
PILAR: Studying and Mitigating the Influence of
Configurations on Log Parsing

Hetong Dai∗, Yiming Tang∗, Heng Li†, Weiyi Shang∗
∗Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

†Polytechnique Montréal, Montreal, Canada
Email: ∗{he da, t yiming, shang}@encs.concordia.ca, †heng.li@polymtl.ca

Abstract—The significance of logs has been widely acknowl-
edged with the adoption of various log analysis techniques that
assist in software engineering tasks. Many log analysis techniques
require structured logs as input while raw logs are typically
unstructured. Automated log parsing is proposed to convert
unstructured raw logs into structured log templates. Some log
parsers achieve promising accuracy, yet they rely on significant
efforts from the users to tune the parameters to achieve optimal
results. In this paper, we first conduct an empirical study to
understand the influence of the configurable parameters of six
state-of-the-art log parsers on their parsing results on three
aspects: 1) varying the parameters while using the same dataset,
2) keeping the same parameters while using different datasets,
and 3) using different samples from the same dataset. Our results
show that all these parsers are sensitive to the parameters,
posing challenges to their adoption in practice. To mitigate
such challenges, we propose PILAR (Parameter Insensitive Log
Parser), an entropy-based log parsing approach. We compare
PILAR with the existing log parsers on the same three aspects
and find that PILAR is the most parameter-insensitive one. In
addition, PILAR achieves the second highest parsing accuracy
and efficiency among all the state-of-the-art log parsers. This
paper paves the road for easing the adoption of log analysis in
software engineer practices.

I. INTRODUCTION

Logging is widely used, and sometimes the only source, to
record run-time information for modern software systems [1].
Logs are produced by logging statements within the source
code. As illustrated in Table I, which is an example of a
real-world project ZooKeeper, a typical logging statement is
composed of a logging object (LOG), a logging level (warn),
developer-defined text (the quoted text) and dynamic informa-
tion generators (e.g. variable or method invocation) [2]–[4].

TABLE I
AN EXAMPLE LOGGING STATEMENT EXTRACTED BY LOGPAI [5] FROM

ZOOKEEPER AND ITS RUN-TIME LOG INSTANCE

Logging
statement

LOG.warn("Connection request
from old client {}; will be
dropped if server is in r-o mode",
cnxn.getRemoteSocketAddress());

Log
instance

2015-07-30 16:12:01,554 - WARN [NIOServer-
Cxn.Factory:0.0.0.0/0.0.0.0:2181:ZooKeeperServer@793] -
Connection request from old client /10.10.34.19:33442; will
be dropped if server is in r-o mode

Log
template Connection request from old client <*>; will be dropped

if server is in r-o mode

The significance of logging has been increasingly acknowl-
edged in recent years and logs are used for a variety of
software engineering tasks, such as bug detection [1], [6]–
[9], system behavior understanding [3], [10]–[12], as well as
performance observation and improvement [13]–[15]. Most of
these log analysis techniques require structured logs as input.
However, as we can see in Table I, raw logs generated by
logging statements are usually lines of unstructured text with
flexible format which are difficult to be directly leveraged for
sophisticated analysis. Thus, log parsing is a very common first
step of the majority of log analysis. Automated log parsers,
such as Drain [16], AEL [17] and Logram [18] have been
proposed by prior research. The key goal of these parsers is
to identify the dynamic part and static parts of raw logs and to
generate log templates (a log template is shown in Table I) [5],
[18]. In general, the static parts refer to the developer-defined
text and the dynamic part refer to the dynamic information
generated by method invocations or variables at runtime.

However, the configuration of automated log parsers’ pa-
rameters plays a critical role in generating accurate parsing
result. For example, Drain [16], a log parser that provides
almost the top accuracy [5], requires developers to choose 2
configuration parameters for different datasets. However, with
sub-optimal configuration parameter values, Drain’s parsing
results may degrade to one of the worst (cf. Section III). In this
paper, we first study the influence of configuration parameter
values in six state-of-the-art log parsers on 16 datasets from
the LogPai benchmark [5]. These six log parsers have a total
of ten parameters with 79 possible values to tune. We find
that the choice of configuration parameter values, the dataset
under analysis and even the different samples of the same
dataset may lead to significant differences in the accuracy of
parsing results.

Understanding the challenges of tuning log parsers’ config-
uration parameters, we propose PILAR (Parameter Insensitive
Log Parser), an entropy-based log parser which can parse
logs accurately while being insensitive to the variations in
parameters. The main idea of PILAR is that the dynamic parts
of raw logs that are generated by variables or method
invocations in the source code tend to have a higher
entropy compared to the static parts of raw logs that
are written in static text by developers. In other words,
the static parts are more predictable (thus lower entropy) as
they are written by developers, while the dynamic parts are

less predictable (thus higher entropy) as they are produced
by software system in running time. Therefore, an entropy
based probability is used to distinguish dynamic components
from static components of logs. Besides, as the static parts
of the logs are natural language text written by developers,
their entropy is likely to be stable [19]. Thus the entropy
based probability threshold used to distinguish dynamic and
static components is relatively stable across different log
datasets The evaluation of PILAR shows that PILAR is the
most parameter-insensitive log parsing approach among all the
studied log parsers. Moreover, the PILAR itself has a high
accuracy and efficiency (both second best among all parsers).
In other words, practitioners do not need to spend effort on
fine tuning PILAR to achieve almost the most accurate and
most efficient log parsing1. In summary, our paper has the
following three main contributions:

• We conduct a comprehensive empirical study to inves-
tigate the influence of configuration parameters on log
parsers.

• We propose a novel entropy-based log parsing approach
PILAR that is parameter insensitive while achieving high
accuracy and efficiency compared to state-of-the-art log
parsers.

• We publish PILAR as an off-the-shelf log parsing tool
which allows practitioners to perform log parsing in
their daily log analysis tasks without considering the
configuration.

Paper organization The paper is organized as follows. Sec-
tion II introduces the background and prior research related
to log parsing. Section III conducts an empirical study on the
influence of configurations of log parsers. Section IV proposes
the approach of PILAR. Section V conducts an evaluation of
PILAR. Section VI discusses the threats to the validity and
Section VII concludes our paper.

II. BACKGROUND AND RELATED WORK

In this section, we present the background and related work
of this paper.

A. Log parsing

Log parsing has been widely studied in recent years. The
development of log parsing approaches can be divided into
three phases: 1) heuristic rule based log parsing, 2) source
code based log parsing and 3) data driven log parsing.

However, heuristic rules based log parsing need developers
to maintain these rules as the logging statements evolve, which
needs great efforts from developers. Though source code based
approach can achieve a high accuracy, source code is often
inaccessible in many practical log analysis scenarios.

To address the challenges faced by the first two types of
log parsing approaches, data driven log parsing approaches
are proposed. Drain [16], Logram [18] and Spell [20] are the
representative of this type of log parsing approaches. These

1Our data and source code can be found in the replication package at
https://github.com/senseconcordia/PILARData ICSE2023.git

approaches utilize data mining techniques to extract log tem-
plates from raw logs or cluster the logs into different groups.
For example, Drain [16] utilizes a fixed depth parse tree to
encode specially designed rules for log parsing. Logram [18]
utilizes n-gram dictionaries and relies on the frequencies of the
n-grams to parse logs. Spell [20] utilizes a longest common
subsequence based approach to parse logs. Data driven log
parsing approaches only need the raw logs as input. This type
of log parsing approaches can avoid the effort for maintaining
ad hoc rules and the need for source code.

