions of this paper include:
• We provide empirical observations on the temporal rela-

tions between logging and code.
• We derive rules to detect the logical and semantic tempo-

ral relations between logging and code, as well as rules
to detect logging-code temporal inconsistencies.

• We implement a tool that can automatically detect
logging-code temporal inconsistencies in the source code.

Our work is an important step toward analyzing the rela-
tionship between logging and code. Our empirical observations
and tool can raise developers’ and researchers’ awareness of
the importance of the temporal relations between logging and
code, to avoid and identify temporal relation-related bugs. Our
research also sheds light on promising research opportunities
that exploit other types of relations between logging and code
(e.g., semantic inconsistencies) to improve software logging
or detect logging anti-patterns in the source code, which will
potentially improve the overall quality of software logging.
Paper Organization. Section II presents the background of
temporal relations. Section III describes our subject projects,
and data collection, and gives an overview of our study.
Section IV describes the approaches and results of our qual-
itative study of the temporal relations between logging and
code. Section V presents the implementation and evaluation
of our tool that automatically detects logging-code temporal
inconsistencies which is based on the observations from our
qualitative study. Section VI and Section VII discuss the
threats to the validity of our results and the related work of our
study, respectively. Finally, Section VIII concludes the paper.

II. BACKGROUND

In this section, we present the concepts of temporal relations
that are widely studied in the natural language community.

Before describing temporal relations, we first focus on the
concept of “event” which is a fundamental term in natural
language. Event is defined as a situation that happens or
occurs [21], and it is often expressed in verbs (as shown
in the example below) to describe an action or a transition.
Another important concept is the semantic relation, also called
temporal relation, that holds between relevant events. Given
the following example,

The server stopped unexpectedly, we are starting it again.

According to the definition of events, in this sentence, there
are two events, stopped (E1) and starting (E2). The occurring
order of these two events is the temporal relation. In this
example, event E2 should happen after event E1.

Identifying the events and the temporal relations among
them plays a vital role in many natural language processing
(NLP) tasks, such as temporal information extraction (IE) [22],
question answering [23] and knowledge base (KB) construc-
tion. To better annotate the events and temporal relations, re-
searchers have proposed several representation schemas (e.g.,
Allen’s interval algebra [24], STAG [25], and TimeML) [21].
In our work, we mainly focus on Allen’s interval algebra [24],
as it has become the standard representation [22], [26].



TABLE I: Allen’s 13 temporal relations.
Relation (A to B) Visualization Explanation
Before A ends before B starts
After A starts after B ends

During A starts and ends while B is ongoing

Contains B starts and ends while A is ongoing

Overlaps A starts before B and ends during B

Overlapped-by B starts before A and ends during A

Meets A ends at the point B begins
Met-by B ends at the point A begins

Starts Share the start point, but A ends before B ends

Started-by Share the start point, but B ends before A ends

Finishes A and B share end point, but A begins later

Finished-by A and B share end point, but B begins later

Equals A and B start and end at the same time

A B
B A

B
A

A
B

B
A

A
B
A B

B A

B
A
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Allen [24] first proposed the interval-based algebra for
representing temporal relations that may exist between any
event pair in natural language. The representation consists
of a set of 13 distinct and exhaustive interval relations (i.e.,
the relations between two time intervals) and are listed in
Table I [27], [26], where A and B are two relevant events.
The previous example describes two events, E1 and E2, and
the corresponding temporal relation should be E2 after E1 (or
E2 met-by E1, as it is possible that E2 starts when E1 ends.).

Since the appearance of Allen’s algebra, researchers also
propose modified temporal relations for capturing temporal re-
lations in different domains [25], [28], [29], [27]. For example,
IV et al. [28] combine Allen’s algebra and TimeML schema
and identify five temporal relations for clinical narratives.
Besides, Mostafazadeh et al. [27] find that using a number of
four relations is sufficient to handle the inter-event temporal
relation in ROCStories corpus [30]. Considering the wide
research of temporal relations for NLP, we would like to
examine whether we can formally define our own set of
temporal relations to model the relations between the logging
statements and source code.

III. STUDY SETUP

In this section, we describe the setup of our study2. Figure 1
shows an overview of our study. Overall, our study contains
two parts: (1) a qualitative study of the temporal relations be-
tween the logging statement and source code, and the logging-
code temporal inconsistencies, and (2) the implementation
and evaluation of a tool for automatically identifying the
temporal inconsistencies. Below, we first present our subject
projects and the collection of data for the qualitative study,
then we provide an overview of our qualitative study and the
implementation and evaluation of our tool.

A. Subject projects

We base our case study on four open-source Java projects:
Hadoop, Tomcat, JMeter and ActiveMQ. The four selected
projects are from different application categories: Hadoop is

2The replication package is available at https://github.com/senseconcordia/
TempoLo-replication-package

a distributed server-side data processing system; Tomcat is a
server-side application used for powering web applications;
JMeter is a client-side software for conducting load testing;
ActiveMQ is a middleware project that provides useful mes-
saging service for both the server and client-side projects. We
choose the subject projects since they are widely used and ac-
tively maintained, and have been studied in prior research [8],
[5]. The details of the studied versions of these projects are
listed in Table II. The source lines of code of the studied
projects range from 145K to 1.8M. These projects have about
∼2K to ∼13K logging statements, among which 94.3% to
97.6% have logging texts.

TABLE II: Details of the studied projects.

