
Towards Learning Generalizable Code Embeddings using

Task-agnostic Graph Convolutional Networks

ZISHUO DING, Concordia University, Canada
HENG LI, Polytechnique Montréal, Canada

WEIYI SHANG, Concordia University, Canada
TSE-HSUN (PETER) CHEN, Concordia University, Canada

Code embeddings have seen increasing applications in software engineering (SE) research and practice recently. Despite the
advances in embedding techniques applied in SE research, one of the main challenges is their generalizability. A recent study
inds that code embeddings may not be readily leveraged for the downstream tasks that the embeddings are not particularly
trained for. Therefore, in this paper, we propose GraphCodeVec, which represents the source code as graphs and leverages
the Graph Convolutional Networks to learn a more generalizable code embeddings in a task-agnostic manner. The edges
in the graph representation are automatically constructed from the paths in the abstract syntax trees, and the nodes from
the tokens in the source code. To evaluate the efectiveness of GraphCodeVec, we consider three downstream benchmark
tasks (i.e., code comment generation, code authorship identiication, and code clones detection) that are used in a prior
benchmarking of code embeddings and add three new downstream tasks (i.e., source code classiication, logging statements
prediction, and software defect prediction), resulting in a total of six downstream tasks that are considered in our evaluation.
For each downstream task, we apply the embeddings learned by GraphCodeVec and the embeddings learned from four baseline
approaches and compare their respective performance. We ind that GraphCodeVec outperforms all the baselines in ive
out of the six downstream tasks and its performance is relatively stable across diferent tasks and datasets. In addition, we
perform ablation experiments to understand the impacts of the training context (i.e., the graph context extracted from the
abstract syntax trees) and the training model (i.e., the Graph Convolutional Networks) on the efectiveness of the generated
embeddings. The results show that both the graph context and the Graph Convolutional Networks can beneit GraphCodeVec
in producing high-quality embeddings for the downstream tasks, while the improvement by Graph Convolutional Networks
is more robust across diferent downstream tasks and datasets. Our indings suggest that future research and practice may
consider using graph-based deep learning methods to capture the structural information of the source code for SE tasks.

CCS Concepts: · Computing methodologies→Machine learning; · Software and its engineering;

Additional Key Words and Phrases: Machine learning, Source code representation, Code embeddings, Neural network

1 INTRODUCTION

Over the last few years, both researchers and practitioners have witnessed the success of applying deep learning
techniques to natural language processing (NLP) tasks [?]. The advances of these neural network methods have
led to breakthroughs in addressing a variety of NLP based research problems, including machine translation,

Authors’ addresses: Zishuo Ding, zi_ding@encs.concordia.ca, Concordia University, Department of Computer Science and Software Engi-
neering, Montreal, QC, Canada; Heng Li, heng.li@polymtl.ca, Polytechnique Montréal, Department of Computer Engineering and Software
Engineering, Montreal, QC, Canada; Weiyi Shang, shang@encs.concordia.ca, Concordia University, Department of Computer Science and
Software Engineering, Montreal, QC, Canada; Tse-Hsun (Peter) Chen, peterc@encs.concordia.ca, Concordia University, Department of
Computer Science and Software Engineering, Montreal, QC, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
1049-331X/2022/6-ART $15.00
https://doi.org/10.1145/3542944

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3542944

2 • Ding, Zishuo et al.

document classiication, etc. For example, in the task of document classiication, ?] directly apply convolutional
neural networks (CNN) to the text data and obtain better results compared to the traditional support vector
machine (SVM) method. As one of the key aspects in NLP, distributed vector representation of words, a.k.a., word
embeddings, has attracted much attention. Word embeddings project words into a low-dimensional semantic
space, where each word is represented by a vector of real numbers. Studies [40, 43] show that the use of pre-trained
word embeddings can improve the performance of downstream tasks (e.g., sentence classiication [40]). In addition
to the wide application of word embeddings in NLP, prior software engineering (SE) research also illustrates
the efectiveness of distributed code representation (i.e., code embeddings) in assisting in software engineering
tasks, such as automatic program repair [16, 86, 90], software vulnerability prediction [25, 70], method name
prediction [2, 6], and code clones detection [11].
Despite recent advances in code embeddings, one of the main challenges of applying such embeddings in

research and practice is their generalizability to downstream tasks that the embeddings were not particularly
trained for. Recently, Kang et al. [34] evaluate two pre-trained code embeddings generated by GloVe [69] and
code2vec [6], by applying these two pre-trained embeddings to three downstream SE tasks, including code
comment generation, code authorship identiication, and code clones detection. However, the results show that
code embeddings may not be readily leveraged in the models of the downstream tasks for which they have not
been trained. In other words, pre-trained code embeddings may not generalize to diferent downstream tasks.
On the other hand, both studied embedding techniques in the prior work [34] have their limitations. In

particular, GloVe [69] treats the source code as plain text and only considers the unstructured local textual
information which may miss the useful syntax information from the source code. Code2vec [6] parses each
method in the source code to an abstract syntax tree (AST) and focuses on the utilization of the structural
information extracted from such ASTs. However, the token vectors are learned using a supervised approach,
where the training objective is method name prediction instead of a task-agnostic purpose. Therefore, in this
work,we aim to ind out whether the lack of generalizability of these code embeddings can be alleviated

by learning task-agnostic embeddings from both the syntax and semantic information of the source

code in a task-agnostic manner.
Meanwhile, the recently proposed graph-based deep learning methods [47] have been successfully employed

in several SE tasks such as variable name prediction [3] and variable misuse prediction [3]. However, such
graph-based methods have not been used for learning source code embeddings. Therefore, in this paper, we
adopt the Graph Convolutional Networks (GCN) [17, 38] to learn code embeddings due to its ability for handling
structural information in graphs. We irst construct graph representations from the abstract syntax trees (ASTs)
of the source code, then leverage the GCN model to train the code embeddings from the context information
provided by the graph representations. Unlike previous work [3, 6, 95] which learns code representations for
speciic tasks, this work learns task-agnostic code embeddings, aiming to efectively apply the learned embeddings
to diferent downstream SE tasks.

To quantitatively assess the quality of our learned code embeddings in SE tasks, we use and extend the existing
benchmark tasks published by Kang et al. [34]. Specially, we add three new downstream tasks to the existing
ones, resulting in a total of six downstream tasks: code comment generation, code authorship identiication, code
clones detection, source code classiication, logging statements prediction, and software defect prediction. We
apply our learned code embeddings in these benchmark tasks and compare it with four baseline approaches.
Speciically, we organize the discussion of our results along with the following three research questions (RQs).

RQ1 How efective is GraphCodeVec compared with other baseline embedding techniques in representing the
source code? We compare GraphCodeVec with other four state-of-the-art baseline embedding techniques in
the six downstream tasks. We observe that GraphCodeVec outperforms the baseline approaches in ive out
of the six downstream tasks.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 3

RQ2 How does the structural context information of the source code impact the efectiveness of the embeddings
generated by GraphCodeVec? We perform an ablation experiment to understand the impact of the context
information extracted from the structures of the source code (i.e., the ASTs) on GraphCodeVec. We ind
that although overall, such structural context information can beneit GraphCodeVec in producing code
embeddings for the downstream tasks, there may be cases where the structural information may not
provide additional beneit.

RQ3 How does the GCN model impact the efectiveness of the embeddings generated by GraphCodeVec? We
perform another ablation experiment to understand the impact of the used model (GCN) for training the
code embeddings. We ind that using the GCN model performs better than using a shallow neural network
as used in Word2vec.

The main contributions of this work include:

• We propose a source code embeddings approach, GraphCodeVec, which represents the source code as graphs
and utilizes the Graph Convolutional Networks (GCN) to learn task-agnostic code token representations.

• We extend an existing benchmark to a total of six downstream SE tasks for evaluating code embeddings.
• We conduct comprehensive experiments on the benchmark downstream tasks, which demonstrates that
GraphCodeVec performs comparable or better than the existing approaches on all the studied downstream
tasks.

• We perform ablation experiments to understand the impact of the important modeling decisions (i.e.,
training context and training model) on our approach and demonstrate that both the structural context
information and the GCN model beneit our approach in producing more generalizable code embeddings.

• We share our trained embeddings and downstream tasks with the research community. 1.

Paper organization. We present the background and survey prior research that is related to our work in
Section 2. In Section 3, we describe our proposed approach. Section 4 presents our experimental setup. Section 5
discusses the experimental results of evaluating GraphCodeVec along three research questions. In Section 6,
we further discuss the impact of diferent parameter settings and diferent data sampling strategies on the
performance of code embeddings. Section 7 discusses the threats to the validity of our study. Finally, Section 8
concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Word embeddings in NLP. Recently, word embeddings have become one of the most powerful techniques
in natural language processing. Word embeddings are a way to represent words of a vocabulary into a space with
real-valued numbers. A meaningful word embedding projects each word into a low-denominational space (i.e.,
vector), where words with similar semantics are located closer to each other (i.e., vectors with shorter distances).

Considering the importance of word embeddings in NLP, in this subsection, we present the recent development
of inluential word embeddings models.

The ield of word embeddings has witnessed a fast growth since the release of Word2vec [56, 57]. Word2vec

uses a simple two-layer neural architecture to learn distributed word representations. Word2vec contains two
diferent but related models: Continuous Bag-Of-Words (CBOW) and Skip-gram. The CBOW model tries to
predict the target word by considering its surrounding words within the context window. The goal of the model

1The embeddings and downstream tasks are available at Google Drive.

ACM Trans. Softw. Eng. Methodol.

https://drive.google.com/drive/folders/1BPyl2WPW2G4uHcqkqulGsWMc4IxV3d9o?usp=sharing

4 • Ding, Zishuo et al.

is to minimize the following loss function:

� = −
1

�

�︁

�=1

︁
−�≤ �≤�,�≠0

log�
(
�� |��+�

)
(1)

where �� is the target word, � is the context window size, and �
(
�� |��+�

)
is the conditional probability of

generating the central target word�� from given context word��+� . Diferent from CBOW which utilizes the
context words to predict the target one, Skip-gram model tries to predict the surrounding context words given
the target word. The goal of the model is to minimize the following loss function:

� = −
1

�

�︁

�=1

︁
−�≤ �≤�,�≠0

log�
(
��+� |��

)
(2)

where �� is the target word, � is the context window size, and �
(
��+� |��

)
is the conditional probability of

generating the context word��+� from the given central target word�� .
GloVe [69] is a popular unsupervised embedding learning algorithm that is based on the words co-occurrence

statistics. To obtain the vector representation for each word in the vocabulary, Pennington et al. [69] adopt the
following loss function to train word embeddings,

� =

�︁

�, �=1

�
(
��, �

) (
��
� �̃ � − log��, �

)2
(3)

where � denotes the word-word co-occurrence matrix, � (·) is a weighting function, �� and �̃ � are the corre-
sponding word vectors, respectively.
fastText [10] is another recent prominent embedding technique proposed by Facebook’s AI Research lab.

Compared to previous mentioned embedding techniques which ignore the internal structure of a word (i.e.,
character level information), fastText extends Skip-gram model and exploits subword information to construct
word embeddings. To include the internal information of each word, fastText represents each word as a bag of
character n-grams (i.e., each subword is represented by a n-gram) and learns the vector for each n-gram. Finally,
each word is represented by the sum of the vector representations of its subword n-grams.
Due to the ability to capture the semantics interpretable for machines, word embeddings play an important

role for many downstream NLP tasks. For example, Li et al. [43] and Vashishth et al. [84] adopt the trained word
embeddings to initialize the embedding layer of neural networks based models for the task of named entity
recognition (NER) which is to identify and classify the entity mentions into predeined categories, such as persons,
locations, etc. Meanwhile, ?] computes a linear combination of word embedding of each word in the text, which
is then fed as the features into a logistic regression model for the task of sentiment classiication to determine
whether a document is positive or negative.

2.1.2 Code embeddings. Similar to word embeddings, code embeddings are a way to represent each source code
token into a space with real-valued numbers. Prior research proposes various approaches for learning distributed
code representations (i.e., code embeddings). In this section, we present a background of existing code embedding
techniques. Based on the training context, the existing code embedding techniques can be classiied into two
categories: (1) textual context-based and (2) structural context-based methods.
Textual context-based embeddings. Similar to natural languages, programming languages are usually repetitive
and predictable [26]. Thus, prior research [10, 20, 81] considers source code as plain text and directly applies
existing word embedding techniques to source code. In this section, we review three of the most popular textual
context-based works for code embeddings, i.e., Word2vec [56, 57], GloVe [69] and fastText [10].

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 5

MethodDeclaration

BlockStmt

...

statements

AssignExpr

SimpleName

someone

operator

=

SimpleName

name

parameters

Parameter

SimpleName

someone
SimpleName

SimpleName

printName

VoidType

void

Modifier

public

String

ExpressionStmt

modifiers

ClassOrInterfaceType

Fig. 1. Tree representation of the code snippet generated by JavaParser. For simplicity, only part of the tree are displayed.

As described in Section 2.1.1, Word2vec [56, 57], GloVe [69] and fastText [10] are all unsupervised embedding
learning algorithms and can be easily adopted for source code embeddings training. In these models, the source
code is treated as plain text and only the local textual information is considered.
Word2vec uses a local window with a ixed length and considers the tokens in the window that surround

the target token as its context. The context tokens are treated equally or processed based on the distance with
the central target token. However, this is not in accord with the programming rules. For example, consider the
following class deceleration in Java.

public class Embeddings {

public static int dims;

...

public static float empty;

... }

Assuming the window size is ive, and the target token is łEmbeddingsž, the token łdimsž is one of the context
tokens captured by the window, but the token łemptyž is missed due to its long distance to the target token.
However, both should have the same importance for łEmbeddingsž, as they are the variables declared in the
same scope. Moreover, the irst two łpublicž keywords are also within the window, and they are treated equally
for łEmbeddingsž; but intuitively, they should be processed diferently, as the irst is an access modiier for the
class while the other is for its attribute. fastText considers the subword information, but it still adopts a similar
strategy to construct the context and faces the same problems. Although GloVe adopts the global co-occurrence
statistics, it does not consider the structural dependencies among the tokens.
Structural context-based embeddings. Source code contains explicit structural information (e.g., classes,
methods, branches), which may not be fully represented by a sequence of tokens [61, 65, 95]. Thus, researchers
have proposed approaches that consider the structural information in the source code [6, 11, 29, 95]. In this part,
we irst introduce the abstract syntax tree (AST) and then describe code2vec [6], a baseline approach in our
experiments, which produces the embeddings based on ASTs.

The abstract syntax tree represents the programs with the syntax information using a tree. As illustrated in
Figure 1, the leaf nodes are the tokens of the program, and others are AST node types. Considering its power in
preserving all levels of information of the source code, including the text as well as the syntactic structure, ASTs
have been applied into a variety of software tasks, such as log levels suggestion [?] and code clones detection [95],
etc.

ACM Trans. Softw. Eng. Methodol.

6 • Ding, Zishuo et al.

Code2vec is a code representation model recently proposed by Alon et al. [6]. Like many other AST-based
models, code2vec is also trained and evaluated on a single task, namely, method name prediction. In particular,
in this model, the authors irst extract all the methods from the selected code repository. Then the methods
are transformed into a collection of ASTs. Next, triplets are constructed from the trees, where the irst and last
elements are the terminal nodes of the AST, and the middle element is the path connecting them. Once having
the training corpus (i.e., the triplets), a path-attention network [6] is used to learn token and method names as
well as the path vectors. Code2vec uses the cross-entropy loss to train the model, and the learned embeddings
are task-speciic.

2.2 Related work

Source code embeddings is an essential part of many SE tasks [2, 6, 11, 15, 16, 25, 70, 86, 90]. Due to the
advancement of neural networks, researchers propose various approaches for learning code embeddings to
assist in SE tasks. In this section, we report related works for each category of code embedding presented in
Section 2.1.2.
Textual context-based code embeddings. Prior work extracts the local textual information from the source
code and then applies embeddings techniques on the extracted textual information. For example, Efstathiou
and Spinellis [20] treat the source code as plain text and use fastText [10] to train the embeddings for diferent
languages. Harer et al. [25] convert code tokens into a vectorial representation using the Word2vec algorithm.
They collect open-source C/C++ programs and apply the lexer on the source code. The trained embeddings are
used to initialize the feature embedding layer of the TextCNN model [36], which is later used for vulnerability
detection. Chen and Monperrus [16] train Doc2vec [41] on a corpus of Java iles. Source code components from
each java ile are extracted and tokenized. The tokenized source code components are used to train a Doc2vec
model for automated program repair. Similarly, White et al. [90] adopt Word2vec to transform the ile-level
corpus for each program revision into streams of embeddings. Intuitively, using local textual context is reasonable
as developers always code the related statements together. However, during the embeddings training, neither
using a too-large local window nor a too-small window is desired. A too-large local window size may include
redundant or unrelated tokens (i.e., noise tokens) in, while a too-small local window size may lose the important
context tokens. In addition, considering the code snippet as plain text results in the omitting of the structural
information in the source code that may be important for some downstream tasks.
AST-based code embeddings. To leverage the structural information of source code, some researchers propose
AST-based representation approaches. An AST represents the source code with a tree structure, which has been
proven to be useful in a wide range of software engineering ields. Zhang et al. [95] propose an AST-based
neural network for source code representation. In their work, ASTs are split into a sequence of small statement
trees, which are later encoded into vectors. Alon et al. [6] propose code2vec and parse ASTs to a collection
of triples, where the irst and last elements are leaf nodes in the tree representation, and the middle element
is the path connecting these two nodes. Then, they feed the triples to an attention model for learning vector
representations for arbitrarily-sized snippets of code. Büch and Andrzejak [11] implement an AST-based Recursive
Neural Network (RNN) for code clones detection. Recently, Allamanis et al. [3] adopt graph-based deep learning
methods [47] for variable name prediction task and variable misuse prediction task. However, all of them train
the embeddings on a speciic task and thus require well-labelled data and may sufer the generalizability problem.
Tufano et al. [83] irst train four separate code embeddings based on diferent training contexts (i.e., identiiers,
AST, bytecode, & CFG) and then use these four embeddings in detecting similar code fragments. Our work is
diferent from these works from both the training context extraction and the embedding learning aspects.
Downstream SE tasks using code embeddings. Similar to the usage of word embeddings for downstream NLP
tasks as described in Section 2.1.1, the trained code embeddings can also be integrated for downstream SE tasks

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 7

Abstract	syntax	tree
generationSource	files

Embeddings	
learning

Abstract	syntax	trees

Method	graph
representation

Graph	context
generation

Token	embeddings
Evaluation	on

downstream	tasks	

Method
	extraction Extracted	methods

Fig. 2. The overall framework of GraphCodeVec. Note: we apply the same token embeddings trained from a general dataset
on all downstream tasks.

in the same way. That is, these embeddings can support both deep learning and traditional machine learning
SE tasks [34]. Some researchers [34, 83] use the embeddings of tokens in programs as a feature vector and then
feed these features into traditional machine learning methods. For example, Tufano et al. [83] irst learn the
code embeddings for each program fragment and then they adopt the ensemble learning (i.e., random forest) for
detecting similarities of diferent code fragments. In addition, code embeddings can also be used as initialization
of embeddings layers of the neural network based models for downstream SE tasks. For example, Zhang et al.
[95] adopt the embeddings generated by Word2vec to initialize the embedding layer’s parameters in their neural
network based model for the tasks of clone detection and code classiication..
The limitations of the existing work. On one hand, Word2vec and GloVe only utilize the textual context
without incorporating the structural context explicitly to learn code embeddings. On the other hand, most of the
existing structural context-based models learn code embeddings in a supervised way, which heavily rely on the
availability of well-annotated training data which is usually not available. Moreover, the embeddings are often
trained and evaluated on the same task, raising the concern that the learned embeddings may not generalize well
to other tasks.