Log parsing is usually a prerequisite of various log analysis
tasks, such as anomaly detection [21]–[25], failure diagno-
sis [10], [26] and system comprehension [10], [27]. Prior
work [28] also shows that log parsing result is critical to the
success of log analysis tasks. The keystone-role of accurate
log parsing results motivate us to study the influence of
configurations in automated log parsers.

B. Configurations of log parsers

Most automated log parsing approaches rely on configurable
parameters to optimize the parsing performance for specific
log datasets. For example, Drain [16] requires specifying the
depth of the parse tree and a similarity threshold. Spell [20]
uses a threshold for the minimum similarity of the log in-
stances (in the paper, we also use the term “log line” to men-
tion logs if we are concerned with lines) of a template before
conducting log parsing process. Logram [18] requires bi-gram
and tri-gram frequency thresholds to determine whether there
exists a dynamic token inside a 2-gram or a 3-gram.

In order to achieve a (near-)optimal log parsing result, one
often needs to carefully choose the configuration parameter
values. We examine the choices of the configuration parameter
values of the five most accurate log parsers in the LogPai
benchmark [5] and a recently published log parser that is not
included in the benchmark, i.e., Logram [18]. Table II shows
the parameter values used for the different log parsers in the
LogPai benchmark and Logram. We find that most log parsers
have more than one configuration parameter. Each configura-
tion parameter can be specified with many possible values.
For example, the threshold of LenMa varies from 1 to 0.5 and
there are 10 different unique values chosen for different log
datasets in the LogPai benchmark [5]. In addition, the choices
of configuration parameter values may have a large difference
between different log datasets. For example, the Bi threshold
(the bi-gram frequency threshold) of Logram varies from 115
to 8. Besides, the threshold can grow with the size of the
log dataset, as the frequency of the n-grams increases along
with the log size. Such a large number and large difference of
configuration parameter values illustrate the importance and
challenges of choosing the right ones in practice. It is needed
to mention that although Logram [18] proposes an automated
method to generate configuration parameters, this method can
only provide an approximate value for the parameter which
cannot provide the best parsing accuracy. Besides, Logram
needs to traverse all log lines for calculating the configuration

https://github.com/senseconcordia/PILARData_ICSE2023.git

TABLE II
CONFIGURATIONS USED IN DIFFERENT LOG PARSERS. THE LAST THREE
COLUMNS INDICATE THE RANGE AND NUMBER OF VALUES CHOSEN FOR

EACH PARAMETER FOR THE DIFFERENT DATASETS IN THE LOGPAI
BENCHMARK [5] AND LOGRAM [18].

Log parsers #Parameters Parameters Highest Lowest #Unique Values

Drain 2 st 0.7 0.2 5
depth 6 3 4

AEL 2 minEventCount 10 2 4
merge percent 0.7 0.4 4

IPLoM 2 CT 0.9 0.25 7
lowerBound 0.7 0.01 6

LenMa 1 threshold 1 0.5 10

Spell 1 tau 0.95 0.5 10

Logram 2 Bi threshold 115 8 14
Tri threshold 95 5 15

parameters, which can be a burden when logs are input in a
streaming manner.

Despite the importance and challenges of choosing con-
figuration parameters for log parsers, there exists no prior
research that focuses on the impact of these parameters to
log parsing results. Therefore, to fill in this gap, in the next
section (Section III), we conduct an empirical study of the
influence of choosing different configuration parameter values
on log parsing results.

III. STUDYING THE INFLUENCE OF CONFIGURATION
PARAMETER VALUES OF LOG PARSERS

TABLE III
THE SUBJECT LOG DATA USED IN OUR EVALUATION.

Dataset Description Size

Android Android system log 183.37MB
Apache Apache server error log 4.90MB
BGL Blue Gene/L supercomputer log 708.76MB
Hadoop Hadoop client-server job log 48.61MB
HDFS Hadoop distributed file system log 1.47GB
HealthApp Android Health app log 22.44MB
HPC High performance cluster log 32.00MB
Linux Linux system log 2.25MB
Mac Mac OS log 16.09MB
OpenSSH OpenSSH server log 70.02MB
OpenStack OpenStack log 58.61MB
Proxifier Proxifier log 2.42MB
Spark Spark server-client log 2.75GB
Thunderbird Thunderbird supercomputer log 29.60GB
Windows Windows system log 26.09GB
Zookeeper ZooKeeper service log 9.95MB

According to Design Science [29], in this section, we first
conduct an empirical study to understand the influence of
configuration parameters on log parsing results. We perform
experiments on six existing log parsers (listed in Table II)
and 16 log datasets (listed in Table III). A research ques-
tion emerges as to whether the existing log parsers are
configuration-insensitive, i.e., if one changes the parameter
value of a log parser, whether the parsing results are stable

or not. To answer this question, the study is performed in
three aspects as listed below:
- Varying parameters on the same dataset. As mentioned
in Section II-B, log parsers have a variety of parameters
with different values assigned to them. Such variations in
parameters could have an impact on the parsing results. As a
result, in this aspect, we assess the log parsers with different
parameter values while using the same dataset to examine if
the parsers are parameter-insensitive.
- Fixed parameters on different datasets. When practitioners
adopt a log parser on their own dataset, they typically do
not have the knowledge of the best parameter values for their
dataset and may need to depend on the choice of parameter
values from existing benchmarks. Therefore, to investigate
the effect of parameters on different datasets, we use fixed
parameters with different datasets to study this aspect.
- Fixed parameters on different samples of the same
dataset. Logs are changing from time to time. Even from
the same software system, the logs produced during different
periods of a day may differ significantly; while it is often not
practical or realistic to tune parameter values of a log parser
frequently during a day. Therefore, we would like to know
with the same parameter values, whether different samples of
the same log dataset produce consistent parsing results and
how different parameter values influence the parsing results
on different samples.

A. Varying parameters on the same dataset

Approach. To evaluate the sensitivity of log parsers’ param-
eters, in this aspect, we tweak the parameter values on the
same dataset to observe how the results change. Specifically,
we choose three types of parameter values for the study:
the highest, lowest and default values that are chosen in
the LogPai [5] benchmark, as well as the ones provided by
Logram [18]. If the log parsers have multiple parameters, we
only change one of them while leaving the others as default
for each experiment. Since the analyzed log parsers only have
a maximum of two parameters, we run each log parser three
times for the one-parameter log parsers (i.e., the default value,
the highest value, and the lowest value) and five times for
the two-parameter log parsers (i.e., the default values and the
four combinations of the highest and lowest values of the two
parameters).

Influence on parsing accuracy. We gain insights based on
the analysis of the resulting log parsing accuracy. The parsing
accuracy is calculated by an automated accuracy evaluation
approach used in the LogPai benchmark [5]. This approach
examines the percentage of log instances that are correctly
grouped into their corresponding log templates. If all log
instances of the same template are grouped together and the
group only contains the logs instances from the same template,
the log instances associated with this template are considered
correctly parsed.

