
LoGenText: Automatically Generating Logging
Texts Using Neural Machine Translation

Zishuo Ding
Concordia University
Montreal, Canada

zi_ding@encs.concordia.ca

Heng Li
Polytechnique Montréal

Montreal, Canada
heng.li@polymtl.ca

Weiyi Shang
Concordia University
Montreal, Canada

shang@encs.concordia.ca

Abstract—The textual descriptions in logging statements (i.e.,
logging texts) are printed during system executions and exposed
to multiple stakeholders including developers, operators, users,
and regulatory authorities. Writing proper logging texts is an
important but often challenging task for developers. However,
despite extensive research on automated logging suggestions,
research on suggesting logging texts rarely exists. In this paper,
we present LoGenText, an automated approach that generates
logging texts by translating the related source code into short
textual descriptions. LoGenText takes the preceding source code
of a logging text as the input and considers other context
information such as the location of the logging statement, to
automatically generate the logging text using neural machine
translation models. We evaluate LoGenText on 10 open-source
projects, and compare the automatically generated logging texts
with the developer-inserted logging texts in the source code.
We find that LoGenText generates logging texts that achieve
BLEU scores of 23.3 to 41.8 and ROUGE-L scores of 42.1 to
53.9, which outperforms the state-of-the-art approach by a large
margin. In addition, we perform a human evaluation involving
42 participants, which further demonstrates the quality of the
logging texts generated by LoGenText. Our work is an important
step towards automated generation of logging statements, which
can potentially save developers’ efforts and improve the quality
of software logging.

I. INTRODUCTION

Developers insert logging statements in the source code
to collect valuable runtime information of software systems.
Logging statements produce execution logs at runtime, which
play important roles in the daily tasks of developers and
other software practitioners [1], [2]. An example logging
statement from HBase, LOG.warn("Failed to create dir {}",
dst), has a verbosity level of warn, a dynamic variable dst
whose value will be dynamically determined, and a logging
text Failed to create dir which will be directly outputted
during software execution. Prior work has leveraged the rich
information in logs to support different software engineering
activities, including system comprehension [3], [4], anomaly
detection [5], [6], [7], [8], [9], and failure diagnosis [10], [11].
In particular, logs are usually the only available resource for
diagnosing field failures [12].

Extensive prior research has shown that writing proper
logging statements is an important and challenging task [13],
[14], [15], [16]. Besides the typical challenges of deciding
where to log [17] and how to choose verbosity levels [18],
deciding the textual information in the logging statement is
even more challenging [19]. Prior studies find that developers

spend significant efforts modifying the textual information
in their logging statements [13], [20], [14], [15], [16]. A
recent study has shown that developers rely heavily on reading
the text in the logging statement while misleading textual
information often makes the use of logs counterproductive [2].

Despite the importance of logging texts, there exists rare
research effort that devotes to assisting developers in writing
logging texts. A recent study by He et al. [19] proposes an
approach that reuses the texts in the logging statements from
similar code snippets. However, since only existing logging
texts are directly reused, the texts generated by the prior ap-
proach may still require significant revisions by practitioners.
Nevertheless, prior work [19] has demonstrated the potential
possibility of automatically generating logging texts.

In order to help developers address the challenges of writ-
ing logging texts, we propose LoGenText, a neural-machine-
translation based approach. LoGenText automatically generates
the textual description of a logging statement by translat-
ing the related source code into logging texts. Specifically,
we adopt a Transformer-based Sequence-to-Sequence model
which leverages an encoder-decoder architecture to automate
translations and uses the attention mechanism to boost its
performance [21]. In LoGenText, the target sequence of the
Transformer-based model is a logging text, and the source
sequence is its related source code. We consider the source
code preceding the logging text as the source input. We
also consider incorporating other contexts that may provide
relevant information about the logging texts to be generated,
including the location of the logging statement, the succeeding
source code, and the logging texts in similar code snippets. To
incorporate such contexts, we further extend the Transformer
by adding additional encoders that integrate the context infor-
mation into the model [22]. The outputs of these encoders are
then formed as a new input to the decoder which generates
the logging text as the final output of LoGenText.

We evaluate LoGenText on 10 open-source Java projects
from different domains. We first evaluate the automatically
generated logging texts by comparing them with the original
logging texts inserted by developers using quantitative metrics
such as BLEU and ROUGE-L. LoGenText achieves BLEU
scores of 23.3 to 41.8 and ROUGE-L scores of 42.1 to
53.9, which outperforms the baseline approach from prior
research [19] by a large margin. On the other hand, our
evaluation results show that incorporating other context in-

formation (e.g., the location of the logging statement) can
further improve LoGenText. In order to further understand
the effectiveness of LoGenText, we conduct a human-based
evaluation that involved 42 participants. The results confirm
that LoGenText can provide high-quality logging texts and it
significantly outperforms the baseline approach in generating
logging texts.

The contributions of this paper include:
• Our automated approach LoGenText significantly im-

proves the state-of-the-art in generating logging texts.
• Our work suggests that automated approaches for logging

text generation should not only focus on the preceding
code of a logging statement, but also consider other
context information to further improve the performance.

• Our work demonstrates the promising direction of lever-
aging advances in neural machine translation techniques
to generate logging texts.

Our work is an important step towards automated generation
of logging statements. Our findings shed light on future
research opportunities that apply up-to-date neural machine
translation techniques in automated generation and suggestion
of logging statements. We share our extracted datasets from
the 10 open-source projects and the configurations used for
training our models1.
Paper Organization. Section II presents the details of our
approach LoGenText. Section III presents the setup of the ex-
periment for evaluating LoGenText. Section IV and Section V
present the results of evaluating LoGenText through quanti-
tative metrics and human evaluation. Section VI discusses
threats to the validity. Section VII presents the related work.
Finally, Section VIII concludes the paper.

II. APPROACH

In this section, we describe the details of LoGenText that
leverages neural machine translation (NMT) to automatically
generate logging texts.

A. Approach Overview

LoGenText is a NMT-based approach that uses deep neural
networks to translate source code into logging texts. Figure 1
illustrates the overall approach of LoGenText. First, for each
logging statement in the source code, LoGenText extracts its
logging text, the source code preceding the logging text (i.e.,
the pre-log code), and the context information from the source
code (i.e., data preparation). Then, LoGenText feeds the
extracted logging text, the pre-log code (i.e., the source), and
the context information into a Transformer-based Sequence-
to-Sequence (Seq2Seq) model [21] that consists of embedding
layers, encoders, and decoders (i.e., model training). Finally,
the trained model takes the source (the pre-log code) and
the context information as input and translates it into the
corresponding logging text (i.e., model inference). We detail
each of these three steps in the rest of this section.

In the base form of LoGenText, we use the pre-log code of a
logging statement to generate its logging text. We evaluate the

1Data package: https://github.com/conf-202x/experimental-result

base form of LoGenText in RQ1 (Section IV-RQ1). In RQ2
(Section IV-RQ2) and RQ3 (Section IV-RQ3), we propose
a context-aware form of LoGenText and discuss the impact
of adding the context information, including the location of
the logging statement in the abstract syntax tree (AST) (i.e.,
the structural (AST) context), the source code succeeding the
logging statement (i.e., the post-log code), and the logging
text in the most similar code snippet, on the performance of
LoGenText. The pre-log code is fed as the source, while other
context information is fed as the context to the model.

B. Data Preparation

LoGenText takes three parts of information about a logging
statement to train the model: 1) logging text, which refers to
the static plain text in the logging statement, 2) source, which
contains the pre-log code, and 3) context, which includes the
structural (AST) context, the post-log code, and the logging
text in similar code.

1) Extracting the logging text: We first extract the complete
logging message (including the logging text and variables)
from the logging statement. Since our focus is on the logging
text, we then replace the variables with a wildcard (<vid>). For
example, given the following logging statement from Hadoop,
the extracted logging text is “Removed child queue: <vid>”.
// Original logging statement:

LOG.debug("Removed child queue: {}",
cs.getQueueName())

// Extracted logging text:
"Removed child queue: <vid>"

2) Extracting the source data: We use the pre-log code as
the main input (i.e., the source data) for our neural translation
model. Specifically, the source data includes the code from
the method start point to the location right before the logging
text of the logging statement. We consider the pre-log code as
our main input for logging text generation because a logging
statement usually communicates the runtime behavior of the
system before the execution of the logging statement [23], [2].