Project Version SLOC # of logging
statements

# of logging
statements with text

ActiveMQ 5.6.0 412K 2,139 2,087 (97.6%)
Hadoop 3.4.0 1.8M 13,204 12,463 (94.3%)
JMeter 5.5.0 145K 1,932 1,842 (95.3%)
Tomcat 10.1.0 349K 2,590 2,477 (95.6%)
Total 2.7M 19,865 18,868 (95.0%)

B. Data collection: logging statements and logging statement
changes

As shown in Figure 1, we collect logging statements data
from the source code of the subject projects to perform our
qualitative study of the temporal relations between logging and
code and to evaluate our tool that detects temporal inconsis-
tencies. In addition, we collect logging statement changes data
from the version control repositories of the subject projects
to evaluate our tool. Below, we describe our data collection
processes.

1) Collecting logging statements: We collect logging state-
ments from the latest versions (as indicated in Table II) of the
four subject projects at the time of writing this paper3. We use
static analysis and regular expressions to identify the logging
statement and the method that contains the logging statement.
More specifically, we use JavaParser [31] to find out methods
that are invoked in each Java file as logging is typically a
method call (e.g., log.info()), then use regular expressions to
filter out the logging statements using keywords (e.g., “log”,
“logger”, “logging”). The statistics of the collected logging
statements are shown in Table II.

To conduct our manual analysis, we then do random
sampling with 95% confidence level and a 5% confidence
interval [32] on the collected logging statements. We finally
select 326, 373, 321, and 335 logging statements (1,355
samples in total) for ActiveMQ, Hadoop, JMeter and Tomcat,
respectively. Note that we have sampled from each subject
individually, rather than combining all the logging statements
into one dataset for sampling, though it would dramatically
reduce our manual labeling efforts (from 1,355 samples to
377 samples). The main reason is that the distribution of
the logging statements across different projects is highly
imbalanced (i.e., the differences in the number of logging

3The time of the data collection is July 2021.
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Fig. 1: An overview of our study.

statements in different projects), thus to better understand the
characteristics of the temporal relations between the logging
statements and the target source code from a wider perspective,
we do the sampling for each project individually.

2) Collecting logging statement changes: We also construct
an oracle dataset from the commit history of our subject
projects to further evaluate the performance of the tool. Our
idea is that: if developers change the position of a logging
statement relative to its corresponding code, it indicates a
potential temporal inconsistency in the first place. We collect
all the commits of the four studied projects and keep the
commits that have logging statement changes. Then, we man-
ually examine the logging statement changes that fix temporal
inconsistencies. We detail the steps in Section V-D3.

C. Overview of the qualitative study

With the sampled logging statements (see III-B1), we manu-
ally label the temporal relations between the logging statement
and the target source code. Four authors of the paper jointly
perform the labeling process.

We analyze the logging-code temporal relations from two
perspectives: (1) logical temporal relations, where our as-
sumption is that the logging statement and its corresponding
source code can be considered as a different but relevant event
pair and the temporal relation (in other words, execution order)
of the event pair can be inferred from their relative position in
the code snippet; and (2) semantic temporal relations, where
the action described in the logging text and the execution of
the logging statement is regarded as an event pair, and the
temporal relations can be inferred from the semantic meaning
of the logging text, which is similar to existing NLP tasks [29],
[22].

We then manually identify the temporal inconsistencies. We
consider that there exists a temporal inconsistency if the two
types of relations violate each other. We detail our qualitative
study steps in Section IV.

D. Overview of our tool implementation and evaluation

In this step, based on the observations from our qualitative
study, we implement a tool named TempoLo that automat-
ically detects the logging-code temporal relations and the
temporal inconsistencies for a given logging statement and its
containing method. The tool implements three functionalities:
(1) logical temporal relation detection, (2) semantic temporal
relation detection, and (3) temporal inconsistency detection.

To evaluate the effectiveness of TempoLo, we apply it
to the unsampled logging statements (the remaining logging

statement after sampling for manual labeling) to examine its
ability to detect new temporal inconsistencies. As there is no
readily available oracle dataset for temporal inconsistencies,
we also construct an oracle dataset from the commit history of
the subject projects for further evaluation. Finally, we reported
the detected inconsistencies as bugs through issue reports and
pull requests to the developers of the four studied projects. We
detail the steps and results in Section V.

IV. A QUALITATIVE STUDY

In this section, we describe the steps of our qualitative study
that aims to understand the temporal relations between logging
and code, as well as to identify the inconsistencies between the
temporal relations inferred from the code (i.e., logical temporal
relations) and that inferred from the semantic meaning of the
logging text (i.e., semantic temporal relations).

A. Studying logical temporal relations

In this section, we manually label and analyze the logical
temporal relations.

1) Labeling logical temporal relations: We follow a three-
step manual labeling process:

Step 1. We start by manually labeling a random sample of
406 logging statements (i.e., 30% of the total 1,355 sampled
logging statements). In this step, we employ four authors of
the paper to do the labeling. The logical temporal relation of
each logging statement is labeled by two annotators separately.
Therefore, each annotator is assigned 203 logging statements
to label. Each logging statement together with its correspond-
ing code snippet is provided to the annotators using a URL
that locates the logging statement in the corresponding GitHub
repository. The annotators decide the most appropriate relation
for each logging statement from Allen’s 13 temporal relations.

Step 2. Once the 406 logging statements are labeled, the
four annotators compare their labeling results. The results
in this step have a substantial agreement for the labeling of
the logical temporal relations (Cohen’s Kappa of 0.81). As
each logging statement is labeled by two annotators, and thus,
when there is any disagreement of the labeling, the other two
annotators would join and discuss until reaching a consensus.

Step 3. Based on the common understanding of the labels
obtained from the last step, the remaining 949 from the total
sample of 1,355 logging statements are equally distributed
to the four annotators, then, each author labels around 237
logging statements individually.