Influence on the ranking of parsing accuracy. In addition to
parsing accuracy, we also examine the impact of configuration
parameters on the rank of a log parser. For each log dataset, we

TABLE IV
PARSING ACCURACY AND RANKING OF SELECTED LOG PARSERS WHEN ALTERING PARAMETER VALUES OF THEIR CONFIGURATIONS.

Android Apache BGL Hadoop HDFS HealthApp HPC Linux
Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆)

AEL

Highest 0.75 4(-1) 1.00 1(0) 0.96 1(0) 0.95 1(-5) 1.00 1(0) 0.63 5(0) 0.90 2(0) 0.68 3(0)
Lowest 0.66 5(0) 1.00 1(0) 0.82 3(+2) 0.54 6(0) 0.84 5(+4) 0.27 5(0) 0.83 4(+2) 0.67 3(0)
Default 0.68 5 1.00 1 0.96 1 0.54 6 1.00 1 0.57 5 0.90 2 0.67 3
Gap 0.09 0.00 0.14 0.41 0.16 0.36 0.07 0.01

Drain

Highest 0.91 2(0) 1.00 1(0) 0.97 1(0) 0.96 1(0) 1.00 1(0) 0.78 3(0) 0.89 3(0) 0.69 2(0)
Lowest 0.61 5(+3) 1.00 1(0) 0.82 3(+2) 0.88 4(+3) 0.65 6(+5) 0.18 5(+2) 0.83 4(+1) 0.24 5(+3)
Default 0.91 2 1.00 1 0.96 1 0.95 1 1.00 1 0.78 3 0.89 3 0.69 2
Gap 0.30 0.00 0.15 0.08 0.35 0.60 0.06 0.45

IPLoM

Highest 0.79 4(0) 1.00 1(0) 0.94 3(0) 0.95 1(0) 1.00 1(0) 0.83 2(0) 0.83 4(-1) 0.67 3(0)
Lowest 0.70 4(0) 1.00 1(0) 0.93 3(0) 0.63 5(+4) 0.83 5(+4) 0.82 2(0) 0.82 5(0) 0.67 3(0)
Default 0.71 4 1.00 1 0.94 3 0.95 1 1.00 1 0.82 2 0.82 5 0.67 3
Gap 0.09 0.00 0.01 0.32 0.17 0.01 0.01 0.00

LenMa

Highest 0.91 3(0) 1.00 1(0) 0.69 6(0) 0.89 4(0) 1.00 1(0) 0.17 6(0) 0.84 4(0) 0.70 1(0)
Lowest 0.88 3(0) 1.00 1(0) 0.58 6(0) 0.53 6(+2) 0.51 6(+5) 0.16 6(0) 0.79 5(+1) 0.18 5(+4)
Default 0.88 3 1.00 1 0.69 6 0.89 4 1.00 1 0.17 6 0.83 4 0.70 1
Gap 0.03 0.00 0.11 0.36 0.49 0.01 0.05 0.52

Logram

Highest 0.63 6(0) 1.00 1(0) 0.78 5(0) 0.92 3(0) 0.81 6(0) 0.99 1(0) 0.99 1(0) 0.14 6(0)
Lowest 0.57 6(0) 1.00 1(0) 0.74 5(0) 0.90 3(0) 0.81 6(0) 0.93 1(0) 0.97 1(0) 0.10 6(0)
Default 0.58 6 1.00 1 0.75 5 0.91 3 0.81 6 0.99 1 0.97 1 0.10 6
Gap 0.06 0.00 0.04 0.02 0.00 0.06 0.02 0.04

Spell

Highest 0.92 1(0) 1.00 1(0) 0.79 4(0) 0.78 5(0) 1.00 1(0) 0.64 4(0) 0.65 6(0) 0.61 5(0)
Lowest 0.59 5(+4) 0.31 6(+5) 0.27 6(+2) 0.26 6(+1) 0.32 6(+5) 0.16 6(+2) 0.53 6(0) 0.17 5(0)
Default 0.92 1 1.00 1 0.79 4 0.78 5 1.00 1 0.64 4 0.65 6 0.61 5
Gap 0.33 0.69 0.52 0.52 0.68 0.48 0.12 0.44

Mac OpenStack OpenSSH Proxifier Spark Thunderbird Windows Zookeeper
Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆) Acc. rank (∆)

AEL

Highest 0.85 1(-1) 0.79 2(0) 0.54 5(0) 0.52 3(0) 0.92 1(-2) 0.95 2(0) 0.69 4(0) 0.92 5(0)
Lowest 0.74 3(+1) 0.25 5(+3) 0.52 5(0) 0.50 5(+2) 0.91 3(0) 0.93 3(+1) 0.57 4(0) 0.78 6(+1)
Default 0.76 2 0.76 2 0.54 5 0.52 3 0.91 3 0.94 2 0.69 4 0.92 5
Gap 0.11 0.54 0.02 0.02 0.01 0.02 0.12 0.14

Drain

Highest 0.86 1(0) 0.73 5(0) 0.79 3(0) 0.53 1(0) 0.92 1(0) 0.96 1(0) 1.00 1(0) 0.99 1(0)
Lowest 0.71 3(+2) 0.24 5(0) 0.72 3(0) 0.03 5(+4) 0.54 6(+5) 0.66 4(+3) 0.57 3(+2) 0.96 1(0)
Default 0.79 1 0.73 5 0.79 3 0.53 1 0.92 1 0.96 1 1.00 1 0.97 1
Gap 0.15 0.49 0.07 0.50 0.38 0.30 0.43 0.03

IPLoM

Highest 0.67 5(0) 0.87 1(0) 0.80 2(0) 0.52 3(0) 0.92 1(0) 0.66 5(0) 0.68 5(0) 0.98 1(-1)
Lowest 0.67 5(0) 0.31 5(+4) 0.33 5(+3) 0.04 5(+2) 0.76 6(+5) 0.64 5(0) 0.57 5(0) 0.96 2(0)
Default 0.67 5 0.87 1 0.80 2 0.52 3 0.92 1 0.66 5 0.57 5 0.96 2
Gap 0.00 0.56 0.47 0.48 0.16 0.02 0.11 0.02

LenMa

Highest 0.70 4(0) 0.74 4(0) 0.93 1(0) 0.52 3(-2) 0.88 6(0) 0.94 2(0) 0.70 4(-1) 0.96 2(-4)
Lowest 0.66 6(+2) 0.33 5(+1) 0.72 3(+2) 0.03 5(0) 0.57 6(0) 0.24 6(+4) 0.57 5(0) 0.74 6(0)
Default 0.70 4 0.74 4 0.93 1 0.51 5 0.88 6 0.94 2 0.57 5 0.84 6
Gap 0.04 0.41 0.21 0.49 0.31 0.70 0.13 0.22