3) Extracting the context data: We consider three types
of data as the context input of our neural translation model,
including the structural (AST) context, the post-log code
context, and the logging text in similar code. We discuss the
details of extracting the structural context and the post-log
code context in RQ2 where we discuss the impact of such
contexts. Similarly, we discuss the details of extracting the
logging text in similar code in RQ3.

4) Pre-processing the logging text and source data: Follow-
ing the previous approaches for pre-processing the input text
data [19], [24], [25], we convert the logging text and source
code text into lower cases and tokenize them into token units.
We also remove all the non-identifiers (e.g., quotation marks).

A potential challenge is the out-of-vocabulary (OOV) tokens
of the source code and logging texts [26], [27]. At testing
time, there would be tokens that have never occurred in
the training data, which may lead to the poor translation
of the NMT systems [28]. One way to alleviate the OOV
problem is to enlarge the dictionary size to include more rare
tokens. However, due to the fact that user-defined identifiers

https://github.com/conf-202x/experimental-result

Source code

ContextLogging texts

Pre-log code

Structural
(AST) context

Post-log
code context

1. Data Preparation 2. Model Training

EncoderS

Decoder

Logging text
generator

Source

Generated
logging text

EncoderC

3. Model Inference

Logging in
similar code

(RQ1)

(RQ2) (RQ3)
Transformer-based

Seq2Seq model

Embedding

Embedding

Pre-processing

Pr
e-

pr
oc

es
si

ng

Context

Source

Fig. 1: An overview of LoGenText.

(i.e., not reserved by the programming language) take up the
majority of code tokens, they have a non-negligible influence
on the vocabulary of translation dictionary [27]. Thus, using
a large dictionary to cover the user-defined tokens would
increase the difficulty of training the translation model, as it
requires more training data and hardware resources [27]. To
address this problem, we employ byte pair encoding (BPE), a
data compression technique, to segment the code tokens into
subword units [29], [30]. This is based on the intuition that
users often define identifiers via combining smaller word units.
For example, the token “getQueueName” is a combination of
three subwords, i.e., “get”, “queue” and “name”. In this way,
our approach can encode all tokens as sequences of subword
units.

We set the maximum length of both the logging text
sequences and the source code sequences to 1,024 (the default
value of our Transformer-based model). The tokens of the
sequences beyond the maximum length will be truncated; the
sequences shorter than the maximum length are padded. 0% of
the logging text sequences are truncated and 3.7% to 3.8% of
the source code sequences are truncated in the studied projects.

C. NMT-based Log Generation

In our approach, we consider the logging text generation
task as a machine translation task, i.e., translating a code
snippet into logging text that communicates the internal
behavior of the code snippet. Thus, we can apply neural
machine translation (NMT) techniques to solve the logging
text generation problem. Formally, given a source sequence
X = (x1, x2, . . . , xS), our goal is to predict tokens in the
target logging text Y = (y1, y2, . . . , yT). Most NMT models
use an encoder-decoder architecture. The input to the encoder
is the source sequence X , and the output of the encoder
is a sequence of distributed representations. The generated
representations are then fed into the decoder part, where the
tokens in the target sequence are generated one by one [31].
Hence, the objective of the models is to approximate the
conditional distribution logP (Y |X; θ) over the given source
target pairs and model parameters θ.

Our model is also based on an encoder-decoder model,
in particular, the Transformer model proposed by Vaswani
et al. [21], which has shown outstanding performance in
many software engineering tasks (e.g., source code summa-
rization [32] and code completion [33]). Figure 2 illustrates
the structure of the Transformer translation model that is
implemented in LoGenText. Like many other sequence to

sequence models, the Transformer utilizes an encoder-decoder
structure, which is explained in detail in the rest of this section.

Self Attention

Add & Norm

Token
Embedding

Feed Forward

Add & Norm

Linear & Softmax
Source Encoder

Target
Decoder

N ⨉

⨉ N

Positional
Encoding

Self Attention
Add & Norm

Self Attention
Add & Norm

Token
Embedding

Positional
Encoding

Generated sequence
(partial logging text)

Target sequence (logging text)

Source sequence
(pre-log code)

Feed Forward
Add & Norm

Fig. 2: An overview of the Transformer translation model.

Source encoder: As Figure 2 shows, the source encoder
component makes use of N stacked layers. Each layer is
broken down into two sub-layers. The first sub-layer is a self
attention layer:

Attention (Q,K, V) = softmax(
QKT

√
dk

)V (1)

where Q,K, V are the query, key, and value vectors,
√
dk

is a normalization factor where dk is the dimension of the
key/query vector, Attention is the output of the attention
layer. The self attention mechanism allows the model to look
at other positions for extra information while encoding the
current position.

The residual connection and layer normalization are then
applied on the output of the attention layer:

LayerNorm (Attention+X) (2)

where X is the vector representation of the input token after
positional encoding (explained in the next paragraph). The
output is then fed to the second sub-layer, a fully connected
feed forward network. Note that the feed forward network is
point-wise, which means the network is applied independently
to individual vectors generated by the attention layer.

Positional encoding: The orders of the tokens in the source
sequence are important for a machine translation model. To
address this, unlike RNN and its variances, Transformer adopts
positional encoding to inject the relative positional information
into the token representations. Specially, a positional vector is

added to the input embedding, where the positional vector pe
for tth token is calculated as follows:

peit =

{
sin (wk · t) if i = 2k

cos (wk · t) if i = 2k + 1
(3)

where k is used for determining whether i is an odd or even
number, i ∈ {0, . . . , d− 1} is the encoding index, d is the
dimensionality of the input embedding, and wk = 1

100002k/d .
The final token representation fed into the self attention layer
is a sum of the token embedding and the positional encoding.

Context encoder: The structure of the context encoder is
the same as the source encoder. As the context inputs (i.e.,
the structural context, the post-log code context, and logging
text in similar code) are only discussed in RQ2 and RQ3, we
describe the details about how we integrate the context into
our model in RQ2.

Target decoder: The decoder in Transformer has a similar
structure with the encoder. It also consists of N stacked layers,
with three sub-layers in each layer (slightly different to the
two sub-layers in the source encoder). The additional second
sub-layer takes the source encoder’s output and the decoder’s
states which are generated by the first self attention sub-
layer. Besides, an attention masking is applied to the first
self attention sub-layer. This masking prevents the future
information from being leaked to the decoder before the
prediction and ensures that the predictions only rely on the
previous outputs.

Given a source code and logging text corpus D, the goal
of training the Transformer model is to find parameters θ that
maximize the log likelihood of the training data:

θ̂ = argmax
θ

∑
〈X,Y 〉∈D

logP (Y |X; θ) (4)

where P is the conditional probability of the target sequence
Y (i.e., the logging text) given the source sequence X (i.e.,
the source code).

III. EVALUATION SETUP

A. Subject projects

We evaluate LoGenText on 10 open-source Java projects.
We choose the same subject projects that are used in prior
work [19] which studies the characteristics of logging texts.
The details of the studied versions of these projects are listed
in Table I. The source lines of code of the studied projects
ranges from 330K to 1.7M. These projects have about 2K
to 12K logging statements, among which 76.2% to 95.8%
have logging texts. Similar to prior work [19], we evaluate
LoGenText on the logging statements with logging texts.

B. Experimental settings

1) Model training settings: The goal of LoGenText is to
use the Transformer-based model to automatically generate
logging texts with the source code as the input. Our LoGenText
is implemented based on Fairseq [22], [34], a sequence-to-
sequence modeling toolkit. We use the same model structure
as in the original Transformer model: six stacked layers (i.e.,

TABLE I: Details of the studied projects.