Considering the limitations of existing works that leverage textual or AST-based code embeddings, we propose
GraphCodeVec, which improves the code embeddings by representing source code as graphs and training the
embeddings in an task-agnostic manner, aiming to learn task-agnostic code token representations.

3 APPROACH

Prior work [34] inds that pre-trained code embeddings may not be readily leveraged for the downstream tasks
that the embeddings are not trained for. However, considering the limitations of the existing code embedding
techniques, we propose GraphCodeVec, which consists of a training context preparation phase followed by
an embedding learning phase. Figure 2 outlines the overall framework of GraphCodeVec. GraphCodeVec irst
extracts methods from a collection of source code iles (i.e., Java classes), which are later transformed into AST
representations. Based on these AST representations of methods, a context graph is then constructed for each
extracted method. In the embedding learning phase, the GCN embedding approach [84] is used to train the token
embeddings based on the graph context. Below, we describe the training context preparation and embedding
learning phases in detail.

3.1 Training context preparation

In this section, we describe the procedures of how to represent the source code using a graph. Formally, given a
code snippet D = (�1,�2, . . . ,��), where�� is the �th token in the code, the goal of this step is to generate its
graph representation,G = (V, E), whereV is the set of nodes (i.e., tokens in the source code), E =

{
��,� |�, � ∈ V

}
refers to the edges in the graph (��,� represents the edge connecting nodes � and �).

ACM Trans. Softw. Eng. Methodol.

8 • Ding, Zishuo et al.

3.1.1 AST generation. Apart from using the local window to construct the context, many NLP tasks adopt
Syntactic Dependency Parse (SDP) to composite the context [40, 42, 43, 71, 92]. Meanwhile, previous studies [5,
9, 72] demonstrate that software engineering tasks can greatly beneit from leveraging the syntax information
of programming languages. Hence, in this section, we follow a similar approach with that of Alon et al. [5] to
extract the AST representations of source code.

In GraphCodeVec, source code is irst transformed into ASTs using JavaParser2, which provides the functionality
of converting source code into tree representations. The structural syntax information of each method is preserved
in an AST tree. For example, given the following code snippet, JavaParser produces the tree representation shown
in Figure 1.

public void printName (String someone){

name = someone;

System.out.println(name);

}

As Figure 1 shows, the leaf nodes are tokens in the source code which are connected by a set of JavaParser AST
node types that provide the syntax structure of the code.
Based on the AST, we then extract the nodes and edges from the AST and represent the source code using a

graph. Our work shares a similar way with Alon et al. [5, 6].

3.1.2 Graph context construction. Once we have the AST representation of each method of the source code, we
start to construct the graph context. We irst traverse the extracted ASTs (see Section 3.1.1) to collect all the
leaf nodes for each method (i.e., code tokens in the source code). The collected leaf nodes are the nodes in the
constructed graph. We adopt the depth-irst search algorithm implemented in łTreeVisitorž 3 for the traversal. To
construct a graph representation of the method, we also need to identify the AST node types connecting these leaf
nodes. The identiied AST node types are the edges in the constructed graph. Given any two diferent leaf nodes,
�1 and�2, the edge, �1,2 is the shortest path between these two nodes in the method’s AST. We also keep the path
traversing direction to preserve as much information as possible. As a result, we can collect two diferent type
paths for each pair of leaf nodes. The reason why we preserve the path direction is that diferent paths represent
diferent syntactic relationships between these nodes. For example, in our above example, łname = someone;ž,
for the token łnamež, łsomeonež is the source expression (i.e., assigner) and for the token łsomeonež, łnamež
is the target variable (i.e., assignee). In other words, the dependency relationship from łnamež to łsomeonež is
diferent from the dependency relationship from łsomeonež to łnamež. Moreover, the direction of the dependency
relationship is not only considered in SE tasks(e.g., [6]) but also in NLP tasks (e.g., [43]). By doing such a directed
structural traversal, we construct the graph representation of the source code, where nodes represent the code
tokens in the source code while the edges represent the AST node types connecting two nodes. In the constructed
graph, there are � nodes and � ∗ (� − 1) directed edges4 describing the syntactic relationship between any two
nodes, and � is the number of leaf nodes in the AST (i.e., code tokens in the source code).
Figure 3 illustrates a simple example of how to construct a graph from an AST. Basically, we start from one

leaf node and keep traversing until inding the shortest path that connects to another leaf node. The detailed
procedure is as follows:

(1) Given an abstract syntax tree of a method, e.g., łprintNamež, we irst collect all the leaf nodes.
(2) We then choose two of the leaf nodes as the target and source nodes (e.g., łStringž and łsomeonež),

respectively.

2https://javaparser.org/.
3https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.6.0/com/github/javaparser/ast/visitor/TreeVisitor.html.
4We further ilter the edges by a length threshold, explained later in this section.

ACM Trans. Softw. Eng. Methodol.

https://javaparser.org/
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.6.0/com/github/javaparser/ast/visitor/TreeVisitor.html

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 9

...

public

voidString

printName

someone

name=

Fig. 3. Graph representation of the code snippet based on the AST. For simplicity, only part of the graph are displayed.

(3) Next, we extract the paths from the root node, MethodDeclaration, to the target and source nodes respec-
tively (i.e., ⟨MethodDeclaration, parameters, Parameter,ClassOrInterfaceType, SimpleName⟩

and ⟨MethodDeclaration, parameters, Parameter, SimpleName⟩). The longest common preix of
these two paths is ⟨MethodDeclaration, parameters, Parameter⟩.

(4) We then remove the longest common preix from the two paths, resulting in two sub-paths,
⟨ClassOrInterfaceType, SimpleName⟩ and ⟨SimpleName⟩. We keep the last element of the common
preix (i.e., Parameter).

(5) We preserve the path direction from the target node to the source node and connect the path elements with−.
Speciically, we reverse the sub-path connecting the target node and assign the up direction (represented as↑).
For the sub-path connecting the source node, we remain the same order and assign the down direction (rep-
resented as ↓). For example, after this step, the two paths become SimpleName↑-ClassOrInterfaceType↑

and SimpleName↓.
(6) We then concatenate the two sub-paths with the preserved last element of the common

preix (i.e., Parameter), SimpleName↑-ClassOrInterfaceType↑-Parameter-SimpleName↓. Fi-
nally, we have two nodes, łStringž and łsomeonež and the edge connecting them, i.e.,
SimpleName↑-ClassOrInterfaceType↑-Parameter-SimpleName↓, where the ↑ and ↓ are the traversing
directions and no direction means an inlection node of a traversing path.

(7) We repeat steps (2) through (6) for each pair of source and target nodes, until we collect all the nodes and
edges in the AST.

However, the number of edges is approximately the square of the number of tokens (i.e., leaf nodes). To reduce
the size of the training data, we follow previous work [6] and limit the number of edges by a maximum length: if
the length of an edge (i.e., the number of AST node types in the shorted path) exceeds the threshold, the edge
will be ignored. In our work, we follow the work of code2vec [6], and set the threshold to eight as we ind that
two tokens connected by a longer edge usually do not have a direct structural relationship. Note that a relatively
longer edge can preserve a more complete relationship between the leaf nodes, in other words, with a larger
threshold, in the constructed graph, the target node can have edges to more other nodes and thus, generating more
training context. Meanwhile, if the threshold is too large, more indirect relationships with the target node would
be included, which may introduce more noise to the training corpus, leading to poor quality of the generated code
embeddings. And if the threshold is too small, although the target token would have a more direct relationship
with other nodes, the number of connected nodes would be small and lead to insuicient training data. Thus, the
threshold should be tuned for speciic tasks or training context.
The output of our training context preparation phase (i.e., the graph context of code tokens) are used as the

input for our embedding learning.

ACM Trans. Softw. Eng. Methodol.

10 • Ding, Zishuo et al.

…

……

…

someone
printName

String

name

void

…

…

public

void

String
printName

someone

name=

public

void

printName

String

someone

name

someone

system

…

Fig. 4. An overview of our embedding learning phase: assume the target code token is łsomeonež, the nodes in blue are the
relevant context tokens which are fed into a one-layer Graph ConvolutionalNetwork (GCN) for learning the distributed
representations of the target token. ℎ��

, ℎ��
are the hidden represetations of context token and target token, respectively.

3.2 Embedding learning

This section provides a detailed description of our approach to learning distributed token representations in a
task-agnostic manner. More specially, in this work, we adopt the Graph Convolutional Networks (GCN) [84] to
train the token embeddings based on the graph context generated in Section 3.1. The reason why we choose GCN
is that it can not only preserve both the semantic information (i.e., leaf nodes in ASTs), but also the structural
information (i.e., the connecting paths in ASTs) of the source code [3].

Figure 4 illustrates our embedding learning phase. Assuming the target token is łsomeonež, the relevant context
tokens (e.g., łnamež, łStringž, łprintNamež, łvoidž) are fed into the GCN model for predicting the target token,
łsomeonež. Formally, given a graph representing the source code snippet, G = (V, E), the goal is to learn

a �-dimensional embedding for each token inV.

Similar to the Continuous Bag-Of-Words (CBOW) model [56, 57], which tries to predict the target token
using its surrounding tokens within a local window, our approach utilizes the directly connected nodes (i.e., its
neighbors), ���

to predict the given target node�� .
Hidden representation for each node. The hidden representation (hidden state) of each node is the output

of a convolutional layer in GCN. As Figure 4 shows, the hidden representation of the target token ℎ��
∈ R� is

updated based on its neighbors in the graph context. More specially, the representation for the target node�� at
the (� + 1)th layer in GCN is computed by:

ℎ�+1��
= �

©«
︁

�� ∈���

(
� �

��� ,��
ℎ���

+ ����� ,��

)ª®¬
(4)

where� �
��� ,��

and ����� ,��
are a trainable weight matrix and a bias, and ℎ���

is the hidden representation for context
node�� at the �th layer.

Edge-wise gating mechanism. As described in Section 3.1, to reduce the number of edges in the graph, we
do iltering using a threshold of edge length. In addition, there may exist diferent relationships among the leaf
nodes: some are weak and meaningless, while others may be more meaningful. For example, we see in Figure 4
that even though the target token łsomeonež is directly connected with the token łvoidž, their relationship is not
meaningful. In comparison, the relationship between łnamež and łsomeonež is stronger. Therefore, we should

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 11

assign diferent weights to diferent context nodes when calculating the hidden representation for the target
node.
To address this issue, we adopt the edge-wise gating mechanism [52]. For each target node �� , the weight

score with its context token�� is calculated as follows:

����� ,��
= �

(
� ′�

��� ,��
ℎ���

+ �′���� ,��

)
(5)

where� ′�
��� ,��

and �′���� ,��
are trainable parameters and � (·) is the sigmoid function. Thus, the hidden representa-

tion of the target nodes is formulated as:

ℎ�+1��
= �

©
«

︁
�� ∈���

����� ,��
×

(
� �

��� ,��
ℎ���

+ ����� ,��

)ª®
¬

(6)

Training objective. Given a graph representation of the source code, G = (V, E), and the target node,��

(the � th node), the objective of the model is to maximize the following objective function:

L =

︁
�� ∈V

log �
(
�� |C��

)
(7)

where C��
is the context nodes (i.e., neighbors in the graph) of the target nodes�� , �

(
�� |C��

)
is the conditional

probability of observing the target node�� given the context nodes, C��
. �

(
�� |C��

)
is deined using the following

softmax function:

�
(
�� |C��

)
=

exp(v��

⊺ℎ��
)∑

�∈V exp(v�⊺ℎ��
)

(8)

where v� and ℎ� denote the target embedding and hidden representation of the node� , respectively.
Optimization. One issue in GraphCodeVec is the high cost of computation in the softmax function (i.e., Equa-

tion 8) because it involves the iteration through every node over V . To address this issue, diferent optimization
strategies can be applied, such as hierarchical softmax and negative sampling [57]. Hierarchical softmax [? ?]
uses a binary tree to represent the tokens in the vocabulary, V , where each leaf node of the tree is a token. The
probability of traversing from the root to the leaf node (i.e., target token) along the unique path is used to estimate
the conditional probability. By doing such an approximation, the complexity of calculating the probability of each
word goes down from � (|V|) to around log2 (|V|) [? ?]. While negative sampling is more straightforward [? ?].
The idea of negative sampling is to update a small sample of the token vectors rather than all of them, such that
the computing cost of the softmax function can be reduced. In this work, following previous work [69, 84?], we
adopt the negative sampling, as it tends to give better results than hierarchical softmax [24, 69].
The output of our embedding learning phase (i.e., the token embeddings) are used as the input for our

downstream tasks for evaluation.

4 EXPERIMENTAL SETUP

In this section, we present details of our embedding training settings and describe the six downstream tasks
used in our quantitative evaluation. Three of the SE tasks, i.e, (1) code comment generation, (2) code authorship
identiication, and (3) code clones detection, are used for the evaluation of code embeddings in prior research [34];
while the other three, i.e., (4) source code classiication, (5) logging statements prediction and (6) code defects
prediction, are newly added in our extended benchmark. We select these tasks either due to the fact that they are
chosen for evaluating code embeddings in previous work [34], or they are of great importance for SE community
and commonly studied in the literature.

ACM Trans. Softw. Eng. Methodol.

12 • Ding, Zishuo et al.

4.1 Dataset preparation

In our experiments, the dataset used for embedding learning comes from the Java-small dataset5, which is
provided by Alon et al. [6] and originally based on the dataset of Allamanis et al. [4]. This dataset is collected
from publicly available open-source GitHub repositories.
Following the previous approach for pre-processing the source code [6, 15, 34], we convert the tokens into

lower cases and remove all the non-identiiers (e.g., quotation marks). Meanwhile, we follow the common
practice [56, 57, 69, 84] and ignore all tokens with a total frequency of less than ive as there is not enough data
to do any meaningful training on those rare tokens [10, 73, 89]. While constructing the graph representation, due
to the limitation of the memory, we only keep the top-100 most frequent edge types (i.e., edges with the identical
path representation) and others are replaced with a unique identiier (i.e., -1). As during embedding learning, we
need to batch the training context with diferent edge types into the GCN model, and in the GCN model, we
create an adjacency matrix for each edge type, that means if there are a large number of edge types, the model
requires more memory to keep these matrices and would run out of memory and cannot be moved to GPU for
embedding training. Besides, as recommended by Vashishth et al. [84], we also limit the size of each graph to a
maximum of 100 unique nodes and 800 edges; that is, if the size of the graph exceeds the threshold, the graph
will be removed from the training set. After preprocessing, we collect 637,108 training methods (there are 665,115
methods before the preprocessing), each of which is represented by a graph for subsequent embedding learning.
In this work, considering the fact that code2vec can only be trained on method level corpus (c.f., Section 2), to
have a fair comparison with these baselines, we only construct the method level graph context. However, as
ASTs can represent the source code with diferent levels (e.g., method level, statement level, class level, etc.), our
method can also be applied to other types of training data.
The datasets used in the downstream tasks may have diferent vocabulary from the training dataset, a.k.a,

the out-of-vocabulary (OOV) problem. To handle the OOV tokens, we choose to randomly initialize the vector
representation of tokens that only appear in downstream tasks to minimize the impact of these unseen tokens (i.e.,
to make tasks with OOV vocabulary predictable). By doing this, we can make sure that all tokens in downstream
tasks have vector representations, therefore it is always predictable (but may lead to poor performance as the
vectors representing these OOV tokens are not learned from their context).

4.2 Training details

While training the model, we follow the settings in prior work [6, 34, 95] and set the dimension of token vectors
to 128. To prevent overitting and avoid performance degradation, we set the number of GCN layers to 1, as
GCN tends to sufer performance degradation with increased depth (i.e., number of layers) [? ? ? ? ?]. The
training batch size is set to 64 by default. Considering 1) the small number of weights of our model (i.e., one layer
and 128 input dimension), 2) the relatively large size of the training data (i.e., more than half million graphs),
and 3) the remarkable learning ability of GCNs from the graph data, we train our embeddings for one epoch
and the training loss is small enough. This is consistent with the inding of Mikolov et al. [56], that is for word
embeddings, training a model on a relatively large dataset using one epoch gives comparable or better results
than more epochs on the same dataset. As it is indicated in a prior work by Mikolov et al. [57], the number of
negative samples in the range of two to ive is useful for large training datasets and ive to 20 for small training
data. Hence, in this work, to balance the eiciency and accuracy, we set the number to ive. The training of our
embeddings are conducted in a machine with an NVIDIA GTX 1080Ti GPU and 32GB memory. We summarize
the thresholds and hyperparameters used in our experiment in Table 1.

We evaluate the quality of the trained embeddings on six downstream tasks. For the downstream tasks that use
neural network-based models, the embeddings are used to initialize the embedding layer of neural networks, as

5https://s3.amazonaws.com/code2vec/data/java-small_data.tar.gz

ACM Trans. Softw. Eng. Methodol.

https://s3.amazonaws.com/code2vec/data/java-small_data.tar.gz

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 13

Table 1. Hyperparamters and thresholds used during the two stages of GraphCodeVec for generating the code embeddings.

Stage Name
Default
value

Description

Training context
generation

(c.f., Sec. 3.1 and RQ2)

Edge
length

8

Edge length (c.f., Sec. 3.1) is the number of AST nodes connecting two leaf nodes (i.e., code tokens). It
would inluence the quality and quantity of the training context. A smaller value would result in a
more tight connection but less connected nodes to the target token, leading to not enough training
context. On the contrary, a larger value may include more unrelated token pairs and introduce noise
to the training context. In our work, we follow the work of code2vec [6] and set it to eight to make a
fair comparison.

Unique
node

100

Unique node (c.f., Sec. 4.1) refers to the number of unique tokens (c.f., Sec. 3.1.2) within each method.
This parameter would inluence the size of each constructed graph for training. The values should be
tuned based on the GPU memory size, as we need to batch the graphs into the GPU for training, if the
graphs are too large, the model requires more memory to keep these data and would throw "out of
memory" error. Vashishth et al. [84] suggest the number of unique node should be set no larger than
100. And in our settings, only about 4% of the graphs are iltered which not only has a small efect on
the quantity of the training context but also can avoid the memory error.

Edge 800

Edge (c.f., Sec. 4.1) refers to the total number of extrated AST node types (c.f., Sec. 3.1.2) within each
method. It has a similar efect with the parameter Unique node on the size of contracted graph. Also,
the values should be tuned based on the GPU memory size, And in our work, we set this parameter to
800, as we ind that only about a small portion (i.e., 4%) of the graphs are iltered out.

Window
(c.f., RQ2)

5

Window (c.f., RQ2) is the maximum distance between the current and its neighboring word within a
method. It is similar to edge length, which also has an impact on the constructed training context.
A larger window size would be able to capture more broad context, but with the possibility of
introducing noise as the context tokens might not be tightly related to the target token. On the
contrary, a smaller window size may contain more focused information about the target word but
may not be able to capture suicient context. Setting the context window size to ive is commonly
done in the literature [10, 42, 56, 57, 73].

Embedding learning
(c.f., Sec. 3.2)

Layer 1

Layer (c.f., Sec. 4.2) refers to number of layers in GCN. It controls the depth of a GCN and directly
inluences the quality of the model. Previous work [? ? ? ? ?] shows that GCN tends to sufer
performance degradation with increasing depth (i.e., number of layers). In our work, we follow the
work of [84] and use the default value.