Logram

Highest 0.71 4(-1) 0.33 6(0) 0.51 6(0) 0.03 6(0) 0.92 1(-4) 0.48 6(0) 0.97 3(0) 0.96 2(0)
Lowest 0.59 6(+1) 0.22 6(0) 0.33 6(0) 0.00 6(0) 0.89 5(0) 0.46 6(0) 0.70 3(0) 0.91 5(+3)
Default 0.67 5 0.23 6 0.33 6 0.03 6 0.89 5 0.47 6 0.97 3 0.96 2
Gap 0.12 0.11 0.18 0.03 0.03 0.02 0.27 0.05

Spell

Highest 0.76 2(0) 0.76 2(0) 0.55 4(0) 0.53 1(0) 0.92 1(-2) 0.84 4(0) 0.99 2(0) 0.96 2(0)
Lowest 0.36 6(+4) 0.14 6(+4) 0.25 6(+2) 0.49 5(+4) 0.03 6(+3) 0.19 6(+2) 0.40 6(+4) 0.69 6(+4)
Default 0.76 2 0.76 2 0.55 4 0.53 1 0.91 3 0.84 4 0.99 2 0.96 2
Gap 0.40 0.62 0.30 0.04 0.89 0.65 0.59 0.27

Column Acc. denotes the parsing accuracy of a studied log parser. Each log parser has three or five parsing results on a single dataset depending
on the number of parameters. Row Gap denotes the difference between the highest and lowest accuracy. Column rank (∆) denotes the parsing
accuracy ranking of the analyzed log parser with different parameter values across all six log parsers. In this column, the number in the parenthesis
indicates the rank changes compared to the parsing accuracy ranking using the default parameters.

first rank all log parsers that use their default parameter values.
Then, we examine how adjusting a log parser’s parameter
values affects its ranking against other parsers when keeping
the default parameter values.
Results. Table IV presents the results of this aspect.

All studied log parsers can obtain significantly different
parsing accuracy using different parameter values. Ac-
cording to Table IV, in most of the cases, the Gap values
are considerably larger than 0, indicating the difference in the
parsing accuracy when different parameter values are used.
Overall, the six studied log parsers have the maximum Gap
values of 0.27 to 0.89 across the studied datasets. In particular,
the Gap values are fairly large in many cases. For example,

Drain has a maximum gap of 0.60 on HealthApp, LenMa has a
maximum gap of 0.70 on Thunderbird, Spell has a maximum
gap of 0.89 on Spark. Logram has the most stable parsing
results in terms of the parsing accuracy, with a maximum Gap
value of 0.27 across the different log datasets. The average
Gap value of all log parsers on all log datasets is 0.23, which
means that altering parameter values can cause parse accuracy
to fluctuate by 23% on average. Such a huge accuracy drop
may lead to an accurate log parser becoming inaccurate.

The choice of configuration parameter values can have
a profound effect on ranking of log parsers in terms of
parsing accuracy. As shown in Table IV, in the majority
of cases (58/96), altering parameters changes the parsing

accuracy ranking across all log parsers (i.e, at least one rank
∆ is not equal to 0 in a Table cell). A significant rank shift
could be found in all log parsers. Apart from Logram, which
has a maximum of four rank slot adjustment, the other five log
parsers can have a highly extreme ranking change, with the
best becoming the worst or vice versa. Furthermore, Table IV
shows that some of the default parameter values chosen by
developers cannot achieve the best accuracy, such as using
AEL to parse the Android dataset. This observation reveals
that it is difficult in practice to select an optimal parameter
for log parsers.

The existing log parsers are sensitive to parameters, as the
parsing accuracy fluctuates significantly while tweaking the
parameter values. Developers may have difficulties in se-
lecting optimal parameter values as the default parameters
may not result in best results.

B. Fixed parameters on different datasets

Approach. This aspect intends to examine if the existing log
parsers’ configuration parameters are insensitive to datasets.
To achieve this goal, we conduct the study on various datasets
with fixed parser parameters. Considering that studies with just
one combination of parameter values could result in data bias,
we use a comprehensive set of parameter value combinations
which comprise of all possible parameter values found in real-
world implementations.

The experiment consists of three steps. First, we extract all
parameter values that developers used in the LogPai bench-
mark [5]. The set of parameter value combinations for this
experiment is established by the value combinations used in
the real-world implementations. Then, for each combination
of parameter values, we parse all 16 datasets to get accuracy
results using the same approach as in Section III-A. Lastly,
we summarize and analyze the results.

Evaluation metrics. To analyze experiment results, we use
three metrics: Inter-Quartile Range (IQR), number of top
accuracy, and average accuracy. IQR refers to the difference
between the first quartile and the third quartiles of the accuracy
distribution across the log datasets. Since there are 16 datasets
involved in this study, we can acquire 16 data points for each
combination of log parser parameter values. Some datasets
may have an overall lower accuracy (e.g., Proxifier), leading to
relatively smaller IQR. Therefore, we use the highest accuracy
of each dataset to normalize the corresponding accuracy before
calculating IQR. We leverage the length of IQR on these 16
data points to gauge the variation in log parsing accuracy on
different datasets (the higher the IQR length, the more varied
the results). Number of top accuracy denotes the number of
datasets where the log parser using the combination of pa-
rameters achieves the highest accuracy when compared to the
parsing accuracy using the other combinations of parameter
values. We would like to use this metric to examine if the pa-
rameters of the log parsers behave consistently across datasets.
To be more specific, if a log parser using a combination of
parameter values achieves the best accuracy on a dataset when

compared to all other available parameter values, we expect to
know if it still can reach the best accuracy on other datasets
using the same parameter values. In addition, we calculate
the average accuracy of a log parser using a combination of
parameter values across all 16 datasets.
Results. The experiment results are presented in Table V.
None of the existing parsers with a fixed setting of pa-
rameters can consistently achieve accurate parsing results
across the different datasets. According to Table V, the Ave.
Acc values range from 0.41 to 0.78, with an average of 0.68.
On the 16 datasets analyzed, none of the log parsers with
a fixed setting of parameters produced an average accuracy
greater than 0.8, indicating that these log parsers with fixed
parameter values have a limitation in their ability to accu-
rately parse logs. Column IQR in Table V exhibits a major
fluctuation in parsing accuracy (with an average IQR value
of 0.18) when log parsers parse different datasets with fixed
parameters. In particular, Spell has an average IQR of 0.39
with a low average accuracy of 0.57.

The optimal parameter value of a parser varies across
different datasets. The column #Top Acc. in Table V indi-
cates the number of datasets on which a parser with a fixed
parameter value performs the best among all parameter values
of the same parser. As shown in the column, a setting of
parameters typically achieves the best parsing accuracy for
a few log datasets (e.g., each parameter value achieves the
best performance on three to five datasets). The highest #Top
Acc. values of all the log parsers only range from 5 to 9 (out
of 16 log datasets). Our results indicate that different datasets
tend to favor different parameter values. In other words, the
setting of the parser parameters are sensitive to the datasets to
be parsed.

Although there may exist some mild cases where log
parsers appear to be less sensitive to datasets, none of these
cases can reach good results on the three metrics that we
looked at. For example, although the log parser IPLoM, which
generally gives the most steady IQR values, has an acceptable
average IQR value (0.04), its average accuracy (0.72) is barely
adequate. Even in the best scenario, where IPLoM yields the
highest value in column #Top Acc. with CT=0.58 and lb=0.25,
there are still seven datasets where it fails to achieve the
highest parsing accuracy.