Project Version SLOC # of logging
statements

of logging
statements with text

ActiveMQ 5.16.0 415k 2,185 2,093 (95.8%)
Ambari 2.7.5 490K 4,150 3,651 (88.0%)
Brooklyn 1.0.0 339K 2,937 2,813 (95.8%)
Camel 3.4.2 1.4M 7,046 6,366 (90.3%)
CloudStack 4.14.0 645K 12,015 10,613 (90.3%)
Hadoop 3.3.0 1.7M 12,471 11,270 (88.3%)
HBase 2.3.0 778K 5,534 5,071 (90.4%)
Hive 3.1.2 1.7M 6,845 6,290 (91.6%)
Ignite 2.8.1 1.1M 3,366 3,048 (90.6%)
Synapse 3.0.1 330K 1,978 1,508 (76.2%)
Avg. 890K 5853 5272 (90.1%)

N = 6), 512 embedding dimensions for both the source en-
coder and the target decoder, and 2,048 feed-forward embed-
ding dimensions. We use the Adam optimizer to optimize the
model parameters (same as the original Transformer model).
To prevent overfitting, we use a dropout rate of 0.1. More
details about the configuration of hyperparameters can be
found in our replication package.

For each subject project, we split all the instances into
80%/10%/10% training/validation/testing sub datasets2. As the
number of instances in each subject project is relatively
small (i.e., about 1.5K to 11K), it is challenging to fit a
Transformer model with more than forty million parameters.
To overcome this problem, we adopt a two-stage training
strategy (a.k.a.,transfer learning (TL)) [35], [36], [37]: for
each subject project, 1) we first pre-train a model using all
the training sets from 10 projects for 50 epochs, and 2) we
then continue to fine-tune the pre-trained model parameters
using the target project’s training set for another 50 epochs.
The validation set is used to monitor the performance of the
model during training to avoid overfiting.

For inference, we use the beam search with a width of eight,
which means at each step, the top eight candidate tokens with
the highest scores are kept for the next step. However, the
beam search algorithm favors shorter sequences [38], [39]. To
address this problem, we adopt the length penalty, which gives
favors to longer sequences [40]. In our experiments, we set the
value of length penalty to 2.5. In addition, we set the maximum
length and minimum length of the generated logging text to be
100 and 3, respectively, as we find that the lengths of 92.4%
to 98.4% of the logging texts in the studied projects fall in
this range.

The training of our models are conducted in a cluster of
machines each with a NVIDIA V100 Tensor Core GPU.

2) Model evaluation approaches: We evaluate the per-
formance of LoGenText using a combination of quantitative
evaluation and human evaluation.

Quantitative evaluation: We use two widely used machine
translation evaluation metrics, BLEU [41] and ROUGE [42],
to evaluate the quality of the generated logging text sequences
in terms of their similarity to the original logging texts inserted
by the developers. The details of these evaluation metrics are
described in the research questions that apply these metrics.

2The sizes of training datasets range from 1K to 9k.

Human evaluation: In order to evaluate how developers
perceive the generated logging texts, we also performed a
human evaluation, which is detailed in Section V.

C. Baseline approach

We compare our approach with prior work by He et al. [19],
which is by far the state-of-the-art approach for generating
logging texts. Their method assumes that similar code snippets
tend to have similar logging texts. To generate the logging text
for a given code snippet, He et al. [19] perform a search in the
training corpus to retrieve the most similar code snippet based
on Levenshtein distance [43]. The logging text of the most
similar code snippet is used as the logging text for the given
code snippet. We re-implement their method as a baseline to
compare with our approach.

IV. EVALUATION RESULTS

In this section, we discuss the results of evaluating LoGen-
Text through answering three research questions.
RQ1: How well can the base form of LoGenText automat-
ically generate logging text?
Motivation. Prior research [19] has observed that logging texts
are predictable and proposes a simple approach (the baseline
approach in Section III) based on the intuition that similar
code snippets contains similar logging texts. Such a simple
approach has demonstrated a promising result. Therefore, in
this RQ, we would like to explore whether our NMT-based
solution (i.e., LoGenText) can automatically generate logging
texts with a better performance than the baseline approach.
Approach. We evaluate the base form of LoGenText, i.e.,
using only the source input (pre-log code) to generate the
logging texts, and compare it with the baseline approach [19].
Following prior work [19], we evaluate the quality of the
generated logging texts using two widely used metrics for
machine translation evaluation, i.e., BLEU3 [41], [44] and
ROUGE4 [42]. Both BLEU and ROUGE take the automat-
ically generated logging texts and the reference logging texts
(i.e., the original logging texts written by developers) as input
and calculate the similarity between them, which outputs a
percentage score between 0 and 1. The higher the score, the
better the generated logging texts in terms of their similarity
to the reference logging texts.

BLEU (Bilingual Evaluation Understudy) is used to evalu-
ate the match between a generated text and a reference text,
which is calculated as follows:

BLEU = BP · exp

(
N∑
n=1

wn log pn

)
(5)

BP =

{
1 if c > r

e(1−r/c) if c ≤ r (6)

where pn is the modified n-gram precision (i.e., the maximum
number of n-grams co-occurring in the automatically gener-
ated logging text and the reference logging text divided by the
the total number of n-grams in the generated logging text), wn

3https://github.com/mjpost/sacrebleu
4https://github.com/pltrdy/rouge

are positive weights that can be configured, BP is a brevity
penalty, c is the length of the generated logging text and r is
the length of the reference logging text. In our evaluation, we
choose N = 4 and uniform weights wn = 1/N , same as prior
work [19]. In addition to the overall BLUE score, we also
consider the specific BLEU-n (n = 1, 2, 3 ,4) scores, which
are the BLUE scores considering only one gram size.

ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) is a set of metrics for evaluating automated generated
texts in text summarization and translations. ROUGE is cal-
culated as follows:

ROUGE-n =

∑
gramn∈Ref Countmatch(gramn)∑

gramn∈Ref Count(gramn)
(7)

where n is the length of the n-gram (gramn), and
Countmatch(gramn) is the number of n-grams co-occurring
in the automatically generated logging text and the reference
logging text, Ref . We calculate ROUGE-1, ROUGE-2 and
ROUGE-L. ROUGE-L measures the longest matching se-
quence of tokens using LCS (Longest Common Subsequence).
Results. Our base form of LoGenText generally outperforms
the baseline approach. Our experimental results of comparing
LoGenText with the baseline on the 10 studied projects are
presented in Table II. The best results are highlighted in
the bold font. We can see that the base form of LoGenText
provides a ROUGE-L score of 41.1 to 52.3 and a BLEU
score of 21.8 to 39.0 for the studied projects. As shown in
Table II, LoGenText outperforms the baseline approach for all
the projects in terms of ROUGE-L by 5.7% to 22.8% and
has a higher BLEU score than the baseline approach by 2.9%
to 18.5% in seven out 10 projects. In addition, besides the
overall BLEU and ROUGE-L, LoGenText performs better than
the baseline approach in almost all different gram sizes (i.e.,
BLEU-n and ROUGE-n). Our results indicate the promising
research direction of using neural translation techniques in
automated generation of logging text.