Note that there exist some logging statements that do not
have explicit temporal relations with the source code, and the



annotators simply label the temporal relation as “N/A”. For
example, considering the code snippet in Table III(a), there
is no clear target source code for the logging statement, and
thus, it is impossible to infer a temporal relation.

TABLE III: An overview of the logical temporal relations.
Relation Code snippet

N/A

private void handleBrowse(SampleResult ...
LOGGER.debug("isBrowseOnly");
StringBuilder sb = new ...
}

(a) JMSSampler.java (JMeter)

During

public void setRunning(boolean running,
String host) {

log.info("setRunning({}, {})", running,
host); ...

}

(b) JMeterMenuBar.java (JMeter)

Before

public void run() { ...
log.debug("Sampler start");
...
sample();
...}

(c) AbstractPerformanceSampler.java (ActiveMQ)

After

public void onAMQPData(Object command) ...
frame = header.getBuffer();
...
LOG.trace("Server: Received from

client: {} bytes", ...
}

(d) AmqpConnection.java (ActiveMQ)

Meets

void waitForAuthentication() ...
LOG.debug("Waiting for authentication

response");
handler.waitForAuthentication();
}

(e) Application.java (ActiveMQ)

Met-by

protected void unregisterProducer( ...
managementContext.unregisterMBean(key);
} catch (Throwable e) {

LOG.warn("Failed to unregister MBean
{}", key);

...
}

(f) ManagedRegionBroker.java (ActiveMQ)

2) Identified logical temporal relations: In total, we have
identified five logical temporal relations between the logging
statement and its corresponding source code, as shown in
Table III. As compared with Allen’s 13 relations (cf., Sec-
tion II), we do not include the relations contains, overlaps,
overlapped-by, starts, started-by, finishes, finished-by and
equals. The reason is that we consider the execution of a
logging statement as a time point and the corresponding code
as a time interval. Below, we discuss each of our identified
logical temporal relations.
During: The logging statement executes while the target
source code is ongoing. As shown in Table III(b), the corre-
sponding code of the logging statement is the whole method,
and the logging statement executes while the method is
ongoing, thus, we label the relation as during.

Before: The logging statement executes before the correspond-
ing source code. As shown in Table III(c), the corresponding
code of the logging statement is the method “sample”, and
there is other source code between the logging statement and
the corresponding code, thus, we label the relation as before.
After: The logging statement executes after the corresponding
source code. As shown in Table III(d), the target code of
the logging statement is the assignment operation “frame
= header.getBuffer();”, and there is another source code
between the logging statement and the corresponding code,
thus, we label the relation as after.
Meets: The logging statement executes right before the
corresponding source code. As shown in Table III(e), the
corresponding code of the logging statement is the method
“waitForAuthentication()”, and there is no other source
code between the logging statement and the corresponding
code, thus, we label the relation as meets.
Met-by: the logging statement executes right after the cor-
responding source code. As shown in Table III(f), the cor-
responding code of the logging statement is the method
“unregisterMBean(key)”, and there is no other operations
between the logging statement and the corresponding code,
thus, we label the relation as met-by.

3) Findings from labeling logical temporal relations: Dur-
ing the labeling process, the most challenging part is locating
the target source code of the logging statement. However, we
find that the main verb in the logging text, which typically
shows the action that occurs in a sentence, can be effectively
used for locating the corresponding source code. Therefore,
we list observations for locating the corresponding source code
based on the logging text. The number in the parentheses is
the proportion of these matches respectively.
Finding L.1: The main verb in the logging text (par-
tially) matches the corresponding source code (40.4%).
For instance, in Table III(e), the main verb of the logging
text “Waiting for authentication response” is “waiting”, which
partially matches “waitForAuthentication” in the statement
“handler.waitForAuthentication();”. As the logging state-
ment is logically executed right before the corresponding code
statement, we can label the relation as meets.
Finding L.2: The direct object or subject of the main verb
in the logging text (partially) matches the corresponding
source code (18.3%). The direct subject (object) is usually
a noun or noun phrase that performs (receives) the action of
the main verb. For instance, in Table III(c), the logging text
is “Sampler start” and the main verb is “start”, whose subject
“Sampler” partially matches the statement “sample();”. There
are other statements between the logging statement and the
corresponding code, we, therefore, label the relation as before.
Finding L.3: The synonyms of the main verb in the
logging text match the corresponding source code (11.1%).
Developers also use synonyms of the main verb to describe
the source code. As shown below, the corresponding code for
the logging statement invokes the “append” method; while
developers choose to use its synonym, “add” to describe the
action.

https://jmeter.apache.org/
https://jmeter.apache.org/
https://activemq.apache.org/
https://activemq.apache.org/
https://activemq.apache.org/
https://activemq.apache.org/


private void initUserTags(BackendListenerContext ...
userTagBuilder.append(’,’)

.append(...tagToStringValue(tagName)) ...
log.debug("Adding ’{}’ tag with ’{}’ value ",

tagName, tagValue); ...}

Finding L.4: The main verb in the logging text implicitly
matches an operator of the corresponding source code
(17.3%). For example, in Java, the phrase “instantiating a
class” means calling the constructor of a class and creating
an object of that class, which is done by using the “new”
keyword. Below is an example, where “Instantiating” is used
to describe the “new” operation.
private void startWebApp() { ...