The results of this aspect indicates that the parameters of
the existing log parsers are sensitive to datasets: no single
parameter value can consistently achieve optimal results
across different datasets; the optimal parameter value of a
parser varies across different datasets.

C. Fixed parameters on different samples of the same dataset

Approach. In this aspect, we investigate if existing log parsers
are sensitive to different data samples. To achieve this goal,
we conduct study on various data samples of the same datasets
using fixed parser parameters.

Generating sample datasets. For each data sample, we
extract 10,000 continuous log lines from the original dataset.

TABLE V
IQR, AVERAGE ACCURACY AND NUMBER OF TOP ACCURACY FOR LOG PARSERS WITH FIXED PARAMETERS ACROSS DIFFERENT DATASETS

Parser Para. Values IQR #Top Acc. Ave. Acc.

Drain

st=0.2, d=6 0.20 3 0.76
st=0.5, d=4 0.30 4 0.72
st=0.2, d=4 0.23 5 0.75
st=0.39, d=6 0.19 4 0.75
st=0.7, d=6 0.32 3 0.72
st=0.5, d=5 0.19 3 0.75
st=0.6, d=5 0.12 5 0.77
st=0.6, d=3 0.17 4 0.76

IPLoM

CT=0.25, lb=0.3 0.11 2 0.70
CT=0.3, lb=0.4 0.05 4 0.71
CT=0.4, lb=0.01 0.04 5 0.72
CT=0.4, lb=0.2 0.03 6 0.72
CT=0.35, lb=0.25 0.01 7 0.72
CT=0.58, lb=0.25 <0.01 9 0.74
CT=0.3, lb=0.3 0.05 5 0.71
CT=0.3, lb=0.25 0.05 5 0.71
CT=0.9, lb=0.25 0.03 6 0.73
CT=0.78, lb=0.25 0.02 9 0.74
CT=0.35, lb=0.3 0.01 7 0.72
CT=0.3, lb=0.2 0.05 5 0.71
CT=0.4, lb=0.7 0.07 7 0.71

Parser Para. Values IQR #Top Acc. Ave. Acc.

LenMa

threshold=0.86 0.06 8 0.71
threshold=0.91 0.02 9 0.73
threshold=0.7 0.08 7 0.71
threshold=0.9 0.02 9 0.73
threshold=0.5 0.14 6 0.70
threshold=0.8 0.08 8 0.71
threshold=0.88 0.02 9 0.73
threshold=1 0.33 4 0.60
threshold=0.6 0.08 8 0.71
threshold=0.78 0.08 7 0.71

Spell

tau=0.95 0.48 2 0.41
tau=0.6 0.33 4 0.66
tau=0.75 0.36 4 0.64
tau=0.7 0.33 3 0.65
tau=0.5 0.42 2 0.56
tau=0.65 0.36 4 0.62
tau=0.55 0.33 0 0.64
tau=0.9 0.52 2 0.45
tau=0.8 0.41 1 0.55
tau=0.85 0.40 1 0.48

Parser Para. Values IQR #Top Acc. Ave. Acc.

AEL

ec=2, mp=0.6 0.10 6 0.76
ec=2, mp=0.4 0.04 4 0.74
ec=2, mp=0.5 0.06 5 0.76
ec=5, mp=0.4 0.10 6 0.76
ec=6, mp=0.5 0.09 4 0.78
ec=10, mp=0.7 0.07 5 0.77

Logram

bi=14, tri=13 0.20 5 0.66
bi=75, tri=32 0.17 3 0.66
bi=18, tri=10 0.27 3 0.67
bi=9, tri=6 0.29 3 0.65
bi=15, tri=15 0.20 5 0.66
bi=23, tri=5 0.31 5 0.65
bi=13, tri=11 0.26 4 0.67
bi=32, tri=24 0.18 5 0.65
bi=11, tri=10 0.26 4 0.67
bi=16, tri=9 0.29 4 0.67
bi=47, tri=80 0.12 3 0.66
bi=115, tri=95 0.32 4 0.62
bi=37, tri=37 0.11 5 0.67
bi=8, tri=7 0.30 3 0.65
bi=16, tri=16 0.24 6 0.67
bi=9, tri=9 0.29 5 0.67

Column Para. Values denotes possible combinations of parameter values for log parsers. Column IQR denotes the length of IQR. Column # of Top Acc.
displays the number of top accuracy. Column Ave. Acc. is the average accuracy.

As we do not have the parsing ground truth data for each
sample, we use a sliding window sampling approach such
that each two consecutive samples share 5,000 overlapping log
lines. The shared 5,000 log lines of two consecutive samples
can be used to compare the parsing results of the two samples
(i.e., to determine the agreement of parsing). From each log
dataset, we extract 11 such samples with each two consecutive
samples sharing 5,000 overlapping log lines. We then use all
six log parsers to parse each of the samples. Every 5,000
overlapping log lines shared by two consecutive samples are
parsed twice in the two samples, thus we can determine the
matching between the parsing results (i.e., the agreement of
parsing). We use the overlaps between the sliding window
samples instead of the 2,000 labeled log lines in the LogPai
benchmark, because the 2,000 labeled log lines are sampled
randomly and not sufficient (too small) for evaluating the
impact of choosing different samples of the same dataset. We
vary the parameter values of the log parsers to examine the
influence of the parameters on the parsing agreement. The
experiment is conducted on 11 datasets as the rest five datasets
(i.e., Android, Apache, Linux, OpenStack and Proxifier) do not
have sufficient log lines for sampling.

Measuring agreement of parsing results. For each log
dataset, there are in total 55,000 log lines (10 pairs of consec-
utive samples, each with 5,000 overlapping log lines) that are
parsed in two samples. The agreement of the parsing results
on a dataset is then the percentage of the 55,000 log lines
which have identical parsing results from the two samples.
Thus, for each log parser with each parameter value and each
log dataset, we obtain an overall agreement value for the
55,000 overlapping log lines. To understand the distribution
of the agreement across different parameter values, we use
four metrics: highest agreement, lowest agreement, agreement
gap and average agreement. For each log parser and each
log dataset, the highest/lowest/average agreement refers to the

highest/lowest/average agreement achieved from the different
parameter values. The agreement gap indicates the difference
between the highest and lowest agreement across different
parameter values.

Results. Table VI illustrates, for each log parser and each log
dataset, the agreement achieved by different parameter values.

The log parsers may not achieve stable parsing results
on different samples of the same dataset. According to
Table VI, in many cases (14/66), the average agreement values
are lower than 0.9 (as highlighted in the table), which indicates
that using the same parser on two samples of the same dataset
can achieve inconsistent results. In particular, in some datasets
(e.g., when AEL is used to parsing the HPC samples), the
average agreement values can be as low as 0.5, which means
that nearly half of the parsing results mismatch when the parser
is used to parse different samples of the same dataset.