On the other hand, we also observe that the base form of
LoGenText may not always provide a better performance in
terms of BLEU scores (e.g, BLEU-4). As shown in Table II,
LoGenText performs better than the baseline approach for
seven out 10 projects in terms of BLEU but worse for the other
three projects (Brooklyn, Synapse and Hive). By examining
the BLEU scores of different gram size (i.e., BLEU-n), we
realized that the base form of LoGenText always outperforms
the baseline in terms of smaller gram sizes (i.e., BLEU-1
and BLEU-2); in some cases (e.g., for the projects Brooklyn,
Synapse, and Hive) , the base form of LoGenText may not
perform better than the baseline approach in terms of larger
gram sizes (i.e., BLEU-3 and BLEU-4). This phenomenon
can be explained by the different working mechanisms of
these two different approaches. The baseline approach simply
reuses logging texts from other code snippets [14], thus it
tends to produce long sequence of identical tokens between
code snippets, which can result in relatively high larger-gram
BLEU scores, especially when there are many duplications
of logging texts [45]. In contrast, LoGenText automatically
generates new logging texts token by token, thus it may not

https://github.com/mjpost/sacrebleu
https://github.com/pltrdy/rouge

TABLE II: Evaluation results of using LoGenText and the baseline approach to generate logging texts (RQ1).
Projects Methods BLEU(%) BLEU-1(%) BLEU-2(%) BLEU-3(%) BLEU-4(%) ROUGE-L(%) ROUGE-1(%) ROUGE-2(%)

ActiveMQ Baseline 21.0 37.0 22.9 18.4 16.0 36.1 36.0 21.6
LoGenText 23.0(+9.5%) 44.6 26.0 19.6 16.0 43.4(+20.4%) 43.1 25.1

Ambari Baseline 19.9 36.8 22.0 17.0 14.1 36.8 37.5 22.4
LoGenText 22.8(+14.6%) 44.0 25.6 17.8 13.4 42.9(+16.5%) 44.1 24.7

Brooklyn Baseline 26.0 41.4 25.5 21.8 19.7 38.1 40.9 23.0
LoGenText 25.4(-2.1%) 48.7 28.4 20.8 16.8 43.6(+14.4%) 47.1 26.2

Camel Baseline 37.9 51.5 39.2 35.6 33.8 47.5 47.9 33.0
LoGenText 39.0(+2.9%) 58.3 43.3 38.1 35.9 52.3(+10.2%) 52.5 35.3

CloudStack Baseline 30.1 46.6 33.5 28.4 25.4 43.9 44.5 30.0
LoGenText 34.6(+14.7%) 52.4 37.3 30.0 25.6 50.1(+14.0%) 50.8 35.2

Hadoop Baseline 19.6 37.2 22.8 18.7 16.8 34.1 34.9 20.1
LoGenText 21.8(+11.1%) 44.4 25.4 19.1 16.5 41.1(+20.5%) 42.3 23.0

HBase Baseline 19.5 38.4 24.2 19.4 15.9 38.4 38.9 26.1
LoGenText 23.1(+18.5%) 46.1 28.2 21.6 17.2 46.5(+21.2%) 47.0 30.6

Hive Baseline 28.2 42.9 29.8 26.2 24.0 42.4 42.9 28.9
LoGenText 28.0(-0.6%) 47.4 30.8 25.2 21.7 46.7(+10.2%) 47.2 29.8

Ignite Baseline 21.5 38.5 23.4 18.4 14.8 37.1 38.0 22.9
LoGenText 24.9(+15.6%) 50.9 30.7 23.3 18.3 45.5(+22.8%) 47.2 27.1

Synapse Baseline 34.1 46.7 36.7 31.7 27.2 46.9 46.8 36.9
LoGenText 28.9(-15.3%) 53.3 34.7 26.7 21.5 49.5(+5.7%) 50.2 32.0

Avg. Baseline 25.8 41.7 28.0 23.6 20.8 40.1 40.8 26.5
LoGenText 27.1(+5.0%) 49.0 31.1 24.2 20.3 46.1(+15.0%) 47.2 28.9

Note: The numbers in the brackets indicate the relative change of LoGenText to the baseline approach.

always produce long sequences of tokens that are identical to
the ones written by developers, even though the generated ones
may have similar semantic meanings with the written ones, as
discussed in our user study in Section V.
The base form of our NMT-based approach LoGenText
generally outperforms the baseline approach that leverages
the existing logging texts in similar code snippets. Our
results illustrate the promising future research opportunity
of formulating automated logging text generation as neural
machine translation tasks.

RQ2: Can incorporating context information improve the
base form of LoGenText in generating logging texts?
Motivation. Prior studies [46], [31], [47], [48], [49], [50],
[51], [52] on NMT show that incorporating the context in-
formation (e.g., surrounding text) of the source input may
provide promising results in generating better translations.
In addition, the context information (e.g., surrounding source
code, AST structure of source code) of a particular source code
of interest has shown benefits in some software engineering
(SE) tasks that rely on neural network-based techniques [53],
[54], [55], [56], [27]. Therefore, in this research question,
we aim to understand whether the context information (e.g.,
the post-log code and the structural (AST) information of
a logging statement) can help further improve LoGenText in
automatically generating logging texts.
Approach. We propose a context-aware form of LoGenText
and consider two types of context information in this research
question: the post-log code and the structural (AST) informa-
tion related to a logging statement. Below we discuss how we
extract such information and incorporate it in LoGenText.

Extracting context information. Extracting the structural
(AST) context: We use AST extracted by srcML [57] to
represent the location of a logging statement. The structural
information represented by the AST has been applied success-
fully in many SE tasks, including suggesting where to log [17]

and how to choose log levels [18]. First, we extract the AST of
the method containing the logging statement. Then, we convert
the AST into a sequence of AST node types (e.g., if statement)
following a depth-first traversal. We only keep the sequence
of AST node types prior to the logging statements.

Extracting the post-log code context: Although a logging
statement is usually not directly related to the subsequent
code (i.e., post-log code), prior research [19] shows the post-
log code may provide some extra information relevant to the
logging text. Therefore, we consider the post-log code as the
context input instead of the source input in our NMT-based
model. Specifically, the post-log code contains the code from
the location that immediately follows the logging statement to
the end of the containing method. We use the same approach
as the pre-log code (cf., Section II) to convert the post-log
code into a sequence of code tokens.

Integrating context information in our models. There are
mainly two approaches for integrating the context information
in NMT-based models: (1) simply concatenating the context
and the source as a new input sequence [58], [59], and
(2) utilizing a multi-encoder model, where additional neural
networks are used to encode the context [22], [31], [46]. Prior
work [31], [22] shows that the multi-encoder approach is more
effective for incorporating context information in NMT tasks.
We experimented with both approaches and we also found that
the latter approach shows better performance in our context.
Therefore, we use the multi-encoder approach in this paper.

Source sequence
(pre-log code)

Target
Decoder

...
EncoderC EncoderS

Context sequence
(e.g., Structural (AST) context)

Multi Encoders
...

Self Attention

Self Attention

Generated sequence
(partial logging text)

Gated sum Target sequence (logging text)

Fig. 3: An overview of the multi-encoder Transformer.

TABLE III: Evaluation results of incorporating contexts (AST, post-log code) in LoGenText for logging text generation (RQ2).
BLEU(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.
Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5 28.2 21.5 34.1 25.8
Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1 28.0 24.9 28.8 27.1

With
context

AST 24.1 23.8 27.8 41.8 34.6 23.3 23.5 29.6 28.8 37.2 29.5
Post-log code 24.1 24.5 28.4 39.9 34.3 23.1 24.3 29.6 28.2 34.8 29.1

ROUGE-L(%)
ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 36.1 36.8 38.1 47.4 43.9 34.1 38.4 42.4 37.1 46.9 40.1
Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5 46.7 45.5 49.5 46.2

With
context

AST 42.5 43.4 44.0 53.9 50.8 42.1 46.4 48.2 47.6 53.6 47.3
Post-log code 42.8 43.5 44.7 53.6 50.4 41.5 46.3 48.0 46.0 53.4 47.0

Note: Values in bold font indicate the best performing models.

The structure of our context integration approach is illus-
trated in Figure 3. The context encoder replicates the original
Transformer encoder and takes one type of context information
(e.g., AST context, post-log code context) as input. The output
of the context encoder together with the output of the source
encoder are then fed into a self-attention layer. Then, the
outputs of the attention layer and the source encoder are fused
by a gated sum. Formally, let S be the output of the source
encoder and C be the output of the attention layer, the output
of the gated sum G is

G = λ� C + (1− λ)� S (8)

where the gating weight λ is calculated by
λ = σ (W [C, S] + b) (9)

where σ (·) is the sigmoid function, W is the weight param-
eters of the model, and b is the bias.