Dim. 128

Dim. (c.f., Sec. 4.2) is the dimensionality (i.e., vector size) of each token. It has a non-negligible impact
on the quality of the embeddings. A small vector size cannot preserve the properties of the tokens of
high dimensional spaces, leading to the degradation of quality of learned embeddings. However, a too
large size requires more computing resources and training time, and may sufer the sparsity problem
if the training data is not enough. In our work, we follow the settings in prior work [6, 34, 95].

Neg. 5

Neg. (c.f., Sec. 3.2) refers to the number of negative samples used when updating the wights of the
model. A larger value means more samples to calculate and thus more training time needed. This
parameter should be adjusted based on the size of training context. As suggested by Mikolov et
al. [56, 57], 5-20 samples works well for smaller datasets, and 2-5 words for large datasets.

Batch
size

64
Batch size (c.f., Sec. 4.2) deines the number of training samples presented in a single batch. A larger
size can speed up the training process but requires more GPU memory [?] while using small batch
sizes achieves better training stability [53]. In this work, we use the default 64.

Dropout
rate

0

Dropout rate is the probability of dropping a unit out. Dropout is a regularization technique for
avoiding the model overitting. As larger models (more layers or more units) tend to more easily
overit the training data [? ?] and considering the small size of our model, we don’t use this strategy,
instead, we reduce the training epochs to avoid overitting.

Epoch 1

Epoch (c.f., Sec. 4.2) is the number of iterations through the entire training dataset. This factor afects
the performance of the embeddings directly. Increasing the number of epochs may overit the model
and a small number of epochs may lead to a not fully trained model. In our work, considering
the size of the training dataset and the number of weights of our model (i.e., one layer, 128 input
dimensions) [56, 57], we train our model for one epoch, as the training loss is small enough.

changing the embeddings of the embedding layer would afect the way the model is learnt and thus the models
with diferent code embeddings would have diferent performance. For the downstream tasks that use traditional
machine learning models, the embeddings are used as feature vectors (i.e., each dimension of the embeddings is
treated as a feature). For example, we have a code snippet łString name = someonež, and each token (łstringž,
łnamež, and łsomeonež; ł=ž is removed) within the vocabulary has its corresponding vector representation, such

ACM Trans. Softw. Eng. Methodol.

14 • Ding, Zishuo et al.

as [0.1, 0.2, 0.3, ...], [0.1, 0.1, 0.1, ...] and [0.2, 0.2, 0.3, ...], these vectors can be summed up (or other operations) as a
feature vector (each feature is one dimension of the embedding), which later can be used for traditional machine
learning models.

4.3 Baselines

To evaluate the efectiveness of our trained embeddings, we compare GraphCodeVec with the following existing
embedding models (i.e., the baselines):

• Word2vec6 is a popular unsupervised word embedding method proposed by Mikolov et al. [56] . We use
the implementation in Gensim7 [73].

• GloVe is an unsupervised algorithm using token-token co-occurrence statistics, proposed by Pennington
et al. [69].

• fastText is proposed by Facebook’s AI Research lab [10]. It is an unsupervised algorithm, which utilizes
the subword information to enrich the word vectors. In their approach, each word is represented as a bag
of character n-grams, and the word is represented as the sum of these character n-grams representations.
We use the implementation in Gensim8 [73].

• code2vec9 is a recently proposed supervisedmodel for source code representation. Prior work [34] evaluates
code2vec on three downstream SE tasks. This model is proposed by Alon et al. [6] and utilizes the AST
information to learn code embeddings.

We train these embeddings on the same dataset that is used for training our GraphCodeVec embeddings (i.e., the
Java-small dataset). To make a fair comparison, we do the same preprocessing as in Section 4.1, that is converting
the tokens into lower cases and removing all the non-identiiers, as well as ignoring all tokens with a total
frequency lower than ive.

4.4 Downstream tasks for evaluation

In this section, we briely describe the six downstream tasks, including the approaches, the corresponding datasets
used for the evaluation, and the evaluation criteria.
To control the quality of the embeddings evaluation experiments, we enrich the work of Kang et al. [34]

by adding three new tasks and adopting diferent modeling methods for the six tasks, including deep learning
approaches and traditional machine learning methods. Speciically, for the irst ive tasks, including (1) code
comment generation, (2) code authorship identiication, (3) code clones detection and (4) source code classiication,
and (5) logging statements prediction, we use neural network-based approaches; while for the task of (6) software
defect prediction, we follow the approaches used in their original work and adopt traditional machine learning
methods (i.e., logistic regression, LR in short).
We intentionally select both the deep learning and the traditional machine learning approaches to ensure

the code embeddings are adequately evaluated across diferent tasks (i.e., six downstream tasks) and modeling
approaches (i.e., traditional machine learning and deep learning). However, we speciically select LR for the only
task of software defect prediction due to the fact that most of the downstream tasks that rely on code embeddings
use deep learning models, thus we only select one task and put more focus on the impact on deep learning models.
We run the experiments with 10-fold cross validation to mitigate the efects of the random separation of the
training and test sets, and report the average scores of the results of the 10-fold cross validation. For the models

6There are two variants in the implementation of Word2vec (i.e., Skip-gram and CBOW) and two diferent optimization strategies (i.e., negative
sampling and hierarchical softmax). Following previous work [84], we here select the CBOW with negative sampling as a representation for
comparison.
7https://radimrehurek.com/gensim/
8https://radimrehurek.com/gensim/
9https://github.com/tech-srl/code2vec

ACM Trans. Softw. Eng. Methodol.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://github.com/tech-srl/code2vec

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 15

selection for downstream SE tasks, we follow the rules that 1) are used in previous work [34, 65, 87], and 2) are
commonly used and have the state-of-the-art or competitive results [37, 95]. To further ensure a fair comparison
with baselines, we either follow the parameter settings in previous work or use the default parameters and avoid
only ine-tuning these settings only for our method.

In the evaluation, our focus is the efectiveness of diferent embeddings instead of the approaches for the speciic
tasks themselves. Thus, we do not aim to reach the SOTA for a speciic task. Moreover, for each downstream task,
we try to use the same experimental settings that are reported in the literature, hence only examining the impact
of diferent embedding techniques on the downstream tasks.

4.4.1 Code comment generation. Given a code snippet, which can be either a method or a class, the task is
to automatically generate the corresponding code comments [29, 55, 59, 78], in order to assist in program
understanding and maintenance.
Approach. Following Kang et al. [34], we use the Sequence-to-Sequence (Seq2Seq) approach proposed by Hu
et al. [29] to generate the comments. Hu et al. [29] consider the comment generation task as a neural machine
translation task. A Recurrent Neural Network-based Seq2Seq model is applied to generate comments based on
the context of the source code.
We train the model using OpenNMT10 [39] and keep the hyperparameters the same with literature [29]. We

set the number of layers to 2 and use Long Short-Term Memory (LSTM) [27] as both the encoder and the decoder.
Each LSTM has 500 hidden states, the learning rate is set to 0.5, and the dropout ratio is 0.5. The model is trained
for 50 epochs , and we select the model that has the best results on the validation set as the inal model. Both the
encoder and decoder contain an embedding layer, which can be initialized by diferent embeddings.
Dataset. The evaluation dataset is provided by prior work11 [29], which was initially collected from GitHub.
We preprocess the dataset by converting all the tokens into lower cases and remove all the non-identiiers (e.g.,
quotation marks). After preprocessing, the dataset contains 470,485 <Java method, comment> pairs for training,
58,810 pairs for validation and 58,810 pairs for testing.
Evaluation. We evaluate the quality of the generated code comments using two machine translation evaluation
metrics i.e., BLEU [67] and ROUGE12 [?] as they are widely used in the task of code comment generation [29, 34?
?]. BLEU is calculated as follows:

BLEU = �� · exp

(
�︁

�=1

�� log��

)
(9)

�� =

{
1 � � � > �

� (1−�/�) � � � ≤ �
(10)

where �� is the modiied n-gram precision (i.e., the maximum number of n-grams co-occurring in the automatically
generated code comment and the reference comment divided by the the total number of n-grams in the generated
comment),�� are positive weights that can be conigured, �� is a brevity penalty, � is the length of the generated
comment and � is the length of the reference comment. In our evaluation, we choose � = 4 and uniform weights
�� = 1/� , same as prior work [29]. ROUGE is calculated as follows:

ROUGE-n =

∑
�����∈��� ���������ℎ (�����)∑

�����∈��� ����� (�����)
(11)

where � is the length of the n-gram (�����), and ���������ℎ (�����) is the number of n-grams co-occurring in
the automatically generated code comment and the reference code comment, �� � . Speciically, following previous

10https://opennmt.net/
11https://github.com/xing-hu/DeepCom
12https://github.com/pltrdy/rouge

ACM Trans. Softw. Eng. Methodol.

https://opennmt.net/
https://github.com/xing-hu/DeepCom
https://github.com/pltrdy/rouge

16 • Ding, Zishuo et al.

work [? ?], we calculate ROUGE-L which measures the longest matching sequence of tokens using LCS (Longest
Common Subsequence). The higher the BLEU and ROUGE scores, the better the model.

4.4.2 Code authorship identification. Given a code snippet, the task is to identify its author based on the
programmer’s distinctive stylometric features [1, 30]. The task has many applications in the privacy and security
iled, such as identifying programmers of malware and other malicious programs. Following Kang et al. [34], we
also evaluate the embeddings on this task.
Approach. Kang et al. [34] treat code authorship identiication as a classiication problem. Following Kang et al.
[34], we use an LSTM neural network, which contains two hidden LSTM layers followed by a fully-connected
layer. The learning rate is set to 0.005, and the model is trained for 50 epochs. We select the model from the last
epoch as the inal model. This neural network contains an embedding layer, and we initialize it with diferent
code embeddings. We follow the use of token embeddings in Kang et al. [34].
Dataset. The evaluation dataset is provided by prior research [34], which was initially collected from Google
Code Jam. The dataset contains 2,250 programs (5,548 methods) in total from 250 authors. Each author has the
same number of programs. Similar to the previous task [6, 15, 34], we preprocess the dataset by converting the
tokens into lower cases and removing all the non-identiiers (e.g., quotation marks).
Evaluation. Following the existing work [1, 30], we use the test accuracy as the evaluation metric. It calculates
the percentage of correct classiications for the test set:

�������� =
������ � � ������� �����������

����� ������ � � �����������
(12)

4.4.3 Code clones detection. Given two code fragments, the task of code clones detection aims to check whether
they are duplicate or not. It is widely studied in the literature and useful for program maintenance and avoiding
bugs caused by source code reuse in software systems [7, 19, 33, 54, 76, 82, 88, 91]. This task is identiied as a
downstream task to evaluate token embeddings in prior work [34].
Approach. For this task, we use the approach proposed by Zhang et al. [95], which considers code clones
detection as a binary classiication problem. The approach splits the entire AST into a collection of statement
trees and then encodes the statement trees to vectors while retaining the lexical and syntax information. A
bidirectional Recurrent Neural Network-based model is used to produce the representation of the code fragment.
We select this approach since it uses a neural network-based approach and contains an embedding layer that can
be initialized by pre-trained code embeddings. In addition, the model is recently proposed and gives competitive
results.
Following the settings in the work of Zhang et al. [95], we set the hidden dimension of the encoder and

bidirectional GRU to 100. The learning rate is set to 0.002, and the model is trained for 15 epochs.
Dataset. There are two public dataset benchmarks used for code clones detection [95] . The irst dataset is
constructed from the standard BigCloneBench (BCB) [80]. The dataset contains nearly 6 million true clone pairs
and 260 thousand false clone pairs parsed from BCB. The second dataset is collected from the Online Judge
system (namely, OJClone) which was initially provided by Mou et al. [62].
Evaluation. Following prior work [95], the commonly used classiication evaluation metric F1-measure (F1) is
used to measure the performance of the models with diferent embeddings. It is given as follow:

�1 = 2 ×
��������� × ������

��������� + ������
(13)

where ��������� =
��

��+�� , and ������ = ��
��+�� , �� refers to the number of true positives, �� is the number of

false positives, and �� is the number of false negatives.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 17

4.4.4 Source code classification. Given a collection of code fragments, this task is to classify them into cor-
responding categories based on their functionalities. We choose this task as it is commonly studied in the
literature [35, 62, 85, 95] and has various applications. For example, in order to help other developers on Github
ind and contribute to projects, owners are encouraged to assign related topics to projects13. With the help of
code classiication techniques, the topics can be automatically attached to the projects.
Approach. Source code classiication is a multi-class classiication problem. We use the approach proposed
by Kim [37] as it is a widely used classiication model and achieves competitive results [95]. The model is trained
for 50 epochs and we select the model that has best results on the training set as the inal model. The learning
rate is set to 0.01 and the batch size is 64. The kernels sizes for convolution are set to 3, 4, 5 and the number of
output channels for the convolutional layer is set to 100.
Dataset. The dataset is collected from the Online Judge system14 and provided by Mou et al. [62]. The dataset
contains 104 classes categories, and each has 500 code fragments. The code in the dataset is converted into lower
cases and all the non-identiiers are removed.
Evaluation. Following prior work [95], we use the test accuracy metric, which is the same as the one used in the
code authorship identiication task (c.f., Section 4.4.2).

4.4.5 Logging statements prediction. Given a code snippet, this task is to predict whether there is a need to
insert logging statements for collecting valuable runtime information. Logging statements play a crucial role in
tracking important runtime information of software systems. Developers rely heavily on such information to
monitor system behaviors and debug system failures [?]. However, adding unnecessary logging statements can
signiicantly increase system overhead [18, 94] and hide the truly useful information [21]. Therefore, providing
logging suggestions on whether to log is helpful for software developers.
Approach. Logging statements prediction is a binary classiication problem. Similar to source code classiication,
we use the approach proposed by Kim [37] as it is recently proposed and widely used for classiication tasks. We
adopt the same experimental settings as we do in the task of source code classiication (c.f., Section 4.4.4).
Dataset. The dataset contains ive open source Java systems 15: Hadoop, Directory-Server, CloudStack, Camel
and Airavata and is provided by ?].
Evaluation. Following the work of ?], we use the balanced accuracy (BA) metric to evaluate the performance of
the model with diferent embeddings.

BA averages the percentage of correctly identiied logged and unlogged methods and is widely used to evaluate
the performance of models on imbalanced data. BA is calculated as follows:

�� =
1

2
×

��

�� + ��
+
1

2
×

��

�� +��
(14)

where �� refers to the number of true positives, �� is the number of false positives, and �� is the number of
false negatives. A higher value of BA indicates a better model.

4.4.6 Sotware defect prediction. The task of software defect prediction is to predict whether the given code
snippet contains defects. Various techniques have been proposed to detect defects [87]. We select this task as
a downstream task since it can efectively help developers ind bugs in source code and prioritize their testing
eforts [87].
Approach. software defect prediction is a binary classiication problem. To extend the generalizability of our
evaluation of diferent embeddings, unlike the previous ive downstream tasks where the pre-trained embeddings
are used to initialize the embedding layer of neural networks, we choose to use a logistic regression (LR) classiier

13https://help.github.com/en/github/administering-a-repository/classifying-your-repository-with-topics
14https://sites.google.com/site/treebasedcnn/
15The original dataset contains six projects but the repository of Qpid-Java is unavailable at the time of this work.

ACM Trans. Softw. Eng. Methodol.

https://help.github.com/en/github/administering-a-repository/classifying-your-repository-with-topics
https://sites.google.com/site/treebasedcnn/

18 • Ding, Zishuo et al.

to learn the likelihood of defects from the code snippets, as it is used in original work [87] and thus we can
compare our results with that of the original work [87] to check whether we build an up-to-standard model. To
represent the code snippets, we follow a similar way in NLP tasks [13]. Speciically, we average the embedding
vectors of the code tokens in a source code ile:

®�� =
1

|� |

︁
�∈�

®�� (15)

where � is a set of code tokens in a source code snippet and ®�� ∈ � is the embedding vector of token � , � is
the learned embeddings, ®�� is the inal vector representation of the code snippet, which are then fed into an LR
classiier as features.

For our LR classiier, the implementation is based on scikit-learn [68], and the threshold for binary classiication
is set to 0.5, which is the default value of scikit-learn. As the defect data are often imbalanced, we perform a
re-sampling technique (i.e., SMOTE) to balance the training data.
Dataset. The dataset is provided by Wang et al. [87], which contains eight open source Java systems. Follow-
ing Wang et al. [87], we use two consecutive versions of each project to generate the training and testing dataset:
the source code of an older version is considered as the training data, and that of a newer version is used to
generate the testing data.
Evaluation. Following the work of Wang et al. [87], we use the F1 score to evaluate the performance of the
model with diferent embeddings.

5 EXPERIMENTAL RESULTS

In this section, we discuss our experimental results of evaluation our proposed approach, GraphCodeVec, organized
along three research questions (RQs). For each RQ, we explain the motivation and the approach before discussing
the corresponding results.

RQ1: How efective is GraphCodeVec compared with other baseline embedding techniques in
representing the source code?

Motivation

Prior research [6, 11, 16, 20, 25, 29, 83, 95] proposes diferent distributed code representations (i.e., code
embeddings) approaches to assist in software engineering tasks (e.g., method name prediction and software
vulnerability prediction). However, a recent study by Kang et al. [34] inds that code embeddings may not be
readily leveraged to enhance existing models for the downstream tasks which they have not been trained for.
Therefore, in this research question, we would like to explore whether our task-agnostic GCN-based approach
(i.e., GraphCodeVec) can produce a more generalizable token embeddings for a variety of SE tasks compared with
other baselines.
Approach

Extracted methods

GraphCodeVec

Baselines (e.g., Word2vec,
GloVe, fastText, code2vec)

Learned token
embeddings

Evaluation on
downstream tasks

Fig. 5. The overall design of the approach for RQ1. In this experiment, the same prepocessed dataset is used by GraphCodeVec
and baselines.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 19

To answer our irst research question, we need to train the token embeddings produced by diferent embedding
techniques (i.e., GraphCodeVec and baselines, c.f., Section 4.3). As shown in Figure 5, during code embeddings
training, the same preprocessed training dataset (i.e., the Java-small dataset, c.f., Section 4.1) is used by diferent
embedding techniques.