AHSWebApp ahsWebApp = new AHSWebApp(...
LOG.info("Instantiating AHSWebApp at " + ...}

Finding L.5: The open clausal complement of the main
verb in the logging text matches the target source code
(10.0%). The open clausal complement of the main verb is
usually a predicative or clausal complement, which can also
convey actions of the source code. For instance, in Table III(f),
the logging text is “Failed to unregister MBean” and the main
verb is “Failed”, whose open clausal complement, “unregis-
ter”, matches the method “unregisterMBean()”.

B. Studying semantic temporal relations

In this section, we study semantic temporal relations that
can be inferred from the semantic meaning of logging text.

1) Labeling semantic temporal relations: To get the labels
of the logging texts, we follow the same three-step manual
labeling process as in Section IV-A1. We also achieve a sub-
stantial agreement on the semantic temporal relations (Cohen’s
Kappa of 0.83). Besides, there also exist logging statements of
which the textual descriptions cannot be used to infer temporal
relations. For instance, in Table IV(a), there is no explicit event
that can be extracted, and the authors simply label the temporal
relation as “N/A”.

TABLE IV: An overview of the semantic temporal relations.
Relation Logging statement

N/A (a)log.debug("Arg: {}", arg)

During (b)log.info("setRunning({}, {})", running, host);

Before (c)LOG.debug("Active scan starting")

After (d)log.info(“Thread started:{}”, ...);

2) Identified semantic temporal relations: In total, we have
identified three semantic temporal relations inferred from the
logging text, as shown in Table IV.

Considering the intrinsic similarity between this labeling
process and the 2007 TempEval challenge in NLP [29], [22]
as well the fact that it is hard to be certain about whether two
events occur exactly during the same time or starting/ending
right after/before each other [27] (e.g., we are unable to ensure
that the “starting” would exactly occur right after the logging
statement.), we thus follow the previous work [29] and restrict
the original Allen’s 13 interval relations to a set of three
(before, after and during) temporal relations, which based
on observation are enough to capture the semantic temporal

relations. Below, we discuss our identified set of three semantic
temporal relations.
During: The logging statement is called while the event
described in the logging statement is ongoing. As shown in
Table IV(b), the event is the “setRunning”, and we can infer
that the logging statement should execute while the event is
ongoing, thus, we label the relation as during.
Before: The logging statement is called before the event. As
shown in Table IV(c), the event is “starting”, which should
occur after the execution of the logging statement, thus, we
label the relation as before.
After: The logging statement is called after the event. As
shown in Table IV(d), the logging statement should be ex-
ecuted after the event “started”, thus, we label the relation
as after.

3) Findings from labeling semantic temporal relations:
We discuss the findings that can be used for inferring the
semantic temporal relations. We find that the tense and aspect
of the main verb are two major pieces of evidence that can
be used to infer semantic temporal relations. Tense and aspect
are two important concepts in natural language embodying the
linguistic encoding of time [33], [34]. There are two tenses
in English, past and present, and two aspects, perfective and
progressive, indicating that the action is complete or ongoing,
respectively.
Finding S.1: If the main verb has a past tense or perfective
aspect, the relation is often after. As shown in Table IV(d),
the main verb “started” has a tense of past, and thus is labeled a
relation, after. However, we find that in some cases, just tense
solely can not determine the semantic relation, for instance,
the expression “have stopped” has an after relation, but the
tense is present. In this situation, we consider the aspect, as
the aspect is perfective.
Finding S.2: If the main verb has a present tense or pro-
gressive aspect, the relation is often before. In Table IV(c),
the main verb “starting” has a present tense and progressive
aspect, and the temporal relation is labeled as before. Note that
the main verb with a past tense can still have a progressive
aspect, for example, given the verb phrase “was stopping”, it
has a progressive aspect but past tense, for such cases, we
label them as after.
Finding S.3: If the logging text is in CamelCase and does
not contain any explicit tense or aspect, the relation may
be during. In Table IV(b), the logging text “setRunning” is
in CamelCase and does not contain any verbs and thus the
temporal relation is labeled as during.

C. Studying temporal inconsistencies

We have labeled the temporal relations for the collected
logging statements in previous steps. As one of our goals
is to uncover the patterns of temporal inconsistencies (i.e.,
the inconsistencies between the logical and semantic temporal
relations), in this section, we first describe how to identify the
temporal inconsistencies and then describe the findings.

Our way to identify the inconstancy is straightforward: if the
temporal relation inferred from the source code (i.e., logical



temporal relation) violates the temporal relation inferred from
the textual description of the logging statement (i.e., semantic
temporal relation), we label the logging statement as a logging
statement with a temporal inconsistency. Below, we describe
three intuitive rules for such inconsistencies (see Table V).
Rule 1: The temporal relation inferred from the source
code is After or Met-by, but the temporal relation in-
ferred from the logging text is Before. For instance,
in Table V(a), the logging statement “LOG.info("Adding
a new node: ");” starts right after its target source code
“clusterMap.add(node)”, thus has a met-by relation inferred
from the code. However, the semantic temporal relation in-
ferred from the text of the logging statement is before, as the
logging statement should execute earlier than the “Adding”
event. The correct event expression should be “Added”, or the
logging statement should be moved to the line above the code
“if (clusterMap.add(node)){”.
Rule 2: The temporal relation inferred from the source
code is Before or Meets, but the temporal relation inferred
from the logging text is After. For instance, in Table V(b),
the logging statement “log.warn("Existing AuthManager

{} superseded by {}")” executes before its target source
code “setProperty()”, and thus has a before relation inferred
from the code. However, the temporal relation inferred from
the text of the logging statement is after, as the execution of
the logging statement should occur later than the “superseded”
event.
Rule 3: The temporal relation inferred from the source
code is During, but the temporal relation inferred from the
logging text is After or Before. For instance, in Table V(c),
both the logging statements execute while the target method
is ongoing, and thus they have a during relation. However,
the temporal relations inferred from the texts of the two
logging statements are after and before, respectively, as the
execution of the logging statements should occur later and
earlier than the “stopped” and “starting” events, respectively.
Ideally, the first logging statement should execute after the
“registerHost()” method, and the second one should execute
before the “registerHost()” method. However, as we stated
in Section IV-A2, the execution of a logging statement is
considered as a time point and thus, both should be moved
to the end and start point of the method, respectively.