In order to understand the impact of different types of con-
text information, we evaluate the performance of the models
using each type of context. We use the same metrics used in
RQ1 (i.e., BLEU and ROUGE-L) to evaluate the quality of
the generated logging texts.
Results. Incorporating context information can improve
the performance of the base form of LoGenText and
outperforms the baseline approach in all the studied
projects. Table III shows the results of incorporating different
context information. By comparing the context-aware form of
LoGenText with the base form, we find that by incorporating
the context information using multi-encoders models, we can
obtain a performance improvement on almost all the projects.
For example, by encoding the structural (AST) context into
our LoGenText, we obtain an 29.2% relative (8.4% absolute)
increase in terms of BLEU score in project Synapse over the
base form of LoGenText. Overall, as shown in Table III, the
context-aware form of LoGenText that incorporates the AST
context provides a BLEU score of 23.3 to 41.8 and a ROUGE-
L score of 42.1 to 53.9 for the studied projects, which are
5.0% to 34.0% and 13.7% to 28.3% higher than the baseline
approach, respectively. In addition, unlike the base form of
LoGenText which may underperform the baseline approach
for certain projects (e.g, Brooklyn and Synapse) in terms
of BLEU scores, our context-aware form of LoGenText can
provide better BLEU scores than the baseline approach for all
the studied projects. The results demonstrate that LoGenText
can benefit from the extracted context information.

Meanwhile, we observe that for some projects (e.g., Synapse
and Camel), different types of context can result in diverse
performance. In particular, for the Synapse project, incorpo-
rating AST and post-log code results in BLEU scores of 37.2
and 34.8, respectively. This finding suggests that practitioners
should be careful with the selection of contexts for different
projects, as they may produce diverse results. On the other
hand, we also observe that leveraging the AST context per-
forms better than post-log context in seven out of the 10
projects and has the largest improvement over the base form of
LoGenText on average. This observation further confirms the
success of applying AST information in suggesting logging
activities [17], [18].

We also find that incorporating additional context may not
always improve the performance of LoGenText significantly.
As shown in Table III, by adding context using the multi-
encoders model, the performance on the project CloudStack
(using AST context) remains the same as that without the
context. This may be due to the fact that CloudStack has a
much higher number of pre-log code tokens for each generated
logging text (information used in the base form of LoGenText)
than other projects, leading to less value of adding the context
information.
Incorporating context information (AST and post-log code)
can improve the performance of the base form of LoGenText
for generating logging texts, and different context informa-
tion may have diverse impact on the studied projects.

RQ3: Can incorporating logging text from similar code
improve the base form of LoGenText in generating logging
texts?
Motivation. Prior work [19] proposes a preliminary logging
text generation approach that simply reuses the logging text
from the most similar code snippet (i.e., our baseline approach)
and achieves promising results. Their results suggest that the
logging in similar code may provide additional information
about the logging text to be generated. Although we demon-
strate better performance of LoGenText than the baseline, it
may be the case that the information captured by LoGenText
and that captured by the baseline approach do not overlap.
Therefore, including the information provided by the baseline
may further improve the results. Therefore, in this research
question, we aim to explore the impact of incorporating log-
ging text in similar code on automated logging text generation

TABLE IV: Evaluation results of incorporating logging text from similar code in LoGenText for logging text generation (RQ3).
BLEU(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.
Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5 28.2 21.5 34.1 25.8
Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1 28.0 24.9 28.8 27.1

With
context

Logging text from
similar code 25.8 25.3 27.5 41.6 34.4 22.8 24.0 29.2 26.6 34.0 29.1

ROUGE-L(%)
ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 36.1 36.8 38.1 47.4 43.9 34.1 38.4 42.4 37.1 46.9 40.1
Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5 46.7 45.5 49.5 46.2

With
context

Logging text from
similar code 44.8 44.1 43.9 53.9 50.7 41.8 46.6 47.5 46.4 53.1 47.3

Note: Values in bold font indicate the best performing models.

and examine whether we can improve the base form of
LoGenText by utilizing such logging information.
Approach. Similar to prior work [19], we leverage the logging
texts from similar code in the generation of logging texts.

Extracting logging text from similar code. For each
logging statement, we extract its pre-log code and search
for the most similar code snippet in the training dataset.
Specifically, for a given pre-log code snippet, we follow prior
work [19] and use the Levenshtein distance [43] to calculate
the similarity between it and all the other code snippets in the
training dataset. We then extract the logging text in the most
similar code snippet.

Incorporating logging text from similar code. We adopt
the same multi-encoder approach as in RQ2 to incorporate
the retrieved logging text from similar code. In particular, the
logging text in the similar code snippet is encoded using a
context encoder, and then a gated sum is applied on the outputs
of the context encoder and the source encoder, the output of
the gated sum is then fed to the target decoder.

Similar to RQ1 and RQ2, we evaluate the performance of
LoGenText that incorporates the logging text from the similar
code using the BLEU and ROUGE-L metrics.
Results. Incorporating logging text from similar code can
improve the performance of the base form of LoGenText. As
shown in Table IV, we find that by incorporating the retrieved
logging text from similar code using a context encoder, the
performance of the base form of LoGenText can be increased
in nine out of the ten studied projects (e.g., the average BLEU
score increases from 27.1 to 29.1). The results indicate that the
logging in similar code may contain useful knowledge for the
logging text to be generated in the NMT model. However,
incorporating the logging text from similar code (with an
average BLEU of 29.1) is less effective than the LoGenText
that incorporates the AST context (with an average BLEU of
29.5, cf. RQ2).

Similar to our results in RQ2, incorporating logging text
from similar does not improve the performance on the Cloud-
Stack project over the base form of LoGenText. Similarly, this
result may be due to the fact that CloudStack has a large
number of pre-log code tokens for each generated logging
text (information used in the base form of LoGenText), which
may lead to less value of incorporating the additional logging
information from similar code.

Incorporating logging text from similar code can provide
additional information to the base form of LoGenText. How-
ever, it cannot further improve the best performing version
of LoGenText that incorporates the AST context.

V. HUMAN EVALUATION

Our approach LoGenText is evaluated in the last section
based on quantitative metrics (i.e., BLEU and ROUGE scores)
that measure the similarity between the original and the
generated logging texts. However, the quantitative metrics may
not directly reflect how developers perceive the quality of the
generated logging texts. Therefore, in this section, we conduct
a human evaluation to further evaluate LoGenText.

We invited 42 participants in our human evaluation. The
participants include a mix of 23 graduate students who major
in computer science or software engineering and 19 software
developers who are employed in the software industry across
the globe. All the participants have at least five years of
experience in software development.

Our human evaluation contains two tasks: task 1) evaluating
the similarity between the automatically generated logging
texts and the original logging texts extracted from source
code. task 2) evaluating the logging texts separately from
three aspects [60], i.e., relevance, usefulness and adequacy
based on the given source code. For task 1, each participant
was given 15 logging statements that were randomly sampled
from the 10 projects to evaluate. We presented the participants
with the original logging texts, the logging texts generated by
the baseline, and the logging texts generated by LoGenText.
Since our results in Section IV show that the context-aware
form of LoGenText incorporating the AST context has the best
overall performance, we used it to generate logging texts used
in our human evaluation. We named the logging text from the
original logging statement as log-ref and the two generated
logging texts as log-1 and log-2. We asked the participants to
rate the similarity between the generated logging texts (log-1
and log-2) and the original logging texts (log-ref). In order
to avoid the bias caused by the order of the two generated
logging texts, we randomly assigned the one generated by
LoGenText or by the baseline as log-1 or log-2. Each generated
logging text is evaluated based on a scale from 0 to 4 where 0
means no similarity and 4 means perfect similarity. For task 2,
each participant was randomly given three logging statements
to evaluate. We presented each participant with the original

logging text, the logging text generated by the baseline, the
logging text generated by LoGenText, and the surrounding
method of the logging statement that highlights the location of
the logging statement. We randomly assigned the three logging
texts as log-a, log-b and log-c. We asked the participant to
rate the three logging texts based on the given code snippet
from three aspects, i.e., relevance, usefulness and adequacy.
Relevance refers to how relevant the logging text is to the given
source code. Usefulness refers to how useful the logging text
is for collecting valuable runtime information of the source
code. Adequacy refers to how the logging text is acceptable in
quality or quantity with regard to the given source code. Each
logging text is evaluated based on a scale from 0 to 4 where
0 means irrelevant/useless/unacceptable and 4 means perfect
relevance/usefulness/adequacy.
LoGenText generates logging texts that are significantly
more similar to the original logging texts than that
generated by the baseline approach. Figure 4 presents the
distribution of the user ratings in our evaluation. We find that
LoGenText generates more logging texts with the ratings of 3
and 4 while fewer logging texts with the ratings of 0 and 1 than
the baseline approach. We conducted a Wilcoxon signed-rank

C
ou
nt

0

55

110

165

220

Rating
0 1 2 3 4

122

84
111103

201

134138125
97

127

LoGenText
Baseline

Fig. 4: Distribution of the rating results (in task 1) in terms
of the similarity between the generated logging texts and the
reference logging texts.

test [61] to compare the ratings of the logging texts generated
by LoGenText and the baseline approach. With a p-value
� 0.00001, we can confirm that the difference between the
ratings of the logging texts generated by the two approaches
is statistically significant. On the other hand, despite the
significant improvement over the baseline approach, we still
observe that more than one third of the automatically generated
logging texts by LoGenText receive a rating of 0 or 1. The
results suggest opportunities for future research that further
improves the automated logging generation.