Once inished the code embeddings training, we then need to evaluate these pre-trained embeddings. However,
as there is no direct evaluation methodology for evaluating the quality of code embeddings, we thus follow
previous work [34] and use six downstream SE tasks to evaluate the quality of code embeddings. Each of the tasks
has its respective dataset for model training and evaluation, and the only varying factor in each evaluation task
is the code embeddings (produced by GraphCodeVec and baselines) used for code token representation (i.e., for
each task, only the embeddings are changed and other parameters are kept the same), and thus we can conclude
the performance changes are caused by the code embeddings. Note that the change of code embeddings would
also impact the weights learned for each model, which is discussed in Section 7. The detailed description of the
downstream SE tasks and the corresponding evaluation metrics are presented in Section 4.4.
Results

Overall, GraphCodeVec performs comparable or better than all baseline approaches on all downstream

tasks. The experimental results are provided in Table 2 with the best results for each task and dataset highlighted
in bold. In particular, GraphCodeVec achieves the best results in ive out of the six tasks, including the tasks of
code authorship identiication, code clones detection, source code classiication, logging statements prediction,
and software defect prediction. To better illustrate the results, we speciically compare with GloVe, as did in Kang
et al. [34], since it was one of the most important work aiming for generating task-agnostic embeddings at the
time of our research. Then, we conduct a statistical analysis using a Wilcoxon signed-rank test to compare the
performance of GraphCodeVec and the performance of GloVe. We use a p-value that is below 0.05 to indicate
that the performance diference is statistically signiicant. For the diferences that are statistically signiicant, we
further compute the Clif’s delta efect size. The reason why we use theWilcoxon signed-rank test and Clif’s delta
is that they both do not assume a normal distribution of the compared data. As shown in Table 2, GraphCodeVec
performs better than Glove in 16 out of 23 cases, and 68.8% of the improvements are statistically signiicant with
a magnitude of łlargež. We obtain a 5.0% relative increase in accuracy on source code classiication task compared
to the representative baseline (i.e., GloVe). Moreover, for the evaluation on the task of software defect prediction,
which uses a traditional machine learning approach (i.e., Logistic Regression), our embeddings reach the best
results on more than half of the datasets. For the Log4j dataset, we obtain around 10.1% absolute increase (24.1%
relative increase) in the F1 score compared to that of GloVe. The results demonstrate that the learned embeddings
from GraphCodeVec can better represent the source code and generalize to various downstream tasks. Besides, we
ind that on the task of code authorship identiication, by using the code embeddings generated by GloVe, we
achieve an accuracy of 79.3% and outperform the simpler approach in the work of Kang et al. [34] which uses
the TF-IDF features. This inding is diferent from that of Kang et al. [34]. The diference may be caused by the
diferent preprocessing steps on the training corpus and parameters for GloVe training. This inding suggests
that researchers and developers should be careful with the parameters selection and corpus reprocessing. To
further investigate the inluence of these factors, we have conducted more than 20 new experiments with diferent
experimental settings, the results are discussed in Section 6 and Section 7.
However, we observe that for some downstream tasks (e.g., source code classiication and code authorship

identiication), diferent embedding techniques can result in diverse performance. In particular, for the source code
classiication task, using the embeddings trained by fastText can only have a 76.7% of test accuracy, compared to
a 89.2% test accuracy when using the embeddings trained by GloVe. This inding suggests practitioners should be
careful with the selection of code embedding techniques for diferent downstream tasks, as they may produce
diverse results. On the other hand, we also observe that leveraging diferent embeddings may not always impact
the performance of downstream tasks signiicantly. This observation is similar to that of prior studies [34, 43, 84].

ACM Trans. Softw. Eng. Methodol.

20 • Ding, Zishuo et al.

Table 2. Evaluation results of using GraphCodeVec and baselines on the test sets in the six downstream tasks.

Baselines

Downstream
Tasks

Evaluation Metrics Dataset GraphCodeVec Word2vec GloVe fastText code2vec

Code comment
generation

BLEU
GitHub

20.7(-4.7%)∗� 21.1 21.7 19.9 21.0
ROUGE 36.1(-2.4%)∗� 36.9 37.0 36.0 36.3

Code author-
ship identiica-
tion

Accuracy Google Code Jam 80.2(+1.1%) 78.9 79.3 76.6 79.4

Code clones
detection

F1
BCB 93.4(+0%) 93.4 93.4 93.4 93.4
OJClone 93.8(+8.7%)∗� 88.4 86.3 84.6 93.4

Avg 93.6(+4.2%) 90.9 89.8 89.0 93.4

Source code
classiication

Accuracy OJ dataset 93.7(+5.0%)∗� 85.5 89.2 76.7 91.4

Logging state-
ments predic-
tion

BA

Airavata 95.7(+0.7%) 95.3 95.1 95.1 95.0
Camel 81.4(+0.4%) 80.9 81.1 79.8 80.5
CloudStack 86.3(-0.8%) 86.5 87.0 86.7 86.1
Directory-Server 89.1(+2.5%) 87.9 86.9 88.6 87.6
Hadoop 75.6(+0.7%) 75.7 75.0 74.4 73.9

Avg 85.6(+0.7%) 85.3 85.0 84.9 84.6

Software defect
prediction

F1

Ant 1.5 -> 1.6 42.7(+23.5%)∗� 35.9 34.6 36.0 47.5

Ant 1.6 -> 1.7 50.5(+13.0%)∗� 43.9 44.7 44.2 46.8
Camel 1.2 -> 1.4 44.6(+5.3%)∗� 41.9 42.3 41.8 42.7
Camel 1.4 -> 1.6 46.7(-4.6%)∗� 45.3 49.0 45.8 49.6

jEdit 3.2 -> 4.0 57.0(-2.3%) 53.4 58.3 53.6 57.9

jEdit 4.0 -> 4.1 58.0(-3.3%)∗� 61.0 60.0 60.7 58.5
Log4j 1.0 -> 1.1 72.5(+9.1%)∗� 64.0 66.5 63.1 68.5
Lucene 2.0 -> 2.2 67.0(+9.3%)∗� 63.1 61.3 63.2 63.2
Lucene 2.2 -> 2.4 65.2(+2.4%)∗� 65.4 63.7 65.3 62.4
POI 1.5 -> 2.5 84.6(+4.0%)∗� 65.7 81.4 65.1 82.1
POI 2.5 -> 3.0 74.9(+2.6%)∗� 72.5 73.0 72.2 74.0
Xalan 2.4 -> 2.5 52.5(+24.1%)∗� 42.5 42.3 42.4 51.2

Avg 59.7(+5.8%) 54.6 56.4 54.5 58.7

Note: The best results for each task and dataset are highlighted in bold. The numbers in the brackets indicate the relative change of
GraphCodeVec to GloVe. The * means that the diference is statistically signiicant. The superscript L represents large efect size.

We ind that by using diferent embeddings, although we can obtain diferent performances on diferent tasks,
the diference is limited in some cases. For example, the diferent embedding techniques result in the same F1
score of 93.4% on the BCB dataset for code clones detection. One possible explanation is that the approaches used
in the SE tasks are already powerful enough and there is enough dataset for learning a good model. Thus the
impact of using diferent embedding techniques may be negligible.
Compared to other embedding techniques, GraphCodeVec produces more stable results across all

the downstream tasks and datasets. Figure 6 shows the comparison of performance results produced by
GraphCodeVec and baselines. In this igure, to show the diference to the best performance of each task, the
results are scaled to the range of 0-100%, which is the ratio of the current method’s performance to the best

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 21

GraphCodeVec Word2vec GloVe fastText code2vec

75%

80%

85%

90%

95%

100%

2.5% 7.5% 6.7% 7.8% 2.0%

Fig. 6. Comparison of the results of GraphCodeVec and baselines. The horizontal axis represents all the evaluated methods;
the vertical axis is the scaled performance of diferent methods, which is calculated as the ratio of the current method’s
performance to the best performance of one task. The numbers on top of each box are the corresponding coeficient of
variance.

performance of one task, and in each boxplot, we consider all the measures for all the datasets (i.e., there are 23
data points in each boxplot). We did not rank all the results and check the overall ranking of each technique,
because diferent downstream tasks use diferent measures with diferent ranges. Thus, for each downstream
task, we normalize the performance of each technique against the best performance across all techniques (i.e., we
use scaled performance). The scaled performance has consistent ranges across diferent downstream tasks thus
allowing better comparison and visualization of the performance of diferent techniques. We also calculate the
coeicient of variation (CV) for all the embedding techniques to quantify the variances. The results show that
GraphCodeVec has a relatively lower variance among all the tasks. For example, the biggest relative diference
appears in the task of software defect prediction on Ant dataset, which is 42.7% compared to the best result, 47.5%.
Meanwhile, code2vec also has a stable performance on SE tasks, but its median is lower than that of GraphCodeVec.
On the contrary, some embedding techniques lead to unstable results. For example, the fastText embedding
technique achieves the best results on BCB dataset but the worst result (i.e., 84.6% compared to the best result,
93.4%) on OJClone dataset for the code clones detection task. Future work that depends on embedding techniques
should consider a stable technique such as GraphCodeVec, otherwise the performance may be compromised.
Discussion

In the above paragraphs, we have quantitatively demonstrated the superiority of GraphCodeVec on the six
downstream tasks, thus in this part, we would like to discuss the limitations of GraphCodeVec, as well as provide a
qualitative analysis of the learned embeddings to complement our quantitative evaluation on downstream tasks.
Strengths and limitations

As shown in Table 2, although, overall, GraphCodeVec performs the best compared to all baseline approaches on
ive out of six downstream tasks, there is still a non-negligible gap between GraphCodeVec and GloVe on the task
of code comment generation. By comparing the natural property of these tasks, we ind that our GraphCodeVec
works better on the classiication tasks, such as code authorship identiication, code clones detection and source
code classiication, etc., but not on the text generation task (i.e., code comment generation). For the classiication
tasks, the output is pre-deined labels and the embeddings only work in the irst embedding layer which converts
the source code tokens to real number vectors. However, for the task of code comment generation, we use an

ACM Trans. Softw. Eng. Methodol.

22 • Ding, Zishuo et al.

Table 3. The agreement of the results between GraphCodeVec and baselines on the task of code clones detection.

Word2vec GloVe fastText code2vec
OJClone 0.82 0.77 0.75 0.89

BCB-Type-1 1.00 1.00 1.00 1.00
BCB-Type-2 1.00 1.00 1.00 1.00
BCB-Type-3 0.99 0.99 0.99 1.00
BCB-Type-4 0.99 0.99 0.99 0.99
BCB-Type-5 1.00 1.00 0.99 0.99

Note: We use Cohen’s kappa to measure the agreement between the results generated by our method and that of the other four baselines.

encoder-decoder architecture where in the encoder part, similar to classiication tasks, the embeddings are utilized
to transform source code tokens into vectors, while in the decoder part, the same code embeddings (instead of
word embeddings trained on comments or texts) are also used to convert the comment tokens (i.e., extracted
from code comments) into vectors. As the code tokens and comment tokens are naturally diferent and thus,
using only one code embeddings for both source code and code comments would confound the model, in other
words, one good code embedding may not perform well on texts. Thus, we conclude that the poor performance
may be caused by the fact that GraphCodeVec is able to capture the properties of the source code, but the learned
knowledge is too speciic for source code and thus cannot be transferred to natural language tokens. In future
work, to improve the performance of GraphCodeVec on such text generation tasks, we can enhance the model by
jointly learning the code and word embeddings based on the code and text information (e.g., documents and
comments).
Moreover, we also observe that for some tasks or datasets, GraphCodeVec does not bring signiicant beneits.

For example, GraphCodeVec has the same results on the BCB dataset with the other embedding techniques for
code clones detection16 but best performance (i.e., 8.7% improvement) on the OJClone dataset. Besides, similar
results are also observed on the Camel dataset for logging statements prediction, where GraphCodeVec has a
small improvement (i.e. 0.4%) compared to other embedding techniques but a relatively larger improvement (i.e.,
2.5%) on the Directory-Server dataset. One explanation for this phenomenon is that larger training datasets may
produce more powerful models and mitigate the diferences between diferent embedding techniques. To obtain
such fully trained models, one possible way is to collect enough training dataset. Thus, we check the sizes of
datasets, and we ind that the size of the BCB dataset is almost twice larger than that of OJClone dataset and
the size of Camel dataset is more than ive times larger than that of Directory-Server. The indings highlight
that GraphCodeVec can work better for downstream tasks which have small training datasets. In other words, if
the model cannot learn enough knowledge from the training dataset, we can use the embeddings generated by
GraphCodeVec, as it can bring more external knowledge to the trained model, which is another ultimate goal of
the pre-trained embeddings (i.e., learning useful knowledge from external datasets to improve the performance
of downstream tasks).
Qualitative analysis of the learned embeddings

To further understand the trained embeddings, following prior work [6, 81], we discuss the characteristic of
the trained embeddings from a qualitative perspective. We manually inspect code embeddings on one qualitative
task, i.e., token similarity, as it is usually considered as the most straightforward feature to evaluate token
representations [6, 56, 57, 81].
We select the target tokens and query their most similar tokens and then explore them intuitively. However,

we should be aware that there is no explicit guideline for selecting the representative tokens, thus qualitative
analysis might be subjective. In this work, we try our best to avoid the bias and select the subject tokens based

16 We further check the results, and as Table 3 shows, all the code embeddings almost produce identical (clones) results on the BCB dataset.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 23

on the following three criteria: (1) tokens should be well-known in the vocabulary - to ensure that evaluators are
familiar with the characteristics of the tokens, (2) some of the tokens should provide diferent functionalities -
to ensure that their embeddings have a low similarity and thus are located far from each other in the semantic
space, and (3) some of the tokens should share similar functionalities - to ensure that their embeddings have a
high semantic similarity.

Following prior work [6, 43, 81], we manually chose nine tokens from the vocabulary with diferent frequencies.
All the selected tokens are either Java reserved words (e.g. łprintlnž and łinallyž) or frequently used methods (e.g.
łsortž) and some of them share similar functionalities (e.g., łsortž vs. łcomparatorž) and others provide diferent
functionalities (e.g., łwhilež vs. łsortž). For each chosen token, we retrieve its 40 most similar tokens (using cosine
similarity) according to diferent embeddings.
Visualization. In order to visualize high-dimension (i.e., 128 dimensions) embeddings, we compress them down
to a low dimensional space (i.e., two dimensions) using t-SNE [51]. The idea of t-SNE is to reduce dimensions
while trying to preserve the information of the original data points, namely, keeping similar tokens close on the
plane while maximizing the distance between dissimilar tokens. We plot the target tokens and their most similar
tokens. A good code embedding should project similar (e.g., similar functionalities) code tokens into the space
with a shorter distance and project the unrelated code tokens far from each other.

As shown in Figure 7, for the visualization of our embeddings (i.e., GraphCodeVec), we see that several clusters
are plotted closely, such as the clusters of łsortž and łcomparatorž, which is consistent with the fact that they
are frequently used together when performing sorting actions. Meanwhile, we do co-occurrence statistics (i.e.,
count the number of times that every two tokens are used together) of the listed keywords on the training
corpus and ind that for the token łcomparatorž, łsortž is the one that occurs together more times than any
other listed keywords, which conforms to our interpretation. Besides, for fastText, each target token’s cluster
is clearly separated with that of other target tokens. However, fastText cannot project similar tokens with a
relatively shorter distance. For example, the cluster of łsortž is plotted closer to that of łsystemž or łwhilež, instead
of łcomparatorž. For the comparison between GraphCodeVec and Glove, if we focus on the inter-relationships
between these clusters, they both project łsortž and łcomparatorž, łreleasež and łlockž as well as łsystemž and
łprintlnž closer in the space; however, if we focus on the intra-relationships within each cluster, GloVe projects
the token łreleasež scattered across diferent clusters, while on the contrary each cluster of GraphCodeVec is more
compact.
This inding conirms that GraphCodeVec can project syntactically similar tokens to the vector space with a

relatively short distance. Although the visualization cannot provide us with direct measurement of the quality of
the embeddings, it still helps us gain insights into the characteristics of the resulting embeddings.
Meanwhile, we also try to manually inspect the top-10 nearest neighbors of the given token using cosine

similarity. For example, given the target token, łwhilež, we retrieve its top-10 most similar tokens and examine
whether the token, łforž appears in the list or not. The results show that the łforž token only appears in the top-10
nearest neighbors of łwhilež when retrieved using the embeddings generated by Word2vec. This observation
shows that the trained embeddings may return some results that are diferent from the prior knowledge of
developers or researchers and hard to interpret [34]. This inding also suggests the necessity of exploring the
characteristics of the learned embeddings from diferent perspectives and shows that Word2vec may perform
better than other embeddings when used for retrieving the similar tokens.
However, the above indings may not violate the irst visualization part of the qualitative analysis. For the

visualization using the t-SNE, we retrieve 40 most similar tokens for the given target token and plot the clustering
igures for each token, which is diferent from retrieving top-k nearest neighbors and checking whether the
expected tokens are in the list or not.

ACM Trans. Softw. Eng. Methodol.

24 • Ding, Zishuo et al.

20 10 0 10 20

15

10

5

0

5

10

15

20

25 sort
finally
while
println
system
release
lock
exception
comparator

(a) GraphCodeVec

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

sort
finally
while
println
system
release
lock
exception
comparator

(b) Word2vec

20 10 0 10 20 30

20

10

0

10

20

30 sort
finally
while
println
system
release
lock
exception
comparator

(c) Glove

60 40 20 0 20 40

30

20

10

0

10

20

30
sort
finally
while
println
system
release
lock
exception
comparator

(d) fastText

15 10 5 0 5 10 15
40

30

20

10

0

10

20

sort
finally
while
println
system
release
lock
exception
comparator

(e) code2vec

Fig. 7. Visualization of the target tokens and their 40 most similar tokens. The horizontal and vertical axes show the two
dimensions that are reduced from the original 128 dimensions using the t-SNE.

: Summary

Our evaluation results show that GraphCodeVec achieves the best results than all the baselines in ive
out of six downstream tasks. Besides, GraphCodeVec has the most stable results on all downstream tasks.
Future research and practice that rely on code embeddings should be careful with the selection of code
embedding techniques for speciic downstream tasks, as they may produce diverse results.

RQ2: How does the structural context information of the source code impact the efectiveness of the
embeddings generated by GraphCodeVec?

Motivation

In RQ1, our results show that our GCN-based approach GraphCodeVec has the most stable performance and
outperforms the baseline approaches. On one hand, prior studies [6, 11, 29, 83, 95] show that incorporating the
structural information (e.g., AST structure of source code) of a particular source code of interest may provide
promising results in some software engineering (SE) tasks that rely on neural network-based techniques and
code is structured by its nature (e.g, class, method and block) and thus the code embeddings may beneit from

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 25

the structural representation. On the other hand, there are some studies that treat the source code as plain text
and achieve satisfactory results [16, 20, 25]. Therefore, in this research question, we aim to understand how the
structural information (i.e., the graph context extracted from the ASTs) afects the performance of GraphCodeVec.
Approach

Extracted methods

Training context
generation (based on ASTs)

 Embeddings
learning using

GCN

Training context
generation (without ASTs)

Origianl token
embeddings

Token embeddings
without strutucal

information

Evaluation on
downstream tasks

No-struc

Original

Fig. 8. The overall design of the approach for RQ2. In this figure, original refers to our GraphCodeVec. No-struc refers to the
method which does not utilize the ASTs while keeping other setings the same as GraphCodeVec.

In RQ1, the training context for generating code embeddings byGraphCodeVec is constructed based on the graph
representation of source code, which preserves the structural information of source code. Thus, in this section,
to analyze the impact of our graph context on generating the embeddings, we design an ablation experiment
on these six downstream tasks. In this experiment, as shown in Figure 8, the embedding training technique is
the same (i.e., GCN), with the only diference of the training context. We generate the training context from the
extracted methods without the structural information (unlike our GraphCodeVec, which generates the training
context based on ASTs) and then feed it into the GCN model to obtain the code embeddings. We then compare the
performance of the embeddings trained with and without the AST structure using the same training technique
(i.e., GCN). As the training context is the only changing factor, thus we state that the performance changes are
caused by the diferent training context. That is if the embeddings with the AST information performs better,
then we can conclude that our embeddings can beneit from the utilizing the ASTs. More speciically, we treat
the source code as plain text and do not consider the AST relationship among the tokens. Below we discuss the
details of how we extract the training context and incorporate it in GCN.
First, the source code is transformed into plain text, of which all the tokens are lowercased, and the non-

identiiers (including punctuations such as ł;ž and operators such as ł=ž) are removed. As the training model
(i.e., GCN) requires graph-format data as input, to make source code suitable for training, we then adopt a local
window to convert the plain text into graphs. Given a target token, all the surrounding tokens located in this
window are connected to the target token in the graph by an edge. For example, given the code snippet in
Section 3.1.1, assuming the target token is łpublicž, then łvoidž, łprintnamež, łstringž, łsomeonež, and łnamež
are the neighboring nodes in the generated training context. We construct a graph context for the target token
łpublic ž in the format shown in Figure 9:

public void printname string someone name someone system out println name

More speciically, the target token łpublicž is the central node of this graph and connects to all the other ive
nodes, among which there is no edge between each other. We then feed the generated context to the embedding
learning phase. Finally, the learned embeddings are evaluated on the six downstream tasks. In our experiment,
we set the window size to ive on each side surrounding the target token, which is by default used in previous
work [10, 42, 56, 57, 73]. Note that a larger window size would be able to capture more broad context, but with
the possibility of introducing noise as the context tokens might not be tightly related to the target token. On the

ACM Trans. Softw. Eng. Methodol.