D. Summary of our qualitative study
In previous sections, we have described our findings from

the qualitative study. Here, we discuss the distribution of
the logical and semantic temporal relations, as well as the
temporal inconsistencies that we identified in the sampled
dataset. Table VI shows the statistics of the temporal relations
and the identified inconsistencies in the four studied projects.
Developers prefer to insert the logging statement right
after/before the corresponding source code. Table VI shows
that about 73.4% of the sampled logging statements are located
next to (either right before or after) the corresponding source
code (i.e., with meets or met-by logical temporal relations).
Compared to inserting the logging statements before the
target source code, developers prefer to see logs after the

target source code being executed. Table VI shows that about
61.8% of the sampled logging statements are inserted (right)
after the target source code (i.e., with met-by or after logical
temporal relations). This observation is consistent with the
findings of previous work [8], [15] that logging statements
are more relevant to their pre-log code.
There exist a non-negligible amount of inconsistencies (i.e.,
2.4%) between the logical and semantic temporal relations,
which can potentially confuse the end users and make the
use of logs counterproductive [2]. Our Rule 1 can detect
more than twice the temporal inconsistencies as Rule 2. This
gap may be caused by the fact that some developers just insert
the base form (i.e., with present tense) of a verb in the logging
text and put the logging statement after the target source code,
paying little attention to the tense or aspect of the action
itself. Note that Rule 3 is deduced from the correct cases. In
particular, we find that developers may put the method name
together with a verb indicating the start of the execution at
the first line of the method body. Therefore, we did not detect
any inconsistency by Rule 3 during our labeling.

Inspired by our qualitative study and the non-negligible
amount of inconsistencies, we decide to implement our find-
ings into a tool to assist developers in automatically detecting
the logging-code temporal inconsistencies in the source code.

V. TEMPOLO: AUTOMATICALLY DETECTING TEMPORAL
INCONSISTENCIES BETWEEN LOGGING AND CODE

In this section, we propose a tool, TempoLo, which au-
tomatically detects inconsistencies between the logical and
semantic logging-code temporal relations, based on our find-
ings from Section IV. Formally, given a logging statement and
the method that contains the logging statement, the proposed
tool can automatically analyze both their logical and semantic
temporal relations and detect whether there is a temporal
inconsistency. Tempolo is built as a static code analyzer that
could be integrated into an IDE in practice, of which the
storage needed is in a matter of KBs and time cost is almost
negligible. We detail our implementation and evaluation in the
rest of this section.

A. Detecting semantic temporal relations

As we discussed in Section IV-B3, the aspect and tense of
the main verb can be effectively used to detect the semantic
temporal relations. In this section, we describe how to extract
the logging text, and its main verb with tense and aspect.

1) Extracting the logging text: Following the approach used
in prior work [15], we first extract the logging texts and
variables from the logging statements which are collected
in Section III-B. Since our focus is on the main verb of
the logging text, we replace the variables with a wildcard
(VID). For instance, the extracted logging text of the logging
statement in Table IV(d) is “Thread started: VID”. Note
that some projects (e.g., Tomcat) use an internationaliza-
tion/localization helper class to fill the text in the logging
statement instead of inserting the logging text directly. For
example, Tomcat provides multiple local strings files with
different languages and uses a helper class and a key (e.g.,



TABLE V: An overview of the rules for labeling the inconsistencies of temporal relations.
Rule 1 Rule 2 Rule 3

The temporal relation inferred from the source code
is After or Met-by, but the temporal relation
inferred from the logging text is Before.

The temporal relation inferred from the source
code is Before or Meets, but the temporal
relation inferred from the logging text is After.

The temporal relation inferred from the source
code is During, but the temporal relation inferred
from the logging text is After or Before.

public void add(Node node) {
...
if (clusterMap.add(node)) {

LOG.info(“Adding a new node: "
+NodeBase.getPath(node));

...
} Before

After or Met-by

(a) NetworkTopologyWithNodeGroup.java (Hadoop)

Before or Meets

public void setAuthManager(AuthManager value) {
...
log.warn("Existing AuthManager {} superseded by

{}", mgr.getName(), value.getName());
...
setProperty(new

TestElementProperty(AUTH_MANAGER, value));
}

After

(b) HTTPSamplerBase.java (JMeter)

private void registerHost(Host host) {
...
log.info("registerHost({}) stopped.", host)
...
log.info("registerHost({}) starting.", host)
...

}

During

During

After

Before

(c) Modified MapperListener.java (Tomcat)

TABLE VI: The statistics of the manually labeled temporal relations.
Types ActiveMQ Hadoop JMeter Tomcat Total

Logical temporal
relations

During 4 5 7 0 16
Before 11 17 8 12 48
After 24 44 24 34 126
Meets 82 93 64 44 283
Met-by 178 171 171 192 712
N/A 27 43 47 53 170

Semantic temporal
relations

During 5 5 5 0 15
Before 93 119 75 61 348
After 194 199 179 213 785
N/A 34 50 62 61 207

Temporal
inconsistencies

Rule 1 4 13 3 3 23
Rule 2 4 1 4 1 10
Rule 3 - - - - 0
Total 8 14 7 4 33

Note: We did not find any inconsistency that matches Rule 3, as Rule 3 is deduced from
the correct cases during labeling.

in “sm.getString("requestFacade.nullRequest")”, “sm” is
the helper class, and “requestFacade.nullRequest” is the key)
to retire the specific string. In such cases, we first convert the
keys into the corresponding logging text using the underlying
resource bundle (e.g., locale-specific resource).