TABLE V: Comparing the human ratings (in task 1) and the
BLEU and ROUGE scores of the logging texts generated by
LoGenText.

Rating 0 1 2 3 4
BLEU 14.3 20.6 27.4 36.4 78.5
ROUGE-L 21.4 29.7 37.4 46.4 87.3

In order to reflect on the results of our research questions
that leverage quantitative metrics BLEU and ROUGE to eval-
uate LoGenText (cf., Section IV), we analyze the relationship
between the results of the quantitative measurement and the
human evaluation. Specifically, we group the logging texts
generated by LoGenText by each rate, then evaluate the BLEU
and ROUGE score of the logging texts in each group. As

shown in Table V, higher BLEU and ROUGE scores are both
associated with higher user ratings. Such results confirm the
validity of our findings in our research questions that leverage
the quantitative metrics.

We manually examine the generated logging texts for which
the participants assigned a very high rating (i.e., 3 or 4) while
the BLEU and ROUGE values are relatively low (i.e., lower
than median), in order to further understand the quality of the
generated logging texts. In particular, there are 79 (12.5%)
cases where the human ratings are the highest (i.e., 3 or
4) while the BLEU scores are lower than median. We find
two main reasons contributing to such inconsistency 1) Using
shorter words. In the generated logging texts, the generated
words are often short and easy to follow. For example, in a
logging statement from CloudStack,
// Original logging statement:
LOG.info("copying localfile := " + sourceFilepath +

" to hdfsPath := " + destFilePath)
// Extracted logging text after preprocessing:
"copying localfile <vid> to hdfspath <vid>"
// Generated logging text:
"copying local file <vid> to <vid>"

the original logging text uses the term “localfile”; while our
generated logging text uses the term “local file”. Although
these two terms have very low similarity in terms of BLEU
and ROUGE, they have a very similar meaning. 2) Using
synonyms. Another reason for the inconsistency is the use of
synonyms. For example, a logging text from Hadoop says “no
beanstalks defined” while our generated logging text says “no
beanstalk definitions found”. Both logging texts have similar
meanings but with different choices of words, which results
in a high human rating but low BLEU and ROUGE-L values.

// Original logging statement:
log.debug("No beanstalks defined for

initialization.")
// Extracted logging text after preprocessing:
"no beanstalks defined for initialization"
// Generated logging text:
"no beanstalk definitions found for initialization"

LoGenText outperforms the baseline approach in all three
aspects. Table VI shows the mean and median of relevance,
usefulness and adequacy scores of the reference logging
texts and the logging texts generated by LoGenText and the
baseline approach. We can see that LoGenText outperforms
the baseline approach on all three aspects with an average
score of 2.67, 2.41 and 2.15, respectively. Similar to task
1, we also conducted a Wilcoxon signed-rank test and the
difference is statistically significant for each aspect. However,
TABLE VI: Comparing the mean and median ratings of the
logging texts in task 2. The median ratings are in the brackets
following the mean ratings.

Relevance Usefulness Adequacy
Reference 3.37 (4) 3.19 (4) 3.02 (3)
Baseline 2.09 (2) 1.89 (2) 1.75 (2)
LoGenText 2.67 (3)*** 2.41 (3)*** 2.15 (2)**

Note: ***: p-value<0.001; **: 0.001<p-value<0.01.

there is still a non-negligible margin between the logging
texts generated by LoGenText and the reference logging texts.

The results call for future research that narrows down the
gap between the logging texts written by developers and the
automatically generated logging texts. On the other hand, the
mean scores of the reference logging texts are 3.37, 3.19
and 3.02 respectively, which indicate that some logging texts
inserted by the developers can still be further improved and
call for high-quality logging texts to record the software
execution information.
The logging texts generated by LoGenText have a higher
quality than that generated by the baseline approach in
terms of relevance, usefulness, adequacy, and their similarity
to the logging texts written by developers. Our results
also suggest future research opportunities for improving
automated logging generation.

VI. THREATS TO VALIDITY

External Validity. In this paper, we evaluate LoGenText based
on 10 subject systems. All of the subject systems are open-
source systems that are mainly written in Java. Evaluating
LoGenText with a cross-project setting or on other systems
that are written in other languages, with closed-source code,
or running on mobile devices, may further demonstrate the
effectiveness and limitations of our approach.
Internal Validity. In RQ2, we attempt to include two types of
context information to further improve LoGenText. Similarly,
we adopt the same approach to incorporate logging texts
from similar code snippets in RQ3. There could exist other
context information and other strategies for integrating the
context information, while our findings do not in any way
claim to generalize the usefulness of other types of context
information nor other integration strategies. We evaluate the
effectiveness of LoGenText based on both quantitative metrics
(i.e., BLEU and ROUGE) and human ratings. The quantitative
metrics may not reflect the actual quality of the generated
logging from developers’ perspective, while the human ratings
may include subjective bias introduced by the individual
participants. Future work should consider further evaluating
LoGenText by using it in a real-life industrial setting.
Construct Validity. LoGenText requires several hyper-
parameters for the training process, such as the dimensions,
the number of layers, and the number of attention heads, which
may impact the results of generating logging texts. To mini-
mize the bias caused by the hyper-parameter configurations,
we follow the practices from prior studies [21], [22] to con-
figure the hyper-parameters. Performing further fine tuning on
these hyper-parameters may even further improve the results
from LoGenText. In our evaluation, the data from each project
is randomly split into 80%/10%/10% training, validation and
testing datasets, which may introduce the selection bias.

VII. RELATED WORK

Automated logging suggestions. To address the challenge of
logging, prior research has proposed automated approaches
that provide different logging suggestions including the loca-
tions of logging statements [23], [17], [25], [62], [63], [64],
the verbosity levels [18], [65], the variables to include in a

logging statement [66], and the need to update an existing
logging statement [20]. The most related work to our paper is
from He et al. [19], who conduct an empirical study on the
usage of natural language descriptions in logging statements
and propose an automated logging text generation approach
that leverages logging texts from similar code snippets. Their
approach has been adopted in this paper as the baseline
approach (cf., Section III). Other research aims to detect issues
in logging statements. Chen et al. [67] and Hassani et al. [68]
discovered anti-patterns of logging statements from prior log-
related code changes and issue reports. Automated tools are
designed and implemented to detect these anti-patterns in
logging statements. Li et al. [45] discuss the issue of duplicate
logging statements.

Despite the above research efforts, providing automated
suggestions of logging texts is still challenging. Prior work
has highlighted the great importance of the information in the
logging texts [2], [69]. Therefore, our work aims to provide
automated generation of logging texts to support developers’
logging decisions.
Empirical studies on software logging. Empirical studies
have been conducted on the practices of logging. The first
empirical study on quantitatively characterizing the logging
practices was performed by Yuan et al. [13]. Afterwards,
follow-up studies by Chen et al. [14] and Zeng et al. [15]
extend Yuan et al’s study from C/C++ projects to Java projects
and Android app projects, respectively. Similarly, Shang et
al. [16] conduct a study focusing on the evolution of logging
statements. Recently, Li et al. [2] conduct a qualitative study
on the benefits and costs of logging based on surveying
developers and studying logging-related issue reports. Besides
those characteristic studies on logging, empirical studies are
also carried out focusing on different aspects of logging
practices. The studied topics include the stability of logging
statements [70], logging utilities [71] and libraries[72], logging
configurations [73], and the relationship between logging
practices and software quality [74] and performance [75], [15].