Different parameter values can cause different levels of
disagreement in the parsing results of different samples.
The Gap rows in Table VI indicate the largest difference
between the agreement values achieved by different parameter
values. The Gap values range from 0 to 0.46 with an average
of 0.07, indicating that different parameter values can lead to
very different levels of disagreement in the parsing results of
two samples. Our results indicate that the parameter values of
the log parsers can impact its stability when parsing different
samples of the same dataset.

The log parsers may not achieve stable parsing results on
different samples of the same log dataset. Furthermore, the
parameter values can influence such stability of the log
parser on different samples.

TABLE VI
AGREEMENT RESULTS ACROSS VARIOUS DATA SAMPLES WITH IDENTICAL DATASETS AND FIXED PARAMETER VALUES.

BGL Hadoop HDFS HealthApp HPC Mac OpenSSH Spark Thunderbird Windows Zookeeper

AEL

Highest >0.99 0.96 >0.99 0.98 0.51 0.94 0.79 0.96 0.95 0.95 >0.99
Lowest 0.99 0.94 0.95 0.90 0.49 0.93 0.76 0.93 0.95 0.87 0.93
Gap <0.01 0.02 0.05 0.08 0.02 0.01 0.03 0.03 <0.01 0.08 0.06
Average >0.99 0.95 0.97 0.93 0.50 0.94 0.78 0.94 0.95 0.92 0.95

Drain

Highest >0.99 0.97 0.95 >0.99 0.90 0.96 0.94 0.97 0.98 0.95 0.93
Lowest >0.99 0.96 0.95 0.94 0.80 0.95 0.82 0.90 0.95 0.86 0.93
Gap <0.01 0.01 <0.01 0.06 0.10 0.01 0.12 0.07 0.03 0.09 ¡0.01
Average >0.99 0.97 0.95 0.97 0.81 0.96 0.84 0.95 0.96 0.93 0.93

IPLoM

Highest >0.99 0.97 0.98 0.96 >0.99 0.92 0.90 0.96 0.97 0.94 0.93
Lowest 0.90 0.95 0.95 0.95 0.79 0.90 0.81 0.89 0.96 0.78 0.92
Gap 0.10 0.02 0.03 0.01 0.20 0.02 0.09 0.07 0.01 0.16 0.01
Average 0.98 0.96 0.96 0.96 0.82 0.91 0.83 0.94 0.96 0.89 0.93

LenMa

Highest >0.99 0.96 0.95 >0.99 0.80 0.98 0.91 0.97 0.97 0.95 >0.99
Lowest >0.99 0.86 0.95 >0.99 0.80 0.96 0.80 0.92 0.97 0.66 0.93
Gap <0.01 0.10 <0.01 <0.01 <0.01 0.02 0.11 0.05 <0.01 0.29 0.07
Average >0.99 0.95 0.95 >0.99 0.80 0.97 0.86 0.93 0.97 0.91 0.97

Logram

Highest >0.99 0.98 >0.99 >0.99 >0.99 0.94 >0.99 0.98 0.91 0.98 0.99
Lowest 0.99 0.91 >0.99 0.96 >0.99 0.81 0.99 0.94 0.84 0.94 0.99
Gap <0.01 0.07 <0.01 0.03 <0.01 0.13 <0.01 0.04 0.07 0.04 <0.01
Average >0.99 0.94 >0.99 0.97 >0.99 0.86 >0.99 0.95 0.88 0.98 0.99

Spell

Highest >0.99 >0.99 >0.99 0.99 >0.99 >0.99 0.88 0.98 0.93 >0.99 >0.99
Lowest 0.66 0.88 0.85 0.90 0.79 0.86 0.42 0.86 0.83 0.86 0.88
Gap 0.34 0.11 0.15 0.09 0.21 0.14 0.46 0.12 0.10 0.14 0.12
Average 0.96 0.93 0.94 0.95 0.88 0.93 0.70 0.91 0.89 0.93 0.93

Row Highest/Lowest/Average indicates the highest/lowest/average agreement achieved by different parameter values. Row Gap denotes the difference
between the highest and lowest agreement. The Highest/Lowest/Average agreement values < 0.9 and the Gap values > 0.1 are highlighted.

IV. PILAR: A CONFIGURATION PARAMETER IN-SENSITIVE
LOG PARSER

In this section, we present PILAR, a parameter insensitive
approach to automatically parsing logs.
Overall idea of PILAR. In Section II and III, we find that
the values of the configuration parameters of existing log
parsers have a large influence on the parsing results. By
examining their configuration parameters, we find that they are
often domain specific. For example, clustering goodness and
similarities are parameters of IPLoM and Drain, respectively,
while the interpretation of these values may differ from domain
to domain. Therefore, we would like to leverage a measure that
is less prone to be influenced by the domains.

As the static parts of logs are natural language text ((mainly
in English for LogPai) written by developers, their entropy
would be likely to all follow the same characteristics, i.e.,
stable to each other [19]. Meanwhile, as logs generated from
the same logging statement have the same static parts, the
static parts of logs are highly repetitive. These facts suggest
the possibility of a log parsing framework that is not sensitive
to configuration parameters by utilizing the entropy bias
between the dynamic and static parts of logs. Therefore, in
our approach, we leverage an entropy based probability to
determine whether a token in a log line is generated from
the static text or dynamic variables.

Our approach consists of five phases, as illustrated in Fig-
ure 1: (i) processing raw logs to produce “cooked” logs (i.e.,
logs with no automatically generated formatting content) and
using coarse-grained parsing to identify some simple dynamic
content from “cooked” logs, (ii) generating n-grams dictionar-
ies based on “cooked logs”, (iii) calculating the entropy-based

probability of each token, (iv) identifying dynamic and static
log tokens (i.e., log tokens from dynamic and static content,
respectively), and (v) generating log templates.

Raw logs "Cooked" logs n-grams
dictionary

Entropy-based
probability of

log tokens

Process Generate

C
alculateStatic

texts/dynamic
variable

Parse

1 2 3

45
Log

template

6
Generate

Fig. 1. An overview of PILAR’s approach.

A. Processing raw logs

Raw logs typically comprise two types of log content, i.e.,
the one automatically generated by the logging handler which
usually follows the same format in one software system, and
the customized content provided by developers. For example,
“2015-07-31 00:19:30,005 - INFO [ProcessThread(sid:2

cport:-1)::PrepRequestProcessor@476] - Processed se-

ssion termination for sessionid: 0x14edfaa86f60019”
is a raw log line picked up from Zookeeper log data.
“2015-07-31 00:19:30,005 - INFO [ProcessThread(sid:2

cport:-1)::PrepRequestProcessor@476] - ” is the part
which is automatically generated by log handler. This part
specifies the log timestamp, log level, and environment
information and follows the same format. Therefore, we can
identify this kind of information with regular expressions
simply. The main challenge of log parsing is to identify the
dynamic part and static part in customized content provided
by developers.

In order to extract the developer provided content for
deeper analysis, we first filter out the formatting content
(including log timestamp, log level, etc.) with regular expres-
sion and only maintain the logging content generated solely
by logging statement. “Processed session termination for

sessionid: 0x14edfaa86f60019” is the “Cooked log” after
filtering out the formatting content.