26 • Ding, Zishuo et al.

public

void
printname

string

someone
name

Fig. 9. An overview of the constructed graph context based on the plain text.

Table 4. Evaluation results of GraphCodeVec with and without utilizing the graph context extracted from the ASTs.

Dowsnstream
Tasks

Code comment
generation

Code authorship
identiication

Code clones detection
Source code
classiication

Logging statements prediction

Datasets GitHub Google Code Jam BCB OJClone Avg. OJ dataset Airavata Camel CloudStack Directory-Server Hadoop Ang.

Metrics BLEU ROUGE Accuracy F1 Accuracy BA
Original 20.7 36.1 80.2 93.4 93.8 93.6 93.7 95.7 81.4 86.3 89.1 75.6 85.6

No-struc 20.7 36.0 80.0 93.4 93.5 93.5 93.6 95.3 80.6 86.0 87.7 74.7 84.8

Dowsnstream
Tasks

Software defect predicttion

Datasets
Ant

1.5->1.6
Ant

1.6->1.7
Camel
1.2->1.4

Camel
1.4->1.6

jEdit
3.2->4.0

jEdit
4.0->4.1

Log4j
1.0->1.1

Lucene
2.0->2.2

Lucene
2.2->2.4

POI
1.5->2.5

POI
2.5->3.0

Xalan
2.4->2.5

Avg.

Metrics F1
Original 42.7 50.5 44.6 46.7 57.0 58.0 72.5 67.0 65.2 84.6 74.9 52.5 59.7

No-struc 43.9 48.3 43.5 48.3 57.6 58.9 66.7 59.8 65.9 82.7 74.6 51.9 58.5

contrary, a smaller window size may contain more focused information about the target token but may not be
able to capture suicient context.
Results

Overall, the graph context extracted from the ASTs can improve the performance of the code

embeddings generated by GraphCodeVec; however, GraphCodeVecmay not always signiicantly beneit

from the utilization of the graph context. Table 4 shows the results of comparing the performance of the
original GraphCodeVec and the one that does not use the structural information. In the table, Original refers to
our GraphCodeVec. No-struc is the variant of GraphCodeVec, which only utilizes the plain text of the source code
instead of the graph context extracted from the ASTs while keeping other settings the same as GraphCodeVec.
In total, as Table 4 shows, we ind that our original GraphCodeVec outperforms No-struc (i.e., the variant of
GraphCodeVec that does not consider the graph context extracted from the ASTs) in all six downstream tasks.
The comparison results demonstrate that even though we train the embeddings using the same model, utilizing
the graph context extracted from the ASTs can help improve the performance of the embeddings. For example,
on the logging statements prediction task, by training the embeddings using the graph context, GraphCodeVec
has a overall balanced accuracy of 85.6% compared to 84.8% without the graph context.

On the other hand, for some tasks, the improvement is limited, and incorporating the graph context extracted
from the ASTs may cause performance degradation on some datasets. For example, on the task of code authorship
identiication, the overall improvement is only 0.2% and 0.1% for the task if source code classiication. In addition,
in almost half of the datasets of the software defect prediction task, utilizing the graph context degrades the
performance of GraphCodeVec. The result indicates the limited efect of incorporating the graph context in some
cases. One possible reason is that some tasks may not be sensitive to the structural information of the source
code, thus using a structured code representation may not improve the performance signiicantly.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 27

We further conducted two more experiments with diferent window sizes (i.e., two and eight) and the result
(shown in Table 6) shows that paying more attention to closer neighbors (a smaller window size) would bring
more beneits. As when we reduce the window size to two, we observe statistically signiicant improvement in ive
out of seven (i.e., seven cases have signiicant performance changes among which ive cases have improvement)
cases (71.4%), and when we increase the window size to eight, we observe statistically signiicant improvement
in four out of eight cases (50%).

: Summary

Although overall, the structural information extracted from the ASTs can beneit GraphCodeVec in
producing code embeddings for the downstream SE tasks, there may be cases where the structural
information may not provide additional beneit.

RQ3: How does the GCN model impact the efectiveness of the embeddings generated by
GraphCodeVec?

Motivation

Prior work [43] proposes a novel word embedding approach for NLP tasks that adopts a shallow, two-layer
neural network instead of Graph Convolutional Networks to incorporate the syntactic information between
words and achieves promising results. Their results raise our concern about whether a simple two-layer neural
network is powerful enough to model the syntactic information within the corpus. Therefore, in this research
question, we want to study how the GCN model afects the performance of GraphCodeVec for generating the
code embeddings for the downstream tasks.
Approach

Extracted methods

 Embeddings
learning using GCN

Origianl token
embeddings

Token embeddings
without using GCN

Evaluation on
downstream tasks

No-GCN

Original

Training context
generation (based on ASTs)

 Embeddings
learning using

modified Word2vec

Fig. 10. The overall design of the approach for RQ3. In this figure, original refers to our GraphCodeVec. No-GCN refers to the
method which does not utilize the GCN for embedding learning.

In RQ2, we analyze the impact of structural context information on the efectiveness of the embeddings
generated by GCN. We train two diferent code embeddings using diferent training contexts (i.e., with and
without AST information) but the same training embedding technique (i.e., GCN). In this section, to analyze the
impact of the GCN model on generating the embeddings, similar to RQ2, we design an ablation experiment on
these six downstream tasks. In this experiment, as shown in Figure 10, we adopt two diferent training techniques
with the same training context, which both consider the structural information for code embedding learning.
Speciically, we implement another method, namely, No-GCN [43] for comparison. No-GCN uses a similar
approach to extract the graph context from the ASTs but adopts a shallow, two-layer neural network to train
embeddings. No-GCN was originally proposed by Li et al. [43] for learning word embeddings by incorporating
the dependency information between words in a sentence. Li et al. [43] modify the original Word2vec model and
integrates the syntactic dependency information between words into the embeddings. In this work, we customize
No-GCN by replacing the syntactic dependency with the AST paths extracted from the source code.

ACM Trans. Softw. Eng. Methodol.

28 • Ding, Zishuo et al.

Table 5. Evaluation results of utilizing diferent models to train the code embeddings from the graph context.

Dowsnstream
Tasks

Code comment
generation

Code authorship
identiication

Code clones detection
Source code
classiication

Logging statements prediction

Datasets GitHub Google Code Jam BCB OJClone Avg. OJ dataset Airavata Camel CloudStack Directory-Server Hadoop Avg.

Metrics BLEU ROUGE Accuracy F1 Accuracy BA
Original 20.7 36.1 80.2 93.4 93.8 93.6 93.7 95.7 81.4 86.3 89.1 75.6 85.6

No-GCN 21.4 36.7 79.8 93.4 91.0 92.2 90.1 95.9 80.4 86.3 87.4 74.7 84.9

Dowsnstream
Tasks

Software defect predicttion

Datasets
Ant

1.5->1.6
Ant

1.6->1.7
Camel
1.2->1.4

Camel
1.4->1.6

jEdit
3.2->4.0

jEdit
4.0->4.1

Log4j
1.0->1.1

Lucene
2.0->2.2

Lucene
2.2->2.4

POI
1.5->2.5

POI
2.5->3.0

Xalan
2.4->2.5

Avg.

Metrics F1
Original 42.7 50.5 44.6 46.7 57.0 58.0 72.5 67.0 65.2 84.6 74.9 52.5 59.7

No-GCN 43.3 49.8 44.1 49.6 58.6 57.3 69.1 63.0 62.0 77.2 71.8 48.4 57.8

No-GCN uses a similar way for extracting the training context from the source code. It irst transforms the
source code into ASTs, then traverses the trees to collect triples, where the irst and last elements are the leaf
nodes of an AST and the second element is the AST path connecting the other two elements. For example, given
a target token, łpublicž in Figure 1, it starts from łpublicž and keep traversing the tree until it reaches another
leaf node (e.g., łvoidž), and the traversing path is recorded. By doing this, it can collect a set of triples that can be
used for training the code embeddings. Similar to our work, the number of triples is also limited by the length of
an AST path.

Diferent from the GCN used in this paper, No-GCN modiies the original Word2vec model to include the AST
paths instead of only considering the tokens (more details can be found in the work [43]).
Results

The comparison results with No-GCN show the advantage of using GCN for modeling the graph

context. Our experimental results for comparing GraphCodeVecwith No-GCN on the six SE tasks are presented in
Table 5. As Table 5 shows, we ind that overall our GraphCodeVec has the best results in ive out of six downstream
tasks. For example, on the source code classiication task, No-GCN achieves a test accuracy of 90.1%, while
GraphCodeVec reaches 93.7%. The comparison results show that GCN are more suitable for representing the
source code as graphs and capturing the syntactic structure of the source code when generating code embeddings.
However, similar to the results in RQ1, GraphCodeVec also does not reach the best results on the task of code
comment generation. This may be due to the fact that GraphCodeVec is good at capturing the properties of source
code, while the task of code comment is for generating the natural language texts, and thus our approach cannot
perform well. Besides, we ind that the improvement for the task of code authorship identiication is limited,
with only 0.4% absolute increase. This observation further conirms our indings in RQ2 that some tasks may be
not sensitive to the structural information of the source code.

Compared to the impact of the graph context in RQ2, we ind that the GCN model has a more stable inluence
on the performance of GraphCodeVec. On the one hand, in RQ2, replacing the graph context with plain text
causes a relatively smaller performance decrease on the downstream SE tasks compared to changing the training
model in RQ3. For example, there is a 0.1% degradation of the test accuracy on the source code classiication task
after changing the training context in RQ2, compared to 3.6% degradation after changing the training model in
RQ3. On the other hand, in RQ2, we do not observe improvement by using the graph context on almost half of
the datasets of the software defect prediction task; while in RQ3, we observe improvement by using the GCN
model on nine datasets. Our results suggest the promising research direction of using graph-based deep learning
methods for SE tasks.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 29

: Summary

Instead of using a vanilla neural network, the use of Graph Convolutional Networks can robustly beneit
the performance of GraphCodeVec for training code embeddings for the downstream SE tasks.

ACM Trans. Softw. Eng. Methodol.

30
•

D
in
g
,Z

ish
u
o
et

al.
Table 6. Evaluation results of code embeddings generated by GraphCodeVec with diferent thresholds and model hyperparameters.

Stage Name
Value

Downstream Tasks
Code

comment
generation

Code
authorship
identiication

Code clones detection
Source
code

classiication
Logging statements prediction Software defect predicttion

GitHub
Google

Code Jam
BCB OJClone OJ dataset Airavata Camel CloudStack

Directory-
Server

Hadoop
Ant

1.5->1.6
Ant

1.6->1.7
Camel
1.2->1.4

Camel
1.4->1.6

jEdit
3.2->4.0

jEdit
4.0->4.1

Log4j
1.0->1.1

Lucene
2.0->2.2

Lucene
2.2->2.4

POI
1.5->2.5

POI
2.5->3.0

Xalan
2.4->2.5

BLEU ROUGE Accuracy F1 Accuracy BA F1
Default 20.7 36.1 80.2 93.4 93.8 93.7 95.7 81.4 86.3 89.1 75.6 42.7 50.5 44.6 46.7 57 58 72.5 67 65.2 84.6 74.9 52.5

Training
context

generation

Edge
length

6
20.8

(+0.5%)
36.2

(+0.3%)
80

(-0.2%)
93.4

(+0.0%)
94.1

(+0.3%)
93.3

(-0.4%)
95.8

(+0.1%)
81.8

(+0.5%)
87.3

(+1.2%)
88.1

(-1.1%)
74.4

(-1.6%)
48.9L

(+14.5%)

52.2L

(+3.4%)

43.3L

(-2.9%)

47.6
(+1.9%)

59.4L

(+4.2%)

55.2L

(-4.8%)

67.6L

(-6.8%)

64.3L

(-4.0%)

65.7
(+0.8%)

82.5L

(-2.5%)

72.9L

(-2.7%)

49.7L

(-5.3%)

10
20.8

(+0.5%)
36.2

(+0.3%)
80

(-0.2%)
93.4

(+0.0%)
93.1

(-0.7%)
93.4

(-0.3%)
94

(-1.8%)
79.2

(-2.7%)
86.4

(+0.1%)
87.7S

(-1.6%)

74.9
(-0.9%)

48.2L

(+12.9%)

50.4
(-0.2%)

41.0L

(-8.1%)

46.9
(+0.4%)

56.2
(-1.4%)

55.4L

(-4.5%)

66.5L

(-8.3%)

60.8L

(-9.3%)

62.4L

(-4.3%)

81.9L

(-3.2%)

72.2L

(-3.6%)

50.6L

(-3.6%)

Unique
node

50
20.7

(+0.0%)
36.2

(+0.3%)
80.1

(-0.1%)
93.5

(+0.1%)
94.6

(+0.9%)
93.9

(+0.2%)
95.6

(-0.1%)
81.1

(-0.4%)
86.1

(-0.2%)
86.7L

(-2.7%)

74.7
(-1.2%)

42.5
(-0.5%)

51.1
(+1.2%)

44.4
(-0.4%)

46.5
(-0.4%)

57
(+0.0%)

58.3
(+0.5%)

70.9
(-2.2%)

66.7
(-0.4%)

65.2
(+0.0%)

83.9
(-0.8%)

74.5
(-0.5%)

53.1
(+1.1%)

80
20.7

(+0.0%)
36.1

(+0.0%)
80

(-0.2%)
93.4

(+0.0%)
94.5

(+0.7%)
94

(+0.3%)
96.4

(+0.7%)
80.3

(-1.4%)
86.8

(+0.6%)
87.4

(-1.9%)
73.4M

(-2.9%)

43.6
(+2.1%)

50.7
(+0.4%)

44.3
(-0.7%)

46.5
(-0.4%)

56.9
(-0.2%)

58.1
(+0.2%)

72.3
(-0.3%)

66.7
(-0.4%)

64.1
(-1.7%)

84.5
(-0.1%)

75.1
(+0.3%)

52.9
(+0.8%)

Edge
400

20.7
(+0.0%)

36.2
(+0.3%)

80
(-0.2%)

93.3N

(-0.1%)

93.8
(+0.0%)

93.4
(-0.3%)

95.3
(-0.4%)

80.8
(-0.7%)

86.9
(+0.7%)

86.7M

(-2.7%)

75
(-0.8%)

43.9
(+2.8%)

50.3
(-0.4%)

44
(-1.3%)

46.5
(-0.4%)

57.2
(+0.4%)

58.4
(+0.7%)

72.4
(-0.1%)

66.5L

(-0.7%)

64.7
(-0.8%)

84.3
(-0.4%)

74.7
(-0.3%)

52.6
(+0.2%)

600
20.8S

(+0.5%)

36.2
(+0.3%)

80
(-0.2%)

93.4
(+0.0%)

93.7
(-0.1%)

93.6
(-0.1%)

95.3
(-0.4%)

79.5
(-2.3%)

87
(+0.8%)

87.8
(-1.5%)

75.4
(-0.3%)

43.4
(+1.6%)

50.8
(+0.6%)

44
(-1.3%)

45.9L

(-1.7%)

57.1
(+0.2%)

58.3
(+0.5%)

72.1
(-0.6%)

66.5
(-0.7%)

65
(-0.3%)

84.2
(-0.5%)

75.2
(+0.4%)

53.1
(+1.1%)

Window
(c.f., RQ2)

2
20.7

(+0.0%)
36.1

(+0.3%)
80

(+0.0%)
93.5

(+0.1%)
92.2

(-1.4%)
93

(-0.6%)
95.3

(+0.0%)
79.8

(-1.0%)
87

(+1.2%)
87.5

(-0.2%)
75.1

(+0.5%)
43.2

(-1.6%)
54.6L

(+13.0%)

42.2L

(-3.0%)

48.8
(+1.0%)

61.1L

(+6.1%)

59
(+0.2%)

62.5L

(-6.3%)

61.3L

(+2.5%)

63.0L

(-4.4%)

83.9L

(+1.5%)

74.3
(-0.4%)

52.3
(+0.8%)

5 20.7 36 80 93.4 93.5 93.6 95.3 80.6 86 87.7 74.7 43.9 48.3 43.5 48.3 57.6 58.9 66.7 59.8 65.9 82.7 74.6 51.9

8
20.6

(-0.5%)
36

(+0.0%)
80.3

(+0.4%)
93.5

(+0.1%)
92.1L

(-1.5%)

93.9
(+0.3%)

95.1
(-0.2%)

79.9
(-0.9%)

87.5L

(+1.7%)

87
(-0.8%)

74.2
(-0.7%)

42.7
(-2.7%)

55.1L

(+14.1%)

42.3L

(-2.8%)

48.5
(+0.4%)

61.2L

(+6.3%)

58.6
(-0.5%)

62.4L

(-6.4%)

61.2L

(+2.3%)

63.4L

(-3.8%)

82.9
(+0.2%)

74.1
(-0.7%)

52.7
(+1.5%)

Embedding
learning

Layer
3

20.5M

(-1.0%)

35.8L

(-0.8%)

80.2
(+0.0%)

93.4
(+0.0%)

93.5
(-0.3%)

94
(+0.3%)

94.9
(-0.8%)

82
(+0.7%)

86.7
(+0.5%)

88.2
(-1.0%)

75.6
(+0.0%)

46.2L

(+8.2%)

47.5L

(-5.9%)

40.1L

(-10.1%)

45.1L

(-3.4%)

57.1
(+0.2%)

56.9L

(-1.9%)

64.4L

(-11.2%)

63.6L

(-5.1%)

67.8L

(+4.0%)

81.3L

(-3.9%)

73.2L

(-2.3%)

53.7L

(+2.3%)

5
20.0L

(-3.4%)

35.4L

(-1.9%)

80.1
(-0.1%)

93.4
(+0.0%)

90.4L

(-3.6%)

93.2
(-0.5%)

94.8
(-0.9%)

82.1
(+0.9%)

87.2
(+1.0%)

86.7L

(-2.7%)

74.5
(-1.5%)

41.1L

(-3.7%)

41.5L

(-17.8%)

34.5L

(-22.6%)

44.5L

(-4.7%)

47.7L

(-16.3%)

47.2L

(-18.6%)

45.8L

(-36.8%)
0

57.3L

(-12.1%)

76.8L

(-9.2%)

72.1L

(-3.7%)

55.3L

(+5.3%)

Dim.
50

20.6
(-0.5%)

36
(-0.3%)

75.0L

(-6.5%)

93.4
(+0.0%)

91.0L

(-3.0%)

93.3
(-0.4%)

94.6
(-1.1%)

80
(-1.7%)

85.1
(-1.4%)

87.9
(-1.3%)

75.1
(-0.7%)

48.7L

(+14.1%)