All prior studies provide empirical evidences that show the
challenges in software logging practices, which motivates our
work towards automated generation of logging texts.

VIII. CONCLUSION

In this paper, we present our approach, LoGenText, which
automatically generates the textual descriptions of logging
statements based on neural machine translation models. By
comparing the generated logging texts with the actual logging
texts in the source code, we find that LoGenText shows
promising results in the automated generation of logging
texts. Our approach LoGenText outperforms the state-of-the-art
baseline approach in terms of both quantitative metrics (BLEU
and ROUGE) and human ratings. Our research sheds light on
promising research opportunities that exploit and customize
neural machine translation models for the automated genera-
tion of logging statements, which will reduce developer’s ef-
forts in logging development and maintenance and potentially
improve the overall quality of software logging.

REFERENCES

[1] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the
system: A case study of logging and telemetry at microsoft,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion, ser. ICSE Companion ’16, 2016, pp. 92–101.

[2] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qualitative
study of the benefits and costs of logging from developers’ perspectives,”
IEEE Transactions on Software Engineering, pp. 1–1, 2020.

[3] Q. Fu, J.-G. Lou, Q. Lin, R. Ding, D. Zhang, and T. Xie, “Con-
textual analysis of program logs for understanding system behaviors,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR ’13, 2013, pp. 397–400.

[4] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications when
deploying on hadoop clouds,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 402–411.

[5] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 117–132.
[Online]. Available: http://doi.acm.org/10.1145/1629575.1629587

[6] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining, ser.
ICDM ’09, 2009, pp. 588–597.

[7] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proceedings
of the 9th IEEE International Conference on Data Mining, ser. ICDM
’09, 2009, pp. 149–158.

[8] L. Mariani and F. Pastore, “Automated identification of failure causes
in system logs,” in Proceedings of the 19th International Symposium on
Software Reliability Engineering, ser. ISSRE ’08, 2008, pp. 117–126.

[9] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in Proceedings of the 2008
IEEE International Conference on Software Maintenance, ser. ICSM
’08, 2008, pp. 307–316.

[10] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser,
and P. Flora, “Leveraging performance counters and execution logs
to diagnose memory-related performance issues,” in Proceedings of
the 29th IEEE International Conference on Software Maintenance, ser.
ICSM ’13, 2013, pp. 110–119.

[11] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12, 2012, pp. 26–26.

[12] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: Error diagnosis by connecting clues from run-time logs,” in
Proceedings of the 15th Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’10,
2010, pp. 143–154.

[13] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. IEEE, 2012, pp.
102–112.

[14] B. Chen and Z. M. J. Jiang, “Characterizing logging practices in
java-based open source software projects–a replication study in apache
software foundation,” Empirical Software Engineering, vol. 22, no. 1,
pp. 330–374, 2017.

[15] Y. Zeng, J. Chen, W. Shang, and T. P. Chen, “Studying the
characteristics of logging practices in mobile apps: a case study on
f-droid,” Empir. Softw. Eng., vol. 24, no. 6, pp. 3394–3434, 2019.
[Online]. Available: https://doi.org/10.1007/s10664-019-09687-9

[16] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W. Godfrey,
M. Nasser, and P. Flora, “An exploratory study of the evolution of com-
municated information about the execution of large software systems,”
Journal of Software: Evolution and Process, vol. 26, no. 1, pp. 3–26.

[17] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in Pro-
ceedings of the 37th International Conference on Software Engineering-
Volume 1. IEEE Press, 2015, pp. 415–425.

[18] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering,
vol. 22, no. 4, pp. 1684–1716, 2017.

[19] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018.
ACM, 2018, pp. 178–189.

[20] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time
suggestions for log changes,” Empirical Software Engineering, vol. 22,
no. 4, pp. 1831–1865, 2017.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need

[22] B. Li, H. Liu, Z. Wang, Y. Jiang, T. Xiao, J. Zhu, T. Liu, and
C. Li, “Does multi-encoder help? A case study on context-aware
neural machine translation,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020. Association for Computational Linguistics, 2020,
pp. 3512–3518. [Online]. Available: https://www.aclweb.org/anthology/
2020.acl-main.322/

[23] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” in Companion Proceedings of the 36th International Confer-
ence on Software Engineering. ACM, 2014, pp. 24–33.

[24] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On the
naturalness of software,” in ICSE. IEEE Computer Society, 2012, pp.
837–847.

[25] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan, “Studying software
logging using topic models,” Empirical Software Engineering, vol. 23,
no. 5, pp. 2655–2694, Oct. 2018.

[26] V. J. Hellendoorn and P. T. Devanbu, “Are deep neural networks the
best choice for modeling source code?” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017. ACM, 2017, pp.
763–773.

[27] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-
prehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018. ACM,
2018, pp. 200–210.

[28] T. Luong, I. Sutskever, Q. Le, O. Vinyals, and W. Zaremba, “Addressing
the rare word problem in neural machine translation,” in Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, Jul. 2015, pp. 11–19.
[Online]. Available: https://www.aclweb.org/anthology/P15-1002

[29] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016.

[30] P. Gage, “A new algorithm for data compression,” C Users Journal,
vol. 12, no. 2, pp. 23–38, 1994.

[31] E. Voita, P. Serdyukov, R. Sennrich, and I. Titov, “Context-aware neural
machine translation learns anaphora resolution,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long
Papers. Association for Computational Linguistics, 2018, pp. 1264–
1274. [Online]. Available: https://www.aclweb.org/anthology/P18-1117/

[32] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” arXiv
preprint arXiv:2005.00653, 2020.

[33] F. Liu, G. Li, B. Wei, X. Xia, M. Li, Z. Fu, and Z. Jin, “Characterizing
logging practices in open-source software,” in Proceedings of the 28th
International Conference on Program Comprehension, ser. ICPC ’20,
2020.

[34] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Demonstrations. Association for Computational Linguistics,
2019, pp. 48–53.

[35] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, 2014, pp. 3320–3328. [Online]. Available: http://papers.nips.
cc/paper/5347-how-transferable-are-features-in-deep-neural-networks

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[37] E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M. Benedito,
and A. J. S. Lopez, Handbook Of Research On Machine Learning
Applications and Trends: Algorithms, Methods and Techniques - 2
Volumes. Hershey, PA: Information Science Reference - Imprint of:
IGI Publishing, 2009.

[38] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio chord
recognition with recurrent neural networks,” in Proceedings of the
14th International Society for Music Information Retrieval Conference,
ISMIR 2013, Curitiba, Brazil, November 4-8, 2013, 2013, pp. 335–340.

http://doi.acm.org/10.1145/1629575.1629587
https://doi.org/10.1007/s10664-019-09687-9
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://www.aclweb.org/anthology/2020.acl-main.322/
https://www.aclweb.org/anthology/2020.acl-main.322/
https://www.aclweb.org/anthology/P15-1002
https://www.aclweb.org/anthology/P18-1117/
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
http://www.deeplearningbook.org

[Online]. Available: http://www.ppgia.pucpr.br/ismir2013/wp-content/
uploads/2013/09/243_Paper.pdf

[39] M. Neishi, J. Sakuma, S. Tohda, S. Ishiwatari, N. Yoshinaga, and
M. Toyoda, “A bag of useful tricks for practical neural machine
translation: Embedding layer initialization and large batch size,” in
Proceedings of the 4th Workshop on Asian Translation, WAT@IJCNLP
2017, Taipei, Taiwan, November 27- December 1, 2017. Asian
Federation of Natural Language Processing, 2017, pp. 99–109.
[Online]. Available: https://www.aclweb.org/anthology/W17-5708/

[40] S. Wu, D. Zhang, N. Yang, M. Li, and M. Zhou, “Sequence-to-
dependency neural machine translation,” in Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,
R. Barzilay and M. Kan, Eds. Association for Computational Linguis-
tics, 2017, pp. 698–707.