After getting the “cooked” logs, we can extract dynamic
content which follows a common template through regular
expression, for example, IP address and numbers. We refer
to the regular expressions which are freely available from
LogPai to identify this kind of information. This kind of dy-
namic content will be replaced with wildcard characters (i.e.,
“<*>”). These characters are used in LogPai benchmark [5]
to represent dynamic token. This phase is conducted before
generating n-gram dictionaries phase. It is worth mentioning
that this is a pre-processing step. All of the state-of-the-art
log parsers studied in this paper have such a pre-processing
step that relies on regular expressions. Developers who are
familiar with the log data are expected to configure the regular
expressions with minimum effort.

B. Generating n-grams dictionaries

The aforementioned content identification is coarse-grained,
and parsing the logs further requires considerable attention
and effort. Given the “cooked” logs produced by the initial
phase, we first separate them into tokens to prepare for
producing n-gram dictionaries. Each “cooked” log is separated
by white-space characters, such as a blank space, tabulation,
etc. Using this set of tokens, we then build n-gram dictionaries.
According to a prior study [19], when n ≤ 3, the re-occurrence
of a n-gram in logs becomes steady. As a result, we build
three dictionaries with n equal to 1, 2, and 3. If we take the
following example (consisting of 5 “cooked” logs), we can
make three dictionaries containing the information of single
grams, double grams and triple grams, the key element is the
n-gram appears in the log and its corresponding value is the
number of times this n-gram appears in the log. For example,
“Processed” is one key element in the 1-gram dictionary and
its corresponding value element is 5; “for→sessionid” is one
key element in the 2-gram dictionary and its corresponding
value is 5; “for→sessionid→0x14edfaa86f6002d” is one key
element in the 3-gram dictionary with corresponding value 1.

Processed session termination for sessionid:
0x14edfaa86f60019z
Processed session termination for sessionid:
0x14edfaa86f6002d
Processed session termination for sessionid:
0x24edfaa8717002d
Processed session termination for sessionid:
0x34edfaa9c22003d
Processed session termination for sessionid:
0x14edfaa86f60047

C. Calculating the entropy-based probability of each token

Entropy is a physical concept that originally measures the
degree of uncertainty or randomness. In this paper, we apply
an entropy based probability to software logs. For a token

1 t o k e n s = cookedLog . s p l i t () / / Get a l i s t o f t o k e n s
2
3 f o r (i n d e x = 0 ; i n d e x < t o k e n s . s i z e () ; i n d e x ++){
4 / / i t e r a t e ove r a l l t o k e n s
5 f i r s t = (index −1) % t o k e n . s i z e () ;
6 second = (index −2) % t o k e n . s i z e () ;
7
8 i f (t o k e n s [f i r s t] i n Dynamic)
9 / / check i f t h e f i r s t p r e c e d i n g t o k e n i s i n t h e l i s t o f Dynamic t o k e n s

10 / / Dynamic l i s t i s i n i t i a l i z e d wi th t h e t o k e n s l i s t
11 / / c a l c u l a t e p r o b a b i l i t y based on 1−gram
12 p r o b a b i l i t y = (# o f 1−gram) / (# o f l o g l i n e s)
13 / / c a l c u l a t e p r o b a b i l i t y
14 <check p r o b a b i l i t y>
15 / / check i f p r o b a b i l i t y ≥ t h r e s h o l d
16 / / I f so , remove t h e scanned t o k e n from Dynamic
17 e l s e i f (t o k e n s [second] i n Dynamic)
18 / / c a l c u l a t e p r o b a b i l i t y based on 1−gram and 2− grams
19 2−gram = t o k e n s [f i r s t] + t o k e n s [i n d e x]
20 1−gram = t o k e n s [f i r s t]
21 p r o b a b i l i t y = (# o f 2−gram) / (# o f 1−gram)
22 <check p r o b a b i l i t y>
23 e l s e
24 / / c a l c u l a t e p r o b a b i l i t y based on 1−gram , 2− grams and 3− grams
25 3−gram = t o k e n s [second] + t o k e n s [f i r s t] + t o k e n s [i n d e x]
26 2−gram = t o k e n s [second] + t o k e n s [f i r s t]
27 p r o b a b i l i t y = (# o f 3−gram) / (# o f 2−gram)
28 <check p r o b a b i l i t y>
29 }

Listing 1. Pseudo-code example for token entropy-based probability
calculation.

under parsing, we use the conditional probability of the token’s
appearance given the appearances of the preceding tokens
to measure the entropy of the token. A higher probability
represents a lower entropy. Dynamic tokens generally have a
lower probability than static tokens since static tokens always
appear repeatedly. Thus, the lower a log token’s entropy, the
more likely it is a static token.

Listing 1 presents the pseudo-code example for calculating
the probability for tokens. For each token under identification,
we calculate its probability by considering at most two tokens
immediately preceding it. Since the first log token in the log
token list has no preceding token, we simply consider itself
as a static token according to the development experience.
Although there exist some logs whose content starts with
dynamic tokens, most of these first tokens can be handled
by regular expressions in the preprocessing part as they are
usually simple numbers, dates and IPs. Only 4 logs among
2,000 in Android dataset, 31 among 2,000 logs in Thunderbird
and 17 among 2,000 in Mac could affect the parsing result.
We will further explore how to deal with the first token in the
future. For the second token in the list, only one preceding
token is taken into account. Dynamic represents the group of
tokens which have been identified as dynamic tokens. It is
initialized with tokens list as a void list. During the calculating
process, only the preceding token which is identified as a static
token will be used for calculating the probability. Based on
this rule, we calculate the probability by three scenarios, as
presented in Listing 1.

D. Identifying dynamic and static log tokens

With the entropy information from the prior step, we can
now identify dynamic and static tokens. The method <check

probability> in Listing 1 denotes a comparison of probability
to a threshold, which is the only configuration parameter of
PILAR. The examined token is regarded as a dynamic token if
the probability is less than the threshold. The dynamic token
will be appended to Dynamic list.

If we take the first “cooked” log in the box from Sec-
tion IV-B as an example, according to Listing 1, the first
token “Processed” will be considered as a static token. The
probability of the following tokens (session, termination,
for, sessionid:) is 1, and they are all static tokens. For the
last token (0x14edfaa86f60019z), its probability is equal to
the number of enclosing 3-grams appearances (i.e., 1) divided
by the number of preceding 2-grams appearances (i.e., 5). The
probability of the last token (0.2) is significantly less than that
of other tokens (1). If the tool threshold is set to a lower value,
we may overlook this dynamic token. However, because the
logs in Section IV-B are only extracted from a tiny portion
of log files to save writing space, the last token could be
accurately identified as a dynamic token when used for a real-
world software system.

E. Generating log templates

In this phase, we produce a log template based on the
identification results from prior phases. Using the same log
template structure as the LogPai benchmark [5], the dynamic
content in “cooked” logs is replaced by wildcard characters
(i.e., “<*>”) for further research. Below is the log template
for the first “cooked” log in the box from Section IV-B.