2) Identifying the main verb and its tense and aspect: In
this step, we use spaCy [35], an open-source NLP library,
to perform dependency parsing and part-of-speech (POS)
tagging on the extracted logging text. Dependency parsing is
the task of defining the dependency relations (e.g., subject,
object) between the tokens of a sentence. Part-of-speech (POS)
tagging is the task of categorizing each token in the sentence
with different types (e.g., verbs). Figure 2 shows the result (a
dependency parsing tree) of performing dependency parsing
and POS tagging on an example logging text. The arrows and
labels at the top are the syntactic dependency relations and the
tags at the bottom are the identified part-of-speech tags. Based
on the dependency parsing tree, we consider the following two
types of tokens as the main verb : (1) a token with a verb tag
and its head (i.e., parent node) in the dependency tree is the
token itself, or, (2) the first token with a verb tag. For example,
in Figure 2, the head of the first token “Starting” is itself, and
it has a tag “verb”, thus “starting” is considered as the main
verb of the logging text. Once we get the main verb, we can
get the tense and aspect of the main verb using spaCy.

Fig. 2: A dependency parsing tree of an example logging text.

3) Identifying the semantic temporal relation: To identify
the semantic temporal relation, we apply the findings (i.e.,
Finding S.1 - Finding S.3) in Section IV-B3 to the results
from the previous step: if the main verb has a past tense or
perfective aspect, we label the relation as after, and if the
main verb has a present tense or progressive aspect, we label
the relation as before. If the logging text is in CamelCase
and does not contain any explicit tense or aspect, we label the
relation as during.

B. Detecting logical temporal relations

As we discussed in Section IV-A3, locating the target source
code of the logging statement plays a vital role in detecting
the logical temporal relations. In this section, we use the same
approach (cf., Section V-A) to extract the logging text and
identify the main verb of the logging statement, after which,
we perform lemmatization on the main verb to get its base
form using spaCy. Below, we describe how we locate the
source code using the lemmatized main verb.

1) Extracting all the potential statements: During our man-
ual analysis, we also observe that the target source code is
mainly method calls, assignment, return, if, else, or break
statements. Therefore, in this step, we try to extract such
statements as the potential statements. We first apply srcML to
the method that contains the logging statement. srcML converts
the source code into an XML tree, in which the tags provide
the information of the potential statements. For example, all
method calls are wrapped with a “call” tag. We then adopt
XPath and Beautiful Soup4 to extract the statements.

2) Locating the corresponding statements: Once having
extracted statements, we need to locate the corresponding
statement. We implement the five rules observed (i.e., Finding
L.1 - Finding L.5) in Section IV-A3, to identify the corre-
sponding statement5. To collect the synonyms of a given main
verb, we adopt WordNet, which is a large lexical database of
English [36].

3) Identifying the logical temporal relation: After we lo-
cated the target source code, we extract its line number,
which is an attribute of the code component in the XML
tree. Then we compare it with the line number of the logging

4https://www.crummy.com/software/BeautifulSoup/bs4/doc/
5We also implemented an ML-based approach to locate the target source

code, but the top-1 accuracy is not satisfactory (only around 50%). Therefore,
we opt to use the rule-based approach instead of the ML-based approach.
Please refer to the replication package for more details.

https://hadoop.apache.org/
https://jmeter.apache.org/
https://tomcat.apache.org/
https://www.srcml.org/
https://www.srcml.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/


statement and identify the logical temporal relations defined
in Section IV-A2.

C. Detecting temporal inconsistencies

Based on the result from the previous two steps, we imple-
ment the rules observed in Section IV-C to detect temporal
inconsistencies. For each logging statement, TempoLo would
scan the pair of the detected logical and temporal relations
to check whether they violate each other. Note that on one
hand, there may exist some cases that do not have a verb
in the logging text or we cannot match any target source
code based on the rules, for such cases, we do not label their
temporal relations. On the other hand, there is a possibility
that one main verb may match more than one target source
code in Section V-B2, and thus we collect multiple logical
temporal relations for the logging statement. For these cases,
we keep all the logical temporal relations, and if all the
relations violate the semantic temporal relation, we then label
it as a temporal inconsistency. By doing this, we can have a
relatively acceptable accuracy and low false positive rate.

D. Evaluation

1) Evaluation on the manually identified logging state-
ments: We first apply TempoLo to our manually identified
logging statements. As shown in Table VI, we manually
identify a total of 33 temporal inconsistencies, we run our
tool on this dataset and can successfully detect 26 logging
statements out of the 33 (i.e., 78.8%, with a false negative
rate of 21.2%) having an inconsistent temporal relation. The
results verify the usefulness of the findings and the correctness
of the implementation. We then manually check the undetected
cases, in order to further understand the reasons that may cause
our tool to fail. We find two main reasons contributing to such
detection errors: (1) Mismatch of the target code. In the step
of determining the logical temporal relation of the logging
statement, our tool returns the incorrect target source code.
An example is shown below.
public NodePlan plan(DiskBalancerDataNode node) ...