48.1L

(-4.8%)

39.6L

(-11.2%)

46.6
(-0.2%)

59.2L

(+3.9%)

57.3
(-1.2%)

72
(-0.7%)

61.8L

(-7.8%)

61.4L

(-5.8%)

82.7L

(-2.2%)

74
(-1.2%)

52.8
(+0.6%)

300
20.7

(+0.0%)
36.1

(+0.0%)
81.7

(+1.9%)
93.4

(+0.0%)
95.6L

(+1.9%)

92.5
(-1.3%)

95.6
(-0.1%)

80.3
(-1.4%)

87.4
(+1.3%)

87.5M

(-1.8%)

75.3
(-0.4%)

42.3
(-0.9%)

52.4L

(+3.8%)

44.1
(-1.1%)

48.2L

(+3.2%)

60.8L

(+6.7%)

57.8
(-0.3%)

68.4L

(-5.7%)

62.9L

(-6.1%)

64.9
(-0.5%)

83.8L

(-0.9%)

72.1L

(-3.7%)

50.6L

(-3.6%)

Neg.
2

20.7
(+0.0%)

36.1
(+0.0%)

79.6
(-0.7%)

93.4
(+0.0%)

93.4
(-0.4%)

93.5
(-0.2%)

95.9
(+0.2%)

80.7
(-0.9%)

86.3
(+0.0%)

88.4
(-0.8%)

74.6
(-1.3%)

50.8L

(+19.0%)

48.7L

(-3.6%)

40.1L

(-10.1%)

48.3L

(+3.4%)

59.3L

(+4.0%)

58.2
(+0.3%)

65.4L

(-9.8%)

60.9L

(-9.1%)

63.0L

(-3.4%)

83.0L

(-1.9%)

73.3L

(-2.1%)

49.3L

(-6.1%)

10
20.8S

(+0.5%)

36.2
(+0.3%)

80.7
(+0.6%)

93.4
(+0.0%)

93.6
(-0.2%)

93.1
(-0.6%)

95.6
(-0.1%)

80.2
(-1.5%)

86.4
(+0.1%)

88.3
(-0.9%)

76
(+0.5%)

47.0L

(+10.1%)

49.3L

(-2.4%)

44.4
(-0.4%)

47.8L

(+2.4%)

60.2L

(+5.6%)

59.4L

(+2.4%)

67.9L

(-6.3%)

63.2L

(-5.7%)

62.2L

(-4.6%)

81.3L

(-3.9%)

72.8L

(-2.8%)

49.4L

(-5.9%)

Batch
size

32
20.9S

(+1.0%)

36.3M

(+0.6%)

80.3
(+0.1%)

93.4
(+0.0%)

94.8S

(+1.1%)

91.8L

(-2.0%)

95.5
(-0.2%)

80.9
(-0.6%)

87
(+0.8%)

87.7
(-1.6%)

73.7
(-2.5%)

44.4L

(+4.0%)

51.4L

(+1.8%)

42.3L

(-5.2%)

49.4L

(+5.8%)

60.0L

(+5.3%)

56.6L

(-2.4%)

66.0L

(-9.0%)

67.1
(+0.1%)

66.9L

(+2.6%)

83.3L

(-1.5%)

73.6L

(-1.7%)

49.9L

(-5.0%)

128
20.6S

(-0.5%)

36
(-0.3%)

80
(-0.2%)

93.3
(-0.1%)

93.8
(+0.0%)

93.8
(+0.1%)

95.7
(+0.0%)

80.3
(-1.4%)

87.2
(+1.0%)

87.1
(-2.2%)

74.9
(-0.9%)

44.5L

(+4.2%)

52.0L

(+3.0%)

40.3L

(-9.6%)

44.6L

(-4.5%)

57.1
(+0.2%)

58.4
(+0.7%)

71.2
(-1.8%)

60.9L

(-9.1%)

63.2L

(-3.1%)

83.5L

(-1.3%)

74.8
(-0.1%)

53.5L

(+1.9%)

Dropout
rate

0.2
20.8

(+0.5%)
36.1

(+0.0%)
80.2

(+0.0%)
93.4

(+0.0%)
93.8

(+0.0%)
92.7

(-1.1%)
96.6

(+0.9%)
81.2

(-0.2%)
87.2

(+1.0%)
87.3

(-2.0%)
74.2

(-1.9%)
41.8

(-2.1%)
46.9L

(-7.1%)

44
(-1.3%)

47.6
(+1.9%)

59.8L

(+4.9%)

59.1
(+1.9%)

66.7L

(-8.0%)

62.6L

(-6.6%)

65.2
(+0.0%)

80.0L

(-5.4%)

73.3L

(-2.1%)

53.9L

(+2.7%)

0.5
20.8S

(+0.5%)

36.2S

(+0.3%)

80.1
(-0.1%)

93.4
(+0.0%)

93.7
(-0.1%)

93.8
(+0.1%)

94.4
(-1.4%)

80
(-1.7%)

86.7
(+0.5%)

87.4
(-1.9%)

75.3
(-0.4%)

45.6L

(+6.8%)

51.1
(+1.2%)

42.6L

(-4.5%)

45.1L

(-3.4%)

58.8L

(+3.2%)

57.3
(-1.2%)

66.6L

(-8.1%)

61.6L

(-8.1%)

64.7
(-0.8%)

81.2L

(-4.0%)

72.6L

(-3.1%)

51.4L

(-2.1%)

Epoch
5

21.1L

(+1.9%)

36.4L

(+0.8%)

80.3
(+0.1%)

93.4
(+0.0%)

94.3
(+0.5%)

90.8L

(-3.1%)

95.3
(-0.4%)

81.2
(-0.2%)

86.9
(+0.7%)

87.7
(-1.6%)

74.5
(-1.5%)

42
(-1.6%)

52.4L

(+3.8%)

46.1L

(+3.4%)

48.0L

(+2.8%)

58.8L

(+3.2%)

62.3L

(+7.4%)

68.9L

(-5.0%)

62.9L

(-6.1%)

62.7L

(-3.8%)

83.7
(-1.1%)

74.5
(-0.5%)

50.6L

(-3.6%)

10
21.2L

(+2.4%)

36.6L

(+1.4%)

80.4
(+0.2%)

93.3M

(-0.1%)

94.2
(+0.4%)

90.9L

(-3.0%)

95.2
(-0.5%)

79.8
(-2.0%)

86.8
(+0.6%)

88.4
(-0.8%)

75.8
(+0.3%)

42
(-1.6%)

51.4M

(+1.8%)

47.2L

(+5.8%)

47
(+0.6%)

57.9
(+1.6%)

62.6L

(+7.9%)

69.9L

(-3.6%)

63.0L

(-6.0%)

62.4L

(-4.3%)

81.9L

(-3.2%)

72.3L

(-3.5%)

47.6L

(-9.3%)

Note: The results that are signiicantly diferent from that of the default settings are highlighted in bold. The numbers in the brackets indicate the relative change to the
default settings of GraphCodeVec. The letters S, M, L, and N represent small, medium, large and negligible efect sizes, respectively.

A
C
M

T
ran

s.Softw
.E

n
g.M

eth
odol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 31

6 DISCUSSION

In Section 5, we have conducted several experiments and shown that our task-agnostic GraphCodeVec can
efectively be applied to diferent downstream tasks. In this section, we would like to have a discussion about the
impact of diferent model parameters and the results of repeating our experiments with diferent data sampling
using a 10-fold cross-validation.
Impact of modeling parameters. GraphCodeVec contains two stages (i.e., training context generation and
embedding learning) for learning the code embeddings where some thresholds and model hyperparameters are
involved for generating the training corpus as well as deining the GCN structure. In this work, we either simply
follow previous work or use the default settings of the model and do not try to ine-tune the parameters for itting
into diferent tasks. In this part, to examine whether our generated code embeddings can be further improved
and assess the impact of the hyperparameters on the quality of the generated code embeddings, we conduct more
than 20 new experiments with diferent parameter settings and the corresponding results are listed in Table 6. We
also conduct a Wilcoxon signed-rank statistical test to check whether there is a signiicant performance change
between the performance of the model using the new conigured parameters and that of the model using the
default parameters results are signiicant, for signiicant changes, we further conduct Clif’s delta statistic to
check the efect sizes. The signiicant changes are marked in bold as shown in Table 6.

The performance of GraphCodeVec on some tasks can be further improved by ine-tuning the model parameters.
For example, if we set the dimensionality of the embeddings to 300, we observe a signiicant performance increase
of the F1 score (i.e., from 93.8 to 95.6) on the OJClone dataset for the task of code clones detection. Meanwhile,
changing the parameters can also decrease the performance of GraphCodeVec. In our experiment, using a smaller
dimensionality (i.e., 50) of the embeddings leads to performance degradation almost on all the tasks and datasets.
The reason may be that a small dimensionality of the embeddings cannot preserve the properties of the tokens
of high dimensional spaces, leading to the degradation of the quality of learned embeddings. On the contrary,
using a relatively larger dimensionality can preserve more information and improve the quality of the generated
embeddings. Another possible reason may be underitting of the models used in downstream tasks, as a smaller
input dimension means a simpler model and fewer weights to be learned during model training, and thus the
model cannot capture the relationship between the input and output variables accurately, generating a high
error rate on the testing data. To examine the impact of the number of training epochs, we provide another two
experiments with more training epochs (i.e., ive and ten epochs). During the embedding learning phase, the
training loss reduces from 1.79 at the beginning of the irst training epoch to 0.73 at the end of the irst epoch,
which further drops to 0.47 and 0.48 at the end of the ifth and the tenth epochs, respectively. Further, we also
evaluated the quality of the newly generated embeddings on the downstream tasks. Overall, as shown in Table 6,
when the training epoch increases to ive, we observe seven signiicant improvements on the evaluation of the
downstream tasks. On the other hand, we also observe that there are signiicant degradations on some (i.e. ive)
of the datasets from source code classiication and software defect prediction tasks. The results indicate that the
training epochs have diferent efects (either positive or negative depending on the downstream tasks) on the
quality of the generated embeddings, and developers can ine-tune these epochs specially for their task. In our
experiments, as we stated in Section 4.4, we avoid only ine-tuning these settings only for our method aiming for
a better performance.
A model with more layers (i.e., deeper model) may not guarantee a better performance, especially for GCN

models. In our supplement experiments, we increase the depth (i.e., layers) of GraphCodeVec from one to three
and ive, we ind a continuous performance degradation for almost all the tasks, the model even returns a F1
score of zero for the task of software defect prediction on the Lucene project. This inding is consistent with
previous works [? ? ? ? ?], that is with an increased depth (i.e., number of layers), GCN tends to easily overit the
training data and sufer a continuous performance degradation. Except for reducing the number of layers (we set

ACM Trans. Softw. Eng. Methodol.

32 • Ding, Zishuo et al.

the layer to one to avoid overitting and performance degradation, c.f., Section 4.2) of the model, researchers [?]
also propose to use dropout to prevent overitting. Dropout is a regularization technique which randomly drops
out the units along with their connections of neural networks. To examine the impact of using dropout on the
quality of our generated code embeddings, we have experimented with two diferent dropout rates (i.e., 0.2 and
0.5). Overall, as Table 6 shows, we do not have obvious performance improvements when using diferent dropout
ratios. This can be explained by the fact that our model (e.g., one layer, 128 input dimension, and trained for
only one epoch) does not sufer the overitting problem, and thus using dropout cannot further improve the
performance of our embeddings on downstream tasks. However, the results in our experiments do not mean
that dropout is useless, instead, it indicates that our model structure may not sufer from the overitting issue.
Moreover, previous work [24? ?] and experiments17,18 also show that using dropout may not always improve
the performance of neural networks, which further conirms our indings. For example, ?] and ?] observe that
adding dropout may reduce the performance of the model. Besides, in the original work of dropout [?], the
authors also explored the efect of changing data set size when dropout is used, and the results show that when
the size of data sets is very small (e.g., 100, 500 samples) or very large (e.g., 50K samples), dropout may not give
any improvements. These results suggest that developers and researchers should be careful when applying the
dropout to the neural networks. Meanwhile, previous work [24?] provides suggestions on how and when to use
dropout to avoid overitting. For example, it is expected that dropping the neurons in the model would reduce
the efective capacity of a model, thus ?] suggest that increase the size of the model when using dropout and
they suggest to set the number of units to �/� , where � is the dropout rate and � is the number of optimal units
for a model without dropout. Besides, Goodfellow et al. [24] also suggests that when there is a large amount of
training data, the beneit of using dropout may be outweighed by the computational cost of using dropout and
larger models. Thus, considering our simple model architecture and the large size of the training dataset (i.e.,
over 60K samples), it is reasonable that using dropout does not signiicantly improve the quality of our generated
embeddings. To better illustrate the ability of dropout in preventing model overitting, future work can try to add
more layers with more training epochs.

Traditional machine learning model (e.g., logistic regression used in the task of software defect prediction) is
more sensitive to the changes of code embeddings. As shown in Table 6, almost any changes of the parameters of
GraphCodeVec could lead to signiicant changes of the performance (either improvement or deterioration) of the
software defect prediction task. This may be explained by the fact that the code embeddings are directly used
as features for the traditional machine learning models, thus any changes of embeddings could be immediately
propagated to the inal output of these models. However, for deep learning-based models, the embeddings are
only used to initialize the irst embedding layer of which the value would be later adjusted to better it the training
data, as a result, the impact of utilizing diferent embeddings may be diminished or even erased during the model
training and weights updating.

The thresholds used during the training context generation stage have a relatively more minor impact on the
code embeddings generated by GraphCodeVec than that of the parameters involved during the embedding learning
stage. For example, as we lower the thresholds of unique node (i.e., 50 and 80), there is only one signiicant
performance change among all 23 tasks or datasets. This inding shows that GraphCodeVec is diferent from
fastText, which is sensitive to the preprocessing of the corpus [?]. To complement the experiments, we have
done another experiment for fastText where we only perform a lowercase preprocessing on the tokens (i.e.,
without the removal of non-identiiers and low-frequency tokens). The results are shown in Table 7. In our
experiment, we ind that among all the six tasks, the performances of four tasks (i.e., code comment generation,

17https://github.com/mvshashank08/article-dropout
18https://github.com/harrisonjansma/Research-Computer-Vision/blob/master/08-12-18%20Batch%20Norm%20vs%20Dropout/08-12-
18%20Batch%20Norm%20vs%20Dropout.ipynb

ACM Trans. Softw. Eng. Methodol.

https://github.com/mvshashank08/article-dropout
https://github.com/harrisonjansma/Research-Computer-Vision/blob/master/08-12-18%20Batch%20Norm%20vs%20Dropout/08-12-18%20Batch%20Norm%20vs%20Dropout.ipynb
https://github.com/harrisonjansma/Research-Computer-Vision/blob/master/08-12-18%20Batch%20Norm%20vs%20Dropout/08-12-18%20Batch%20Norm%20vs%20Dropout.ipynb

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 33

Table 7. Evaluation results of fastText with diferent preprocessing strategies.

Dowsnstream
Tasks

Code comment
generation

Code authorship
identiication

Code clones detection
Source code
classiication

Logging statements prediction

Datasets GitHub Google Code Jam BCB OJClone Avg. OJ dataset Airavata Camel CloudStack Directory-Server Hadoop Ang.
Metrics BLEU ROUGE Accuracy F1 Accuracy BA
Original 19.9 36.0 76.6 93.4 84.6 89.0 76.7 95.1 79.8 86.7 88.6 74.4 84.9
Lowercase 19.3 35.3 70.5 93.4 75.2 84.3 60.2 96.2 80.2 86.8 88.5 74.1 85.2

Dowsnstream
Tasks

Software defect predicttion

Datasets
Ant

1.5->1.6
Ant

1.6->1.7
Camel
1.2->1.4

Camel
1.4->1.6

jEdit
3.2->4.0

jEdit
4.0->4.1

Log4j
1.0->1.1

Lucene
2.0->2.2

Lucene
2.2->2.4

POI
1.5->2.5

POI
2.5->3.0

Xalan
2.4->2.5

Avg.

Metrics F1
Original 36.0 44.2 41.8 45.8 53.6 60.7 63.1 63.2 65.3 65.1 72.2 42.4 54.5

Lowercase 29.3 41.7 44.5 46.0 53.3 61.5 58.7 65.0 62.3 69.9 72.5 47.1 54.3
Note: Original and Lowercase are two diferent preprocessing strategies, where Original contains three steps: 1) remove non-identiiers, 2)
ilter out the rare tokens, and 3) lowercase all tokens; while Lowercase means that we only perform a lowercase preprocessing on the tokens
(i.e., without removal of non-identiiers and low-frequency tokens).

code authorship identiication, code clones detection, source code classiication) have relatively large changes.
The results conirm that fastText is sensitive to the preprocessing of training context. For example, on the task of
source code classiication, there is a 16.5% absolute decrease of fastText with diferent preprocessing strategies.
Besides, by checking the signiicant performance changes caused by diferent GraphCodeVec settings, we ind
that changing parameters involved during the embedding learning stage has a higher possibility of causing
signiicant performance changes of the diferent tasks and datasets. More speciically, modifying the threshold of
unique node and the edge only causes one or two signiicant performance changes, even on the software defect
prediction task, which is more sensitive to the change of code embeddings.
Impact of diferent data sampling. Diferent separations between training and test sets have a non-negligible
efect on the performance of the models. Figure 11 shows the results of diferent embedding techniques on all
datasets using 10-fold cross-validation. We can observe the apparent variances on almost all the tasks or datasets.
For example, on the task of code authorship identiication, all the results of the evaluated code embeddings
have large variances, and the diferences between the lowest and highest scores even exceed 10%. Although the
variances on the tasks of code comment generation and source code classiication seem to be small, both have
obvious outliers, and the range of the Y-axis is larger. This inding further indicates the necessity of running
multiple times with diferent separations between the training and test datasets to mitigate the efects on the data
separation. Otherwise, the reported conclusions may be misleading, as the rankings of performance of diferent
embedding techniques may difer.

Finally, we want to highlight that, on the one hand, ine-tuning parameters of GraphCodeVec for the diferent
downstream tasks can usually result in improved performance. On the other hand, diferent parameters can have
diverse impacts on the inal performance, and if we do not know which settings to choose, starting from the
suggestions from previous work is always not a bad choice.

7 THREATS TO VALIDITY

This section discusses the threats to the validity of our work.
External validity. One major threat of using GCN for training embeddings is the computational costs. In our

work, the embeddings are trained in an NVIDIA GTX 1080Ti GPU, and it takes around 18 minutes to inish the
training process, which is acceptable. In fact, the major computational costs are caused by the downstream tasks.
For example, it takes around 10 hours to inish the evaluation on the comment generation task. Considering the

ACM Trans. Softw. Eng. Methodol.