[41] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
July 6-12, 2002, Philadelphia, PA, USA. ACL, 2002, pp. 311–318.
[Online]. Available: https://www.aclweb.org/anthology/P02-1040/

[42] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[43] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[44] M. Post, “A call for clarity in reporting BLEU scores,” in Proceedings of
the Third Conference on Machine Translation: Research Papers, WMT
2018, Belgium, Brussels, October 31 - November 1, 2018. Association
for Computational Linguistics, 2018, pp. 186–191.

[45] Z. Li, T. P. Chen, J. Yang, and W. Shang, “Dlfinder: characterizing
and detecting duplicate logging code smells,” in Proceedings of the
41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, J. M. Atlee, T. Bultan, and
J. Whittle, Eds. IEEE / ACM, 2019, pp. 152–163. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00032

[46] J. Zhang, H. Luan, M. Sun, F. Zhai, J. Xu, M. Zhang, and Y. Liu, “Im-
proving the transformer translation model with document-level context,”
in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4,
2018. Association for Computational Linguistics, 2018, pp. 533–542.

[47] Y. Kim, D. T. Tran, and H. Ney, “When and why is document-level con-
text useful in neural machine translation?” in Proceedings of the Fourth
Workshop on Discourse in Machine Translation, DiscoMT@EMNLP
2019, Hong Kong, China, November 3, 2019. Association for Compu-
tational Linguistics, 2019, pp. 24–34.

[48] E. Voita, R. Sennrich, and I. Titov, “When a good translation is
wrong in context: Context-aware machine translation improves on deixis,
ellipsis, and lexical cohesion,” in Proceedings of the 57th Conference
of the Association for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Papers, A. Korhonen,
D. R. Traum, and L. Màrquez, Eds. Association for Computational
Linguistics, 2019, pp. 1198–1212.

[49] R. Bawden, R. Sennrich, A. Birch, and B. Haddow, “Evaluating dis-
course phenomena in neural machine translation,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers). Association for Computational Linguistics, 2018, pp.
1304–1313.

[50] L. M. Werlen, D. Ram, N. Pappas, and J. Henderson, “Document-
level neural machine translation with hierarchical attention networks,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4,
2018. Association for Computational Linguistics, 2018, pp. 2947–2954.

[51] S. Maruf and G. Haffari, “Document context neural machine translation
with memory networks,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers. Association for
Computational Linguistics, 2018, pp. 1275–1284.

[52] S. Maruf, A. F. T. Martins, and G. Haffari, “Selective attention for
context-aware neural machine translation,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers). Association for Computational Linguistics, 2019,
pp. 3092–3102.

[53] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshy-
vanyk, “Deep learning similarities from different representations of
source code,” in Proceedings of the 15th International Conference on
Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May
28-29, 2018. ACM, 2018, pp. 542–553.

[54] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in Pro-
ceedings of the 41st International Conference on Software Engineering,

ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, J. M. Atlee,
T. Bultan, and J. Whittle, Eds. IEEE / ACM, 2019, pp. 783–794.

[55] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proc. ACM Program. Lang., vol. 3,
no. POPL, pp. 40:1–40:29, 2019.

[56] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” in 26th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering,
SANER 2019, Hangzhou, China, February 24-27, 2019. IEEE, 2019,
pp. 95–104.

[57] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight trans-
formation and fact extraction with the srcml toolkit,” in 11th IEEE
Working Conference on Source Code Analysis and Manipulation, SCAM
2011, Williamsburg, VA, USA, September 25-26, 2011. IEEE Computer
Society, 2011, pp. 173–184.

[58] R. Agrawal, M. Turchi, and M. Negri, Contextual Handling in
Neural Machine Translation: Look Behind, Ahead and on Both Sides.
European Association for Machine Translation, EAMT. [Online].
Available: http://rua.ua.es/dspace/handle/10045/76016

[59] J. Tiedemann and Y. Scherrer, “Neural machine translation with ex-
tended context,” in Proceedings of the Third Workshop on Discourse in
Machine Translation, DiscoMT@EMNLP 2017, Copenhagen, Denmark,
September 8, 2017. Association for Computational Linguistics, 2017,
pp. 82–92.

[60] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: Automated generation
of answer summary to developersundefined technical questions,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. IEEE Press, 2017, p. 706–716.

[61] F. Wilcoxon, Individual Comparisons by Ranking Methods. New
York, NY: Springer New York, 1992, pp. 196–202. [Online]. Available:
https://doi.org/10.1007/978-1-4612-4380-9_16

[62] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles. ACM, 2017, pp. 565–581.

[63] K. Yao, G. B. de Pádua, W. Shang, C. Sporea, A. Toma, and
S. Sajedi, “Log4perf: suggesting and updating logging locations
for web-based systems’ performance monitoring,” Empir. Softw.
Eng., vol. 25, no. 1, pp. 488–531, 2020. [Online]. Available:
https://doi.org/10.1007/s10664-019-09748-z

[64] Z. Li, T.-H. Chen, and W. Shang, “Where shall we log? studying
and suggesting logging locations in code blocks,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 361–372.

[65] Z. Li, H. Li, T. Chen, and W. Shang, “DeepLV: Suggesting log levels
using ordinal based neural networks,” in Proceedings of the 43rd
International Conference on Software Engineering, ICSE 2021, 2021,
pp. 1–12.

[66] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Which variables
should i log?” IEEE Transactions on Software Engineering, pp. 1–1,
2019.

[67] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-
patterns in the logging code,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. IEEE Press, 2017,
p. 71–81. [Online]. Available: https://doi.org/10.1109/ICSE.2017.15

[68] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis, “Studying and
detecting log-related issues,” Empirical Software Engineering, vol. 23,
no. 6, pp. 3248–3280, 2018.

[69] D. Yuan, S. Park, P. Huang, Y. Liu, M. M.-J. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging.” in OSDI, vol. 12, 2012, pp. 293–306.

[70] S. Kabinna, C.-P. Bezemer, W. Shang, M. D. Syer, and A. E. Hassan,
“Examining the stability of logging statements,” Empirical Software
Engineering, vol. 23, no. 1, pp. 290–333, Feb. 2018.

[71] B. Chen and Z. M. J. Jiang, “Studying the use of java logging utilities
in the wild,” in Proceedings of the 42th International Conference on
Software Engineering, ser. ICSE ’20, 2020.

[72] S. Kabinna, C. Bezemer, W. Shang, and A. E. Hassan, “Logging library
migrations: a case study for the apache software foundation projects,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, M. Kim,
R. Robbes, and C. Bird, Eds. ACM, 2016, pp. 154–164. [Online].
Available: https://doi.org/10.1145/2901739.2901769

[73] C. Zhi, J. Yin, S. Deng, M. Ye, M. Fu, and T. Xie, “An exploratory
study of logging configuration practice in java,” 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 459–
469, 2019.

[74] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the relationship
between logging characteristics and the code quality of platform
software,” Empirical Software Engineering, vol. 20, no. 1, pp. 1–27, Feb.
2015. [Online]. Available: https://doi.org/10.1007/s10664-013-9274-8

[75] S. Chowdhury, S. D. Nardo, A. Hindle, and Z. M. Jiang, “An exploratory
study on assessing the energy impact of logging on android applica-
tions,” Empirical Software Engineering, vol. 23, pp. 1422–1456, 2017.

http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/243_Paper.pdf
http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/243_Paper.pdf
https://www.aclweb.org/anthology/W17-5708/
https://www.aclweb.org/anthology/P02-1040/
https://doi.org/10.1109/ICSE.2019.00032
http://rua.ua.es/dspace/handle/10045/76016
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/s10664-019-09748-z
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.1007/s10664-013-9274-8

	Introduction
	Approach
	Approach Overview
	Data Preparation
	Extracting the logging text
	Extracting the source data
	Extracting the context data
	Pre-processing the logging text and source data

	NMT-based Log Generation

	Evaluation Setup
	Subject projects
	Experimental settings
	Model training settings
	Model evaluation approaches

	Baseline approach

	Evaluation Results
	Human Evaluation
	Threats to Validity
	Related Work
	Conclusion
	References