Processed session termination for sessionid: <*>

V. EVALUATION OF PILAR

In this section, we evaluate PILAR with two parts:
Part 1: Evaluating the influence of configuration parameter
values of the parsing results of PILAR. From Section III,
we can see that varying parameter can lead to problems with
accuracy and stability in log parsing. Therefore, we should
ensure PILAR is not sensitive to parameters compared to other
log parsers.
Part 2: Evaluating PILAR with the general quality metrics
of log parsers. Accuracy and efficiency are two dominant
metrics used to access log parsers [5]. Therefore, in addition
to knowing that PILAR is parameter insensitive, it is necessary
to determine whether PILAR outperforms or is comparable to
other log parsers based on these two metrics.

A. Evaluating the influence of configuration parameter values
of PILAR

In this section, we conduct a study to evaluate the influence
of configuration parameter values of PILAR. As we did in
Section III, we applied PILAR on 16 datasets to see if and how
altering parameter values, as well as varying datasets and data
samples with fixed parameters, influence the parsing results.
We follow the same procedure described in Section III. PILAR
only has one parameter (i.e., probability threshold) that can be
configured, as mentioned in Section IV-D. In theory, the range
of the possible threshold values is [0, 1]. Since the outcome of
parsing each token is binary, we use 0.5 as the maximum value
of the threshold. The value 0.5 also agrees with the results of
entropy value reported by prior work [30]. In this section, we

select 30 thresholds ranging from 0.1 to 0.5 with 0.01 as the
step, which span a wide variety of conceivable value ranges.

1) Varying parameters on the same dataset: In this aspect,
we alter parameter values, same as Section III, to examine
whether the parsing results remain stable. The results of this
aspect are presented in Table VII.

Generally, PILAR is not sensitive to parameter values.
According to Table VII, the minority of the gap values (5/16)
are larger than 0.1, indicating that on most datasets, changing
parameters will not result in accuracy changes larger than
0.1. Particularly, in many cases (6/16), the accuracy remains
completely constant regardless of which value is assigned to
the parameter. Moreover, when comparing PILAR to other log
parsers, altering parameters does not result in a change in
ranking in half of the cases, based on row Rank (∆). In the
remaining cases, six cases have modest changes (2 or 3 ranking
slot changes among a total of 7 slots) and only three cases have
large changes (4 or 5 ranking slot changes). Although the rank
slot changes appear large for HDFS and ZooKeeper, their gaps
are modest (0.06 and 0.05), and the accuracy remains high
(their lowest accuracy is 0.94 and 0.92) after experiencing
such ranking changes. The only worst-case scenario is parsing
OpenStack. The reason is that many repetitive dynamic tokens
and varying static tokens exist in this dataset. Nevertheless,
PILAR is still one of the best parsers for this dataset. However,
as we can see, other parsers generate a large average accuracy
fluctuation (0.46) on this dataset, and PILAR (gap value 0.55)
is not far behind. In addition, according to Table IV, other
log parsers yield low accuracy on this dataset, generally lower
than PILAR. Finally, Small gap and Average gap confirm
that PILAR is generally more stable than other parsers when
it comes to altering parameter values, and on some datasets,
PILAR is the most parameter-insensitive log parser.

2) Fixed parameters on different datasets: This aspect
aims at evaluating how different datasets affect PILAR across
multiple fixed parameters. The experiment, like Section V-A1,
is performed on all available parameter values, but we only
present 9 of them in Table VIII due to limited space, with each
case having a 0.5 threshold interval between them. Table VIII
shows that PILAR has low IQR values with a maximum of
0.06, which is lower than the IQR in the best case of some
other parsers, such as 0.33 for Spell and 0.11 for Logram in
Table V. Only the results of IPLoM can catch up with, yet
still not as good as PILAR; while PILAR can generate more
accurate results since PILAR’s lowest average accuracy (0.79)
is greater than IPLoM’s highest average accuracy (0.74) based
on Tables VIII and V. Therefore, PILAR is not sensitive to
datasets while using fixed parameters.

3) Fixed parameters on different samples of the same
dataset: In this aspect, we perform study on different data
samples within the same datasets using multiple fixed param-
eter values. Table IX presents the study results. According
to the table, PILAR yields high agreements with only three
agreements lower than 0.9 (0.89 for HDFS, 0.89 for Mac
and 0.82 for Spark). Rows Average and Highest average
show that PILAR’s average agreement is even higher or

TABLE VII
PARSING ACCURACY AND RANKING OF PILAR WHEN ALTERING ITS PARAMETER VALUES.

Android Apache BGL Hadoop HDFS HealthApp HPC Linux Mac OpenStack OpenSSH Proxifier Spark Thunderbird Windows Zookeeper

PILAR

Highest 0.78 1.00 0.93 0.96 1.00 1.00 0.99 0.27 0.79 0.91 0.62 0.52 0.94 0.94 0.99 0.97
Lowest 0.67 1.00 0.83 0.94 0.94 0.98 0.85 0.15 0.69 0.36 0.43 0.52 0.94 0.90 0.99 0.92
Average 0.77 1.00 0.88 0.94 0.99 1.00 0.91 0.20 0.74 0.59 0.54 0.52 0.94 0.92 0.99 0.96
Gap 0.11 0.00 0.09 0.02 0.06 0.02 0.14 0.12 0.10 0.55 0.18 0.00 0.00 0.03 0.01 0.05
Rank ∆ 3 0 0 2 5 1 3 0 3 5 2 0 0 2 0 4

Other parsers Smallest gap 0.03 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.00 0.11 0.02 0.02 0.01 0.02 0.11 0.02
Average gap 0.15 0.12 0.16 0.29 0.31 0.25 0.06 0.24 0.14 0.46 0.21 0.26 0.30 0.29 0.28 0.12

Row Highest/Lowest denotes the highest/lowest accuracy achieved by PILAR when applied to a dataset with different parameter values. Row Average denotes the average
accuracy. Row Gap denotes the difference between the highest and lowest accuracy. Row Rank (∆) indicates the maximum accuracy rank changes caused by parameter value
changes compared to the parsing accuracy of other parsers. Row Smallest gap/Average gap denotes the smallest/average gap achieved by other log parsers on the same datasets.

TABLE VIII
IQR, AVERAGE ACCURACY AND NUMBER OF TOP ACCURACY FOR PILAR

WITH FIXED PARAMETERS ACROSS DIFFERENT DATASETS.

Parser Para. Values IQR # of Top Acc. Ave. Acc.

PILAR

threshold=0.10 0.05 4 0.81
threshold=0.15 0.04 5 0.82
threshold=0.20 0.04 6 0.82
threshold=0.25 0.05 5 0.82
threshold=0.30 0.06 5 0.79
threshold=0.35 0.02 8 0.80
threshold=0.40 0.01 8 0.81
threshold=0.45 0.03 8 0.80
threshold=0.50 0.04 5 0.79

Column Para. Values denotes possible parameter values
for log parsers. Column IQR denotes the length of IQR.
Column # of Top Acc. displays the number of top accuracy.
Column Ave. Acc. is the average accuracy.

roughly comparable to the highest agreement achieved by
other parsers. Though Logram has only two agreements lower
than 0.9, the average agreement for Logram is lower than 0.9
on 2 datasets. For PILAR, the average agreement