LOG.info("Starting plan for Node : {}:{}",
node.getDataNodeName(), ...}

The main verb of the logging text is identified as “starting”.
The term “get” in the method call “getDataNodeName()” is
one of the synonyms of “start”. Thus, our tool made a mistake
by matching the logging text to the ”getDataNodeName()”
method. (2) No main verb found in the logging text. Our
tool relies on spaCy to determine the main verb as well as the
tense and aspect of the verb. There exist some cases in which
spaCy may not return an incorrect result. For example, given
the following logging statement, “log.trace("Registering
key for read:"+ key)”, we can infer that the main verb
is “registering” with a progressive state. However, spaCy
recognizes “registering” as a noun.

2) Evaluation on the remaining unsampled logging state-
ments: In this part of the evaluation, we would like to check
whether TempoLo can detect unseen temporal inconsistencies
while having a low false positive rate. Therefore, we evaluate
TempoLo on the remaining unsampled logging statements

(the remaining logging statements after sampling for manual
labeling). We manually check the detected cases, in order to
understand the false positive rate and the reasons that may
cause our tool falsely report a correct case as an inconsistency.

TempoLo reports a total of 326 logging statements with
temporal inconsistencies. Two authors manually checked each
of them to determine whether it is a true positive or false
positive. The two authors achieve an agreement ratio of
78.3% and finally identify 48 false positives after reaching a
consensus. In general, the false positives are caused either by
(1) an incorrect main verb or (2) an incorrect target source
code. Below, we detail the reasons that may lead to false
positives:

(1) Incorrect identification of the main verb. If the log-
ging text contains more than one verb, TempoLo may not
detect the correct main verb. For example, TempoLo wrongly
identifies “ask” as the main verb for the logging statement
“LOG.info("Requested container ask: "+ ...);” (the cor-
rect one should be “requested”). This error is essentially
caused by spaCy, as our way to detect the main verb re-
lies on the dependency parsing tree generated by spaCy.
Besides, TempoLo may wrongly return a non-verb token
as the main verb. For example, in the logging statement,
“LOG.info("included nodes = "+ ...);”, TempoLo identi-
fies “included” as the main verb, while it is an adjective.
This error is caused by the POS tagging of the tokens,
which is provided by spaCy. It is reasonable that spaCy has
low accuracy in analyzing logging texts (which is different
from sentences in NLP) even though we use the state-of-the-
art transformer-based model. Future work can train a model
on the annotated software engineering data to improve the
performance of spaCy for software engineering.

(2) Incorrect match of the target source code. TempoLo
may not be able to locate the target source code. For example,
in the logging statement “LOG.info("..., moving files

from ... "”, developers use “moving files” to describe the
actions of the source code, however, the target source code is
“mergePaths()”. Moreover, some descriptions in the logging
statements mean no action in the source code. For example,
some developers use “stopping” in the catch block to indicate
the end of the method, and TempoLo cannot detect such cases.
To address this problem, developers can manually construct a
project-orientated dictionary that maps the token in the logging
text to the statements in the source code.

3) Evaluation on the logging statements collected from
commit history: Finally, we evaluate whether TempoLo can
detect historical issues of temporal inconsistencies between
logging and code. Since such issues may not be all reported
in the issue tracking system, we construct an oracle dataset
from the commit history to further evaluate TempoLo. Below,
we describe how we construct the dataset.

We first clone the git version control repositories of our
subject projects and use “git log” to extract all the code
commits. We then use “git show” to analyze the changes. In
order to make sure the commit changes are relevant to logging
statements, we focus on two types of commits: (1) only the



locations of the source code are changed and the changed
code contains logging statements; and (2) logging statements
are only modified by changing their temporal information
(e.g., verb tense in the sentence) in the logging text. After
this step, we gathered a total of 1,273 code changes from
our studied projects. Intuitively, not all commits are indeed
related to logging statements. Therefore, two authors manually
examine each of the commits to confirm that the commit is
related to a logging statement. The two authors achieve an
agreement ratio of 86.0% and collect 59 commits that are
logging statement-related code changes. Furthermore, as the
focus of this study is the temporal inconsistency, we find that
a majority of the 59 commits are caused either by (1) regular
code changes (e.g., new code is added or deleted, causing
the change of the logging statement) or (2) logging efficiency
(e.g., moving the logging statement out of loops). Therefore,
we continue filtering the commits and finally we extract a total
of six logging statement changes that are related to temporal
inconsistencies.

We then evaluate the tool on the six collected logging
statements on their versions before the commit and TempoLo
can successfully detect five of them (i.e., 83.3%, which is
similar to the accuracy when being evaluated on the manually
sampled dataset, with a false negative rate of 16.7%.). The one
inconsistency case that our tool failed to detect is as follows:
+ log.info("Ending thread " + ...);

allThreads.remove(thread);
- log.info("Ending thread " + ...);

Our tool fails to detect this case since we cannot successfully
match the action “remove” with the event “ending”.

4) Reporting issues to developers: To gather developers’
feedback on whether such inconsistencies are worth fixing, we
report our detected instances to developers. To avoid spam-
ming developers, we iteratively and gradually report issues
to developers (e.g., by issue reports or PRs). We first only
select and report two instances for each project to developers
to know whether developers care about this kind of issue. Then
if developers confirm the instances (e.g., by fixing the issue
or accepting the PR), we further report more instances for
that project. In the instance selection process, we prioritize
the instances without ambiguity (e.g., we avoid instances that
contain verbs that are the same in the present and past tense
(e.g., “read”)). We have reported 15 instances covering the
four projects. So far, all 13 instances from three projects are
confirmed and fixed, and two instances of the other project are
still under discussion. There are two main strategies for fixing
the reported inconsistencies: (1) moving the logging statement
to the proper position, and (2) correcting the tense or aspect
of the main verb of the logging statement6.