34 • Ding, Zishuo et al.

large amount of time and computing resources needed for executing the downstream tasks, our quantitative
evaluation is conducted on six SE tasks. However, we train our embeddings in a task-agnostic manner using an
independent dataset from the datasets used in the downstream tasks. Although our study only focuses on six
tasks, the scale of our study is comparable to prior research on embeddings evaluation [34]. Meanwhile, there
exist other tasks that adopt the pre-trained embeddings, and we cannot conirm that our embeddings might be
generalizable to all the tasks. For example, for the tasks that rely on both natural language texts and source code,
such as traceability link recovery [? ?] and user review classiication [?], we think that our embeddings may not
perform very well on these two tasks as our code embeddings are only trained on source code and cannot capture
the properties of natural language texts, which is conirmed by the task of code comment generation. However, we
believe it would be a very promising research direction to jointly learn the code and text embeddings, and in that
way the embeddings can be applied to such tasks which involve both texts and source code. Another threat is that
some of our models used in downstream tasks may not give state-of-the-art results. For example, we use logistic
regression in the task of software defect prediction, which is simple and a bit out of date, especially in the era of
deep learning. However, our goal is to show the performance changes of diferent code embeddings. Although
this model is simple, it is able to relect the representation ability of diferent code embeddings. Nevertheless, we
admit that our choices of the models in the studied downstream tasks pose a threat to the generalizability of
our indings. Thus, using the downstream task of software defect prediction as an example, we experimented
with other models, including Random Forest (RF), Naive Bayesian (NB), and Support Vector Machines (SVM). We
observe that our general indings remain the same, and our proposed embedding approach achieves the best
results for all the models except NB. We speculate that it may be because NB is not best suited for the task as
it holds a strong assumption on the independence of the features which are diicult to satisfy in the resulting
embeddings. In fact, the performance of NB is among the worst of all the considered models. On the other hand,
we encourage future work to validate our indings on more downstream tasks and models. Moreover, there is a
lack of qualitative tasks for quality evaluation, and all the downstream tasks are external tasks, which means we
cannot do the evaluation directly. To minimize the threat and explore the internal characteristic of embeddings,
we also provide a qualitative evaluation. While the qualitative evaluation may include subjective bias in terms of
selection of example tokens and interpretation of their projection in the semantic space, that may be introduced by
the diferent backgrounds of researchers. However, we have already provided the trained embeddings, and readers
can explore the properties among the tokens of their own interests. Future studies can apply GraphCodeVec to
other tasks, such as method name prediction, and develop some qualitative evaluation datasets, such as token
similarity or token analogy test sets. For the comparison of the results, we report the inal score of each evaluation
metric. However, small variations (e.g., when one instance is classiied in a diferent direction) may change the
results. Our goal is to understand the performance changes between diferent code embeddings among diferent
tasks. Although a small number of misclassiications may cause signiicant changes in the inal scores, especially
for small datasets, even in such cases, the improvement or decrease of the performance can still relect the efect
of the diferent embeddings. Besides, we do a 10-fold cross-validation to reduce the impact of such cases.

Internal validity. As described in Section 3.1, we attempt to represent the source code into graphs, where the
nodes are tokens in the source code, and edges are AST paths. There could exist other strategies for representing
the source code as a graph. Besides, we rely on the surface forms of the tokens to build the connected graph
within a method, as a result, changing the name of a variable would lead to the change of the constructed
graph. In particular, using meaningless identiiers (e.g., łvž) may negatively impact the quality of the resulting
embeddings and their efectiveness in the downstream tasks. However, we have applied our approach on a variety
of real-world software projects. The results demonstrate the efectiveness of our approach when applied to
ordinary code written by diferent developers. Meanwhile, using the same identiiers in diferent surrounding
code contexts would also impact the performance of our approach. For example, the keyword łpublicž, can be
used as modiiers for diferent levels of source code (i.e., class, attribute, and method), and ideally, they should

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 35

have diferent representations to better capture the properties. However, in our approach, the token ‘public‘
has been assigned only one unique vector representation, which is non-optimal. Another threat to validity is
that there is a possibility that the temporal dependencies among code tokens (i.e., the sequence of the source
code tokens) may not be captured by the ASTs. However, prior work [6, 11, 29, 83, 95?] inds that the structural
information performs better for some SE tasks. On the other hand, our way of constructing the training context
still can capture such information, if the distance between the sequence of code tokens is within the threshold
(i.e., a pre-deined value of the maximum number of AST nodes connecting two leaf nodes, c.f., Table 1). To better
illustrate it, given the following code sequence, łpublic static void mainž, the temporal dependencies would be
łpublic -> static-> void-> mainž, if we convert the code sequence to an AST, only the structure information of the
code sequence is preserved and the sequence information is lost. While, if the distances between these tokens in
the source code are within a threshold, by using our method to traverse the AST, we are able to construct the
following triples, łpublic -> staticž, łstatic -> voidž, and łvoid -> mainž (diferent colors represent diferent AST
paths). And thus we can construct a graph which captures the temporal dependencies, łpublic -> static -> void
-> mainž. Besides, in RQ2, we also treat the source code as a sequence of plain text for embeddings generation,
which also conirms the indings that, overall, the structural information extracted from the ASTs can beneit code
embeddings generation for the downstream SE tasks. Another threat is that in RQ2, we examine how the training
context (with or without AST) impacts the resulting embeddings and thus on the performance of the downstream
tasks. Although we only vary the input of the embedding training from the process point of view, the change in
the resulting embeddings can impact the training process of the subsequent downstream tasks. More speciically,
the changes of code embeddings would lead to diferent weight values between layers and neurons depending
on the embedding during the training process. Thus, the training context is not the sole varying factor of the
analysis and it confounds with other factors such as the training of the downstream tasks. Future work may
further investigate the impact of the individual steps (e.g., embedding training) while isolating other steps (e.g.,
downstream stream task training). In Section 4.1, we remove the rare tokens during the preprocessing stage,
which may also cause the removal of important tokens, leading to an overitting model. While, on the contrary,
rare tokens mean that there is not enough data for training. As we described in Section 3, if the tokens appear
only once or twice, the vector (i.e., embeddings) of that token can only be updated limited times (depending
on the epoch) which would result in a poor embedding of the code embeddings [10, 73, 89], thus we follow
common practice [10, 73, 89] and remove these rare tokens. In RQ1, we provide a qualitative analysis of diferent
embeddings, while the manual inspection may include subjective bias introduced by the individual participants.
Future work can consider diferent graph representations and perform manual analysis to verify our indings.
Construct validity. As described in Section 4, we select six diferent tasks and corresponding models to

evaluate the generalizability of the code embeddings. Thus, one of the threats is the quality of the models used in
the downstream tasks. In our work, most of the models have a comparable or better performance compared to
the work in the literature [34, 87, 95?]. Although, in our experiment, the model used in the task of code comment
generation performs not as well as the original work [29, 34] (i.e., with a 5.7% performance degradation). This may
be caused by the diferent parameters used for the inference stage and the data separation. Previous work [29, 34]
only mentions the parameters for the model training but don’t provide the parameters for inference, and unlike
what we do in RQ1, they only randomly split the data into training, validation and test sets without a 10-fold cross
validation which also has a non-negligible impact on the results. However, we can still observe the performance
changes of the model caused by diferent code embeddings. Another threat is that the training data used for our
embeddings is the Java-small dataset. There may exist other datasets that can be used for embedding training.
And in order to make a fair comparison with baselines, we only extract the training context based on the methods
which may lead to the inadequate use of the class or project level information from the source code. However,
as ASTs can represent the source code with diferent levels (e.g., method level, statement level, class level, etc.),
our method can also be applied to other types of training data. Besides, the edges (i.e., AST paths) in the graph

ACM Trans. Softw. Eng. Methodol.

36 • Ding, Zishuo et al.

representations are extracted based on the JavaParser tool. JavaParser is a mature tool and has been widely
used in various software engineering research. Nevertheless, the quality of the data generated by JavaParser
may impact the results of our study. GraphCodeVec requires several hyper-parameters for the training process,
such as the dimensions, the number of GCN layers, and the number of training epochs, which may impact the
resulting code embeddings. To minimize the bias caused by the hyper-parameter conigurations, we follow the
practices from prior studies [6, 34, 95] to conigure the hyper-parameters. Performing further ine-tuning on
these hyper-parameters may further improve the results of GraphCodeVec. In our experiments, we randomly
initialize the OOV tokens with real numbers, which may afect the performance of downstream tasks. However,
to minimize such inluence, we conduct a 10-fold cross-validation for all experiments.

8 CONCLUSIONS

In this paper, we introduce a graph convolutional network based approach, GraphCodeVec, which represents
source code as graphs and learns code token embeddings from the context information provided by the graphs.
GraphCodeVec trains code token embeddings in an unsupervised way, aiming to improve the generalizability
of the learned embeddings. We evaluate GraphCodeVec on an extended benchmark containing six downstream
SE tasks. The experiment results show that GraphCodeVec performs comparable or better than all existing code
embedding techniques on all SE tasks. Our approach and our pre-trained embeddings can be leveraged by
software engineering researchers and practitioners in their downstream tasks that rely on or can be improved by
code embeddings. Our work also sheds light on future work that explores diferent approaches of constructing
graph representations of source code and utilizing graph-based deep learning methods to leverage the graph
representations.

REFERENCES
[1] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang. 2018. Large-Scale and Language-Oblivious Code

Authorship Identiication. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,

Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 101ś114.
https://doi.org/10.1145/3243734.3243738

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2015. Suggesting accurate method and class names. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015,
Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.). ACM, 38ś49. https://doi.org/10.1145/2786805.2786849

[3] Miltiadis Allamanis, Marc Brockschmidt, andMahmoud Khademi. 2018. Learning to Represent Programs with Graphs. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=BJOFETxR-

[4] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. 2016. A Convolutional Attention Network for Extreme Summarization of Source
Code. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016

(JMLR Workshop and Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 2091ś2100.
http://proceedings.mlr.press/v48/allamanis16.html

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-based representation for predicting program properties.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,

USA, June 18-22, 2018, Jefrey S. Foster and Dan Grossman (Eds.). ACM, 404ś419. https://doi.org/10.1145/3192366.3192412
[6] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning distributed representations of code. PACMPL 3, POPL

(2019), 40:1ś40:29. https://doi.org/10.1145/3290353
[7] Liliane Barbour, Foutse Khomh, and Ying Zou. 2011. Late propagation in software clones. In IEEE 27th International Conference on

Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September 25-30, 2011. IEEE Computer Society, 273ś282. https://doi.org/10.
1109/ICSM.2011.6080794

[97]]Bengio2012 Yoshua Bengio. [n. d.]. Practical Recommendations for Gradient-Based Training of Deep Architectures. In Neural Networks:

Tricks of the Trade - Second Edition, Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Müller (Eds.). Lecture Notes in Computer
Science, Vol. 7700. Springer, 437ś478. https://doi.org/10.1007/978-3-642-35289-8_26

[9] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic Model for Code. In Proceedings of the 33nd International

Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings,

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3243734.3243738
https://doi.org/10.1145/2786805.2786849
https://openreview.net/forum?id=BJOFETxR-
http://proceedings.mlr.press/v48/allamanis16.html
https://doi.org/10.1145/3192366.3192412
https://doi.org/10.1145/3290353
https://doi.org/10.1109/ICSM.2011.6080794
https://doi.org/10.1109/ICSM.2011.6080794
https://doi.org/10.1007/978-3-642-35289-8_26

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 37

Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 2933ś2942. http://proceedings.mlr.press/v48/bielik16.html
[10] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching Word Vectors with Subword Information. Trans.

Assoc. Comput. Linguistics 5 (2017), 135ś146. https://transacl.org/ojs/index.php/tacl/article/view/999
[11] Lutz Büch and Artur Andrzejak. 2019. Learning-Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection. In

26th IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou, China, February 24-27,

2019, Xinyu Wang, David Lo, and Emad Shihab (Eds.). IEEE, 95ś104. https://doi.org/10.1109/SANER.2019.8668039
[97]]Cai2019 Shaofeng Cai, Yao Shu, Gang Chen, Beng Chin Ooi, Wei Wang, and Meihui Zhang. [n. d.]. Efective and Eicient Dropout for

Deep Convolutional Neural Networks. ([n. d.]). arXiv:1904.03392 [cs.LG]
[13] Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi Li. 2017. Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention

Embedding. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Vancouver, Canada, 1623ś1633. https://doi.org/10.18653/v1/P17-1149

[97]]Chen2020 Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. [n. d.]. Measuring and Relieving the Over-Smoothing
Problem for Graph Neural Networks from the Topological View. In The Thirty-Fourth AAAI Conference on Artiicial Intelligence,

AAAI 2020, The Thirty-Second Innovative Applications of Artiicial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on

Educational Advances in Artiicial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020 (2020). AAAI Press, 3438ś3445.
https://aaai.org/ojs/index.php/AAAI/article/view/5747

[15] Tse-Hsun Chen, StephenW. Thomas, and Ahmed E. Hassan. 2016. A survey on the use of topic models when mining software repositories.
Empirical Software Engineering 21, 5 (2016), 1843ś1919. https://doi.org/10.1007/s10664-015-9402-8

[16] Zimin Chen and Martin Monperrus. 2018. The Remarkable Role of Similarity in Redundancy-based Program Repair. CoRR abs/1811.05703
(2018). arXiv:1811.05703 http://arxiv.org/abs/1811.05703

[17] Michaël Deferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional Neural Networks on Graphs with Fast Localized
Spectral Filtering. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems

2016, December 5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett
(Eds.). 3837ś3845. http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-iltering

[18] Zishuo Ding, Jinfu Chen, andWeiyi Shang. 2020. Towards the Use of the Readily Available Tests from the Release Pipeline as Performance
Tests. Are We There Yet?. In Proceedings of the 42st International Conference on Software Engineering, ICSE 2020, Seoul, South Korea, July

6-11, 2020 (2020-07-11).
[19] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, and Krzysztof Czarnecki. 2013. An Exploratory

Study of Cloning in Industrial Software Product Lines. In 17th European Conference on Software Maintenance and Reengineering,

CSMR 2013, Genova, Italy, March 5-8, 2013, Anthony Cleve, Filippo Ricca, and Maura Cerioli (Eds.). IEEE Computer Society, 25ś34.
https://doi.org/10.1109/CSMR.2013.13

[20] Vasiliki Efstathiou and Diomidis Spinellis. 2019. Semantic source code models using identiier embeddings. In Proceedings of the 16th

International Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada, Margaret-Anne D. Storey, Bram
Adams, and Sonia Haiduc (Eds.). IEEE / ACM, 29ś33. https://doi.org/10.1109/MSR.2019.00015

[21] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei Zhang, and Tao Xie. 2014. Where Do Developers
Log? An Empirical Study on Logging Practices in Industry. In Companion Proceedings of the 36th International Conference on Software

Engineering (Hyderabad, India) (ICSE Companion 2014). ACM, New York, NY, USA, 24ś33.
[97]]Garbin2020 Christian Garbin, Xingquan Zhu, and Oge Marques. [n. d.]. Dropout vs. batch normalization: an empirical study of their

impact to deep learning. 79, 19-20 ([n. d.]), 12777ś12815. https://doi.org/10.1007/s11042-019-08453-9
[97]]Goldberg2017 Yoav Goldberg. [n. d.]. Neural Network Methods for Natural Language Processing. Morgan & Claypool Publishers.

https://doi.org/10.2200/S00762ED1V01Y201703HLT037
[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.org.
[25] Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir, Leonard R. Kosta, Akshay Rangamani, Lei H. Hamilton, Gabriel I. Centeno,

Jonathan R. Key, Paul M. Ellingwood, Marc W. McConley, Jefrey M. Opper, Sang Peter Chin, and Tomo Lazovich. 2018. Automated
software vulnerability detection with machine learning. CoRR abs/1803.04497 (2018). arXiv:1803.04497 http://arxiv.org/abs/1803.04497

[26] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. Devanbu. 2012. On the naturalness of software. In 34th

International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro
Pezzè (Eds.). IEEE Computer Society, 837ś847. https://doi.org/10.1109/ICSE.2012.6227135

[27] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Comput. 9, 8 (Nov. 1997), 1735ś1780. https:
//doi.org/10.1162/neco.1997.9.8.1735

[97]]Hu2020 Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. [n. d.]. Deep code comment generation with hybrid lexical and syntactical
information. 25, 3 ([n. d.]), 2179ś2217. https://doi.org/10.1007/s10664-019-09730-9

[29] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th Conference on Program

Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, Foutse Khomh, Chanchal K. Roy, and Janet Siegmund (Eds.). ACM,
200ś210. https://doi.org/10.1145/3196321.3196334

ACM Trans. Softw. Eng. Methodol.

http://proceedings.mlr.press/v48/bielik16.html
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.1109/SANER.2019.8668039
https://arxiv.org/abs/1904.03392
https://doi.org/10.18653/v1/P17-1149
https://aaai.org/ojs/index.php/AAAI/article/view/5747
https://doi.org/10.1007/s10664-015-9402-8
https://arxiv.org/abs/1811.05703
http://arxiv.org/abs/1811.05703
http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1109/MSR.2019.00015
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
http://www.deeplearningbook.org
https://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1803.04497
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10664-019-09730-9
https://doi.org/10.1145/3196321.3196334

38 • Ding, Zishuo et al.

[30] Aylin Caliskan Islam, Richard E. Harang, Andrew Liu, Arvind Narayanan, Clare R. Voss, Fabian Yamaguchi, and Rachel Greenstadt.
2015. De-anonymizing Programmers via Code Stylometry. In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,

USA, August 12-14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Association, 255ś270. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/caliskan-islam

[97]]Johnson2015 Rie Johnson and Tong Zhang. [n. d.]. Efective Use of Word Order for Text Categorization with Convolutional Neural
Networks. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015 (2015), Rada Mihalcea, Joyce Yue Chai, and Anoop Sarkar
(Eds.). The Association for Computational Linguistics, 103ś112. https://doi.org/10.3115/v1/n15-1011

[97]]Kallis2021 Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. [n. d.]. Predicting issue types on GitHub. 205
([n. d.]), 102598. https://doi.org/10.1016/j.scico.2020.102598

[33] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A Multilinguistic Token-Based Code Clone Detection System
for Large Scale Source Code. IEEE Trans. Software Eng. 28, 7 (2002), 654ś670. https://doi.org/10.1109/TSE.2002.1019480

[34] Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. 2019. Assessing the Generalizability of Code2vec Token Embeddings. In 34th

IEEE/ACM International Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 1ś12.
https://doi.org/10.1109/ASE.2019.00011

[35] Shinji Kawaguchi, Pankaj K. Garg, Makoto Matsushita, and Katsuro Inoue. 2006. MUDABlue: An automatic categorization system for
Open Source repositories. J. Syst. Softw. 79, 7 (2006), 939ś953. https://doi.org/10.1016/j.jss.2005.06.044

[36] Yoon Kim. 2014. Convolutional neural networks for sentence classiication. arXiv preprint arXiv:1408.5882 (2014).
[37] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classiication. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1746ś1751. https://doi.org/10.3115/v1/d14-1181

[38] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classiication with Graph Convolutional Networks. In 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=SJU4ayYgl

[39] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. 2017. OpenNMT: Open-Source Toolkit for Neural
Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,

Canada, July 30 - August 4, System Demonstrations, Mohit Bansal and Heng Ji (Eds.). Association for Computational Linguistics, 67ś72.
https://doi.org/10.18653/v1/P17-4012

[40] Alexandros Komninos and Suresh Manandhar. 2016. Dependency based embeddings for sentence classiication tasks. In Proceedings of

the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies. 1490ś1500.
[41] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and Documents. In Proceedings of the 31th International

Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR Workshop and Conference Proceedings, Vol. 32).
JMLR.org, 1188ś1196. http://proceedings.mlr.press/v32/le14.html

[42] Omer Levy and Yoav Goldberg. 2014. Dependency-Based Word Embeddings. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2: Short Papers. The Association for Computer
Linguistics, 302ś308. https://doi.org/10.3115/v1/p14-2050

[43] Chen Li, Jianxin Li, Yangqiu Song, and Ziwei Lin. 2018. Training and Evaluating Improved Dependency-Based Word Embeddings.
In Proceedings of the Thirty-Second AAAI Conference on Artiicial Intelligence, (AAAI-18), the 30th innovative Applications of Artiicial

Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artiicial Intelligence (EAAI-18), New Orleans, Louisiana,

USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 5836ś5843. https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16429

[44])]Li2019 Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. [n. d.]. DeepGCNs: Can GCNs Go As Deep As CNNs?. In
2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019 (2019). IEEE,
9266ś9275. https://doi.org/10.1109/ICCV.2019.00936

[63])]Li2018a Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Ahmed E. Hassan. [n. d.]. Studying software logging using topic models.
23, 5 ([n. d.]), 2655ś2694. https://doi.org/10.1007/s10664-018-9595-8

[64])]Li2018b Qimai Li, Zhichao Han, and Xiao-Ming Wu. [n. d.]. Deeper Insights Into Graph Convolutional Networks for Semi-Supervised
Learning. In Proceedings of the Thirty-Second AAAI Conference on Artiicial Intelligence, (AAAI-18), the 30th innovative Applications

of Artiicial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artiicial Intelligence (EAAI-18), New

Orleans, Louisiana, USA, February 2-7, 2018 (2018), Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3538ś3545.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098

[47] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Networks. In 4th International

Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1511.05493

ACM Trans. Softw. Eng. Methodol.