TempoLo can successfully detect the temporal inconsis-
tencies in the source code with a low false positive rate of
14.7%. 13 out of 15 reported inconsistency instances have
been fixed by developers and received positive feedback.

6The details of the pull requests can be found in our replication package.

VI. THREATS TO VALIDITY

External Validity. As the study involves four Java open-
source projects, the number of studied subjects and program-
ming languages may pose a threat to the study’s validity.
To mitigate this, careful consideration goes into the selection
of subjects. These four analyzed projects are well-known
and have gained considerable attention from developers and
researchers, based on the stars on GitHub and existing research
papers [8], [5]. Besides, we did obtain consistent empirical
results across the four studied projects. Furthermore, Java is a
mature programming language that provides built-in logging
and third-party logging frameworks. Many studies [37], [15],
[5], [17] focus only on Java logging because of its abundance
of logging usage. Considering the universality of logging, the
findings from Java logging studies may be applicable to other
programming languages, which will require further research.
Internal Validity. Since the study involves a manual study, its
validity can be influenced by the knowledge and experiences
of the participants. As a way to mitigate human bias, we use
peer review to reach a consensus as a baseline for further
review. Participants are all professional researchers in the field
of software engineering.
Construct Validity. This study leverages several third-party
tools to preprocess the source code, such as JavaParser and
spaCy. These tools could have their limitations. For example,
almost half of the detected false positives are caused by spaCy.
However, all of the tools used in this study were used in
previous studies [38], [39] and are well recognized in the
Computer Science community. For example, JavaParser has
∼4K Github stars and spaCy has ∼23K stars at the time of
writing this paper. We observe a 15% (48/326) false positive
rate, while we admit that after all, our tool is a static analysis-
based technique. 85% is rather on-par or above most static
analysis-based tools. Besides, as our tool can pinpoint the
location of inconsistencies, the cost of manually verifying a
false positive is relatively low.

VII. RELATED WORK

Studies on logs in classical SE research area. Following
the first empirical study [40] on logging practice in 2012, a
slew of further studies on the logging have emerged in SE
research area. Shang et al. [41] perform a manual study of
email threads from three open source systems’ mailing lists,
as well as sampled logging statements to better comprehend
log lines. Kabinna et al. [42] manually review logging library
migrations for Apache Software Foundation (ASF) projects.
Hassani et al. [4] investigate log-related issues using a combi-
nation of empirical study, manual analysis, and an automated
approach. Chen and Jian [8] analyze the characteristics of
logging practices in ASF projects through a replication study
of [40]. The studies mentioned above all involve manual
inspections, which are also used in this work. In addition,
there are also many studies providing automated software
solutions for log analysis. For example, Tan et al. [43] use
their automated approach to track control-flow and data-flow
execution in distributed systems by looking at logs. Yuan et



al. [44] propose an automated approach of enhancing logging
content using data flow analysis and control flow analysis.
Tang et al. [45] present an automated approach to rejuvenate
feature log levels. Our work also includes some automated
work to reduce the amount of manual effort required for
manual analysis. Furthermore, a prior work [5] groups log
studies into three categories based on the problems each study
is attempting to solve: how-to-log, what-to-log and where-to-
log. In our work, we seek to alleviate the problem of how-
to-log and where-to-log, by defining and leveraging temporal
relations between logging and code.
Prior NLP research related to sequences. Cutting-edge NLP
techniques have piqued the interest of many researchers in past
few years. Many NLP studies involve sequence analysis or
may facilitate it in the future. For example, Mostafazadeh et
al. [27] present a semantic annotation framework for investi-
gating the relations between events, including event sequence
analysis. Derczynski [26] pinpoints the importance of event
sequences and conducts several studies on the topic. Myers
and Palmer [46] propose a Neural Network based approach
to identify tense and verb aspects, and these results can be
used to help order events. Despite the recent surge in NLP
research, the majority of related work focuses on pure natural
languages rather than logs that use natural languages to inter-
pret programming languages but retain a lot of programming
language morphology and syntax.
Prior work on log study, which is at the crossroads of
NLP and software engineering. Research on NLP and logs
typically focuses on log mining and analysis. For example,
Locke et al. [47] apply n-gram models to identify event
sequences for log analysis. Kobayashi et al. [48] propose using
NLP to generate log templates from logs to assist with log
analysis. Aussel et al. [49] leverage NLP for log parsing to
enhance the performance of log mining. To the best of our
knowledge, there has never been an NLP study that examines
the sequence between logging statements and their context.

VIII. CONCLUSION

In this paper, we have formally defined two sets of temporal
relations between the logging statement and the corresponding
source code: logical and semantic temporal relations. Based on
the defined temporal relations, we have concluded three rules
for detecting the temporal inconsistencies that can jeopardize
the quality of logging. We then implement the rules as a
tool to automatically detect such inconsistencies. By analyzing
the results, we find that our tool can successfully detect the
temporal inconsistencies in the source code with a relatively
low false positive rate. We have reported some detected in-
consistencies to the developers of each of our subject projects
and received positive feedback. Moreover, our research sheds
light on the promising research opportunity of formalizing
other logging-code relations to assist in various downstream
software engineering tasks (e.g., improving the quality of the
automatically generated logging texts [15] and more accurately
representing the actual temporal status of the events described
in the logs [50]). Future research may build more and improve

existing log analysis approaches by incorporating the defined
temporal relationship.
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