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam
https://doi.org/10.3115/v1/n15-1011
https://doi.org/10.1016/j.scico.2020.102598
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ASE.2019.00011
https://doi.org/10.1016/j.jss.2005.06.044
https://doi.org/10.3115/v1/d14-1181
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/P17-4012
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10.3115/v1/p14-2050
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16429
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16429
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/10.1007/s10664-018-9595-8
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
http://arxiv.org/abs/1511.05493

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 39

[48])]Li2021 Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. [n. d.]. DeepLV: Suggesting Log Levels Using Ordinal Based
Neural Networks. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021 (2021).
IEEE, 1461ś1472. https://doi.org/10.1109/ICSE43902.2021.00131

[97]]Lin2004 Chin-Yew Lin. [n. d.]. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out

(Barcelona, Spain, 2004-07). Association for Computational Linguistics, 74ś81. https://aclanthology.org/W04-1013
[97]]Liu2020 Zhiyuan Liu, Yankai Lin, and Maosong Sun. [n. d.]. Representation Learning for Natural Language Processing. Springer.

https://doi.org/10.1007/978-981-15-5573-2
[51] Laurens van der Maaten and Geofrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research 9, Nov (2008),

2579ś2605.
[52] Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark,

September 9-11, 2017, Martha Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.). Association for Computational Linguistics, 1506ś1515.
https://doi.org/10.18653/v1/d17-1159

[53] Dominic Masters and Carlo Luschi. 2018. Revisiting Small Batch Training for Deep Neural Networks. abs/1804.07612 (2018).
arXiv:1804.07612 http://arxiv.org/abs/1804.07612

[54] Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the Automatic Detection of Function Clones in a Software
System Using Metrics. In 1996 International Conference on Software Maintenance (ICSM ’96), 4-8 November 1996, Monterey, CA, USA,

Proceedings. IEEE Computer Society, 244. https://doi.org/10.1109/ICSM.1996.565012
[55] Paul W. McBurney and Collin McMillan. 2014. Automatic documentation generation via source code summarization of method context.

In 22nd International Conference on Program Comprehension, ICPC 2014, Hyderabad, India, June 2-3, 2014, Chanchal K. Roy, Andrew
Begel, and Leon Moonen (Eds.). ACM, 279ś290. https://doi.org/10.1145/2597008.2597149

[56] Tomas Mikolov, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Eicient Estimation of Word Representations in Vector Space. In 1st

International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings,
Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1301.3781

[57] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Distributed Representations of Words and Phrases and
Their Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2 (Lake
Tahoe, Nevada) (NIPS’13). Curran Associates Inc., USA, 3111ś3119. http://dl.acm.org/citation.cfm?id=2999792.2999959

[97]]Mnih2008 Andriy Mnih and Geofrey E. Hinton. [n. d.]. A Scalable Hierarchical Distributed Language Model. In Advances in Neural

Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver,

British Columbia, Canada, December 8-11, 2008 (2008), Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou (Eds.). Curran
Associates, Inc., 1081ś1088. https://proceedings.neurips.cc/paper/2008/hash/1e056d2b0ebd5c878c550da6ac5d3724-Abstract.html

[59] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori L. Pollock, and K. Vijay-Shanker. 2013. Automatic generation of
natural language summaries for Java classes. In IEEE 21st International Conference on Program Comprehension, ICPC 2013, San Francisco,

CA, USA, 20-21 May, 2013. IEEE Computer Society, 23ś32. https://doi.org/10.1109/ICPC.2013.6613830
[97]]Morin2005 Frederic Morin and Yoshua Bengio. [n. d.]. Hierarchical Probabilistic Neural Network Language Model. In Proceedings of

the Tenth International Workshop on Artiicial Intelligence and Statistics, AISTATS 2005, Bridgetown, Barbados, January 6-8, 2005 (2005),
Robert G. Cowell and Zoubin Ghahramani (Eds.). Society for Artiicial Intelligence and Statistics. http://www.gatsby.ucl.ac.uk/aistats/
fullpapers/208.pdf

[61] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional Neural Networks over Tree Structures for Programming Language
Processing. In Proceedings of the Thirtieth AAAI Conference on Artiicial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, Dale
Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 1287ś1293. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/
11775

[62] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional Neural Networks over Tree Structures for Programming Language
Processing. In Proceedings of the Thirtieth AAAI Conference on Artiicial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, Dale
Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 1287ś1293. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/
11775

[63])]Oliveto2010 Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. [n. d.]. On the Equivalence of Information
Retrieval Methods for Automated Traceability Link Recovery. In The 18th IEEE International Conference on Program Comprehension,

ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010 (2010). IEEE Computer Society, 68ś71. https://doi.org/10.1109/ICPC.2010.20
[64])]Oliveto2020 Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. [n. d.]. On the Equivalence of Information

Retrieval Methods for Automated Traceability Link Recovery: A Ten-Year Retrospective. In ICPC ’20: 28th International Conference on

Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020 (2020). ACM, 1. https://doi.org/10.1145/3387904.3394491
[65] John F. Pane, Chotirat (Ann) Ratanamahatana, and Brad A. Myers. 2001. Studying the language and structure in non-programmers’

solutions to programming problems. Int. J. Hum. Comput. Stud. 54, 2 (2001), 237ś264. https://doi.org/10.1006/ijhc.2000.0410

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1109/ICSE43902.2021.00131
https://aclanthology.org/W04-1013
https://doi.org/10.1007/978-981-15-5573-2
https://doi.org/10.18653/v1/d17-1159
https://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1804.07612
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1145/2597008.2597149
http://arxiv.org/abs/1301.3781
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://proceedings.neurips.cc/paper/2008/hash/1e056d2b0ebd5c878c550da6ac5d3724-Abstract.html
https://doi.org/10.1109/ICPC.2013.6613830
http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf
http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
https://doi.org/10.1109/ICPC.2010.20
https://doi.org/10.1145/3387904.3394491
https://doi.org/10.1006/ijhc.2000.0410

40 • Ding, Zishuo et al.

[97]]Panichella2015 Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visaggio, Gerardo Canfora, and Harald C.
Gall. [n. d.]. How can i improve my app? Classifying user reviews for software maintenance and evolution. In 2015 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany, September 29 - October 1, 2015 (2015), Rainer Koschke,
Jens Krinke, and Martin P. Robillard (Eds.). IEEE Computer Society, 281ś290. https://doi.org/10.1109/ICSM.2015.7332474

[67] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method for Automatic Evaluation of Machine Translation.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA. ACL,
311ś318. https://www.aclweb.org/anthology/P02-1040/

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research 12 (2011), 2825ś2830.
[69] Jefrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global Vectors for Word Representation. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting

of SIGDAT, a Special Interest Group of the ACL, Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1532ś1543. https:
//www.aclweb.org/anthology/D14-1162/

[70] Michael Pradel and Koushik Sen. 2018. DeepBugs: a learning approach to name-based bug detection. PACMPL 2, OOPSLA (2018),
147:1ś147:25. https://doi.org/10.1145/3276517

[71] Likun Qiu, Yue Zhang, and Yanan Lu. 2015. Syntactic dependencies and distributed word representations for analogy detection and
mining. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2441ś2450.

[72] Veselin Raychev, Martin T. Vechev, and Andreas Krause. 2015. Predicting Program Properties from "Big Code". In Proceedings of the 42nd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
Sriram K. Rajamani and David Walker (Eds.). ACM, 111ś124. https://doi.org/10.1145/2676726.2677009

[73] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010

Workshop on New Challenges for NLP Frameworks. ELRA, Valletta, Malta, 45ś50. http://is.muni.cz/publication/884893/en.
[97]]Rong2014 Xin Rong. [n. d.]. word2vec Parameter Learning Explained. ([n. d.]). arXiv:1411.2738 [cs.CL]
[97]]Rong2020 Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. [n. d.]. DropEdge: Towards Deep Graph Convolutional

Networks on Node Classiication. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April

26-30, 2020 (2020). OpenReview.net. https://openreview.net/forum?id=Hkx1qkrKPr
[76] Hitesh Sajnani, Vaibhav Saini, Jefrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes. 2016. SourcererCC: scaling code clone detection

to big-code. In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,
Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM, 1157ś1168. https://doi.org/10.1145/2884781.2884877

[97]]Schnabel2015 Tobias Schnabel, Igor Labutov, David M. Mimno, and Thorsten Joachims. [n. d.]. Evaluation methods for unsupervised
word embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,

Portugal, September 17-21, 2015 (2015), Lluís Màrquez, Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton (Eds.). The
Association for Computational Linguistics, 298ś307. https://doi.org/10.18653/v1/d15-1036

[78] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-Shanker. 2010. Towards automatically generating
summary comments for Java methods. In ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp,

Belgium, September 20-24, 2010, Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 43ś52. https://doi.org/10.1145/
1858996.1859006

[97]]Srivastava2014 Nitish Srivastava, Geofrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. [n. d.]. Dropout: a
simple way to prevent neural networks from overitting. 15, 1 ([n. d.]), 1929ś1958. http://dl.acm.org/citation.cfm?id=2670313

[80] Jefrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal Kumar Roy, and Mohammad Mamun Mia. 2014. Towards a Big Data
Curated Benchmark of Inter-project Code Clones. In 30th IEEE International Conference on Software Maintenance and Evolution, Victoria,

BC, Canada, September 29 - October 3, 2014. IEEE Computer Society, 476ś480. https://doi.org/10.1109/ICSME.2014.77
[81] Bart Theeten, Frederik Vandeputte, and Tom Van Cutsem. 2019. Import2vec learning embeddings for software libraries. In Proceedings

of the 16th International Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada, Margaret-Anne D.
Storey, Bram Adams, and Sonia Haiduc (Eds.). IEEE / ACM, 18ś28. https://doi.org/10.1109/MSR.2019.00014

[82] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di Penta. 2010. An empirical study on the maintenance of
source code clones. Empirical Software Engineering 15, 1 (2010), 1ś34. https://doi.org/10.1007/s10664-009-9108-x

[83] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2018. Deep learning
similarities from diferent representations of source code. In Proceedings of the 15th International Conference on Mining Software

Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM, 542ś553.
https://doi.org/10.1145/3196398.3196431

[84] Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, and Partha P. Talukdar. 2019. Incorporating
Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks. In Proceedings of the 57th Conference of

the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Anna Korhonen,

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1109/ICSM.2015.7332474
https://www.aclweb.org/anthology/P02-1040/
https://www.aclweb.org/anthology/D14-1162/
https://www.aclweb.org/anthology/D14-1162/
https://doi.org/10.1145/3276517
https://doi.org/10.1145/2676726.2677009
http://is.muni.cz/publication/884893/en
https://arxiv.org/abs/1411.2738
https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.18653/v1/d15-1036
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
http://dl.acm.org/citation.cfm?id=2670313
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/MSR.2019.00014
https://doi.org/10.1007/s10664-009-9108-x
https://doi.org/10.1145/3196398.3196431

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks • 41

David R. Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics, 3308ś3318. https://doi.org/10.18653/v1/p19-1320
[85] Mario Linares Vásquez, Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. 2014. On using machine learning to automatically

classify software applications into domain categories. Empirical Software Engineering 19, 3 (2014), 582ś618. https://doi.org/10.1007/s10664-
012-9230-z

[86] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Dynamic Neural Program Embeddings for Program Repair. In 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=BJuWrGW0Z

[87] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for defect prediction. In Proceedings of the 38th

International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie
Williams (Eds.). ACM, 297ś308. https://doi.org/10.1145/2884781.2884804

[88] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional Clone Detection by Exploiting Lexical and Syntactical
Information in Source Code. In Proceedings of the Twenty-Sixth International Joint Conference on Artiicial Intelligence, IJCAI 2017,

Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, 3034ś3040. https://doi.org/10.24963/ijcai.2017/423
[89] Laura Wendlandt, Jonathan K. Kummerfeld, and Rada Mihalcea. 2018. Factors Inluencing the Surprising Instability of Word Embeddings.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), Marilyn A. Walker, Heng Ji, and
Amanda Stent (Eds.). Association for Computational Linguistics, 2092ś2102. https://doi.org/10.18653/v1/n18-1190

[90] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. 2019. Sorting and Transforming Program
Repair Ingredients via Deep Learning Code Similarities. In 26th IEEE International Conference on Software Analysis, Evolution and

Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, Xinyu Wang, David Lo, and Emad Shihab (Eds.). IEEE, 479ś490.
https://doi.org/10.1109/SANER.2019.8668043

[91] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments for code clone
detection. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016, Singapore, September

3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 87ś98. https://doi.org/10.1145/2970276.2970326
[92] Yichun Yin, Furu Wei, Li Dong, Kaimeng Xu, Ming Zhang, and Ming Zhou. 2016. Unsupervised Word and Dependency Path Embeddings

for Aspect Term Extraction. In Proceedings of the Twenty-Fifth International Joint Conference on Artiicial Intelligence, IJCAI 2016, New

York, NY, USA, 9-15 July 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI Press, 2979ś2985. http://www.ijcai.org/Abstract/16/423
[97]]Yu2020 Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong Feng, and Dongyan Zhao. [n. d.]. Towards Context-Aware Code Comment

Generation. In Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020 (2020)
(Findings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, 3938ś3947.
https://doi.org/10.18653/v1/2020.indings-emnlp.350

[94] Lei Zeng, Yang Xiao, and Hui Chen. 2015. Linux auditing: Overhead and adaptation. In 2015 IEEE International Conference on Communi-

cations, ICC 2015, London, United Kingdom, June 8-12, 2015. IEEE, 7168ś7173. https://doi.org/10.1109/ICC.2015.7249470
[95] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source code representation

based on abstract syntax tree. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,

May 25-31, 2019, Joanne M. Atlee, Tevik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 783ś794. https://doi.org/10.1109/ICSE.2019.00086
[97]]Zhang2020 Xiaoqing Zhang, Yu Zhou, Tingting Han, and Taolue Chen. [n. d.]. Training Deep Code Comment Generation Models

via Data Augmentation. In Internetware’20: 12th Asia-Paciic Symposium on Internetware, Singapore, November 1-3, 2020 (2020). ACM,
185ś188. https://doi.org/10.1145/3457913.3457937

[97]]Zhou2021 Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng. [n. d.]. Understanding and
Resolving Performance Degradation in Deep Graph Convolutional Networks. In Proceedings of the 30th ACM International Conference

on Information & Knowledge Management (Virtual Event, Queensland, Australia, 2021-10-26) (CIKM ’21). Association for Computing
Machinery, New York, NY, USA, 2728ś2737. https://doi.org/10.1145/3459637.3482488

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.18653/v1/p19-1320
https://doi.org/10.1007/s10664-012-9230-z
https://doi.org/10.1007/s10664-012-9230-z
https://openreview.net/forum?id=BJuWrGW0Z
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.18653/v1/n18-1190
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.1145/2970276.2970326
http://www.ijcai.org/Abstract/16/423
https://doi.org/10.18653/v1/2020.findings-emnlp.350
https://doi.org/10.1109/ICC.2015.7249470
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1145/3457913.3457937
https://doi.org/10.1145/3459637.3482488

42 • Ding, Zishuo et al.

(a) Code comment generation (b) Code authorship identification

(c) Source code classification (d) Code clone detection

(e) Log statement prediction

() Sowar e defect prediction

GraphCodeVec Word2vec GloVe fastText code2vec

16

18

20

22
B

LE
U

GraphCodeVec Word2vec GloVe fastText code2vec

30

35

R
O

U
G

E

GraphCodeVec Word2vec GloVe fastText code2vec

70

80

A
cc

ur
ac

y

GraphCodeVec Word2vec GloVe fastText code2vec
75

80

85

90

A
cc

ur
ac

y

GraphCodeVec Word2vec GloVe fastText code2vec
80

85

90

95

(ii) OJClone

F1

GraphCodeVec Word2vec GloVe fastText code2vec

93

93.5

(i) BCB

F1

GraphCodeVec Word2vec GloVe fastText code2vec

94

95

96

97

(i) Airavata

B
A

GraphCodeVec Word2vec GloVe fastText code2vec
76

78

80

82

84

(ii) Camel

B
A

GraphCodeVec Word2vec GloVe fastText code2vec

82

84

86

88

90

(iii) CloudStack

B
A

GraphCodeVec Word2vec GloVe fastText code2vec

85

90

(iv) Directory-Server

B
A

GraphCodeVec Word2vec GloVe fastText code2vec

70

75

(v) Hadoop

B
A

GraphCodeVec Word2vec GloVe fastText code2vec

35

40

45

50

(i) Ant 1.5 -> 1.6

F1

GraphCodeVec Word2vec GloVe fastText code2vec

45

50

(ii) Ant 1.6 -> 1.7

F1

GraphCodeVec Word2vec GloVe fastText code2vec

42

44

46

(iii) Camel 1.2 -> 1.4

F1

GraphCodeVec Word2vec GloVe fastText code2vec
44

46

48

50

(iv) Camel 1.4 -> 1.6

F1

GraphCodeVec Word2vec GloVe fastText code2vec

54

56

58

(v) jEdit 3.2 -> 4.0

F1

GraphCodeVec Word2vec GloVe fastText code2vec
56

58

60

62

(vi) jEdit 4.0 -> 4.1

F1

GraphCodeVec Word2vec GloVe fastText code2vec

65

70

75

(vii) Log4j 1.0 -> 1.1

F1

GraphCodeVec Word2vec GloVe fastText code2vec

62

64

66

(viii) Lucene 2.0 -> 2.2

F1

GraphCodeVec Word2vec GloVe fastText code2vec

62

64

66

(ix) Lucene 2.2 -> 2.4

F1

GraphCodeVec Word2vec GloVe fastText code2vec

70

80

(x) POI 1.5 -> 2.5

F1

GraphCodeVec Word2vec GloVe fastText code2vec

72

74

76

(xi) POI 2.5 -> 3.0

F1

GraphCodeVec Word2vec GloVe fastText code2vec
40

45

50

(xiii) Xalan 2.4 -> 2.5

F1

Fig. 11. The results of diferent embedding techniques on all datasets using 10-fold cross-validation.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related work

	3 Approach
	3.1 Training context preparation
	3.2 Embedding learning

	4 Experimental Setup
	4.1 Dataset preparation
	4.2 Training details
	4.3 Baselines
	4.4 Downstream tasks for evaluation

	5 Experimental Results
	6 Discussion
	7 Threats to Validity
	8 Conclusions
	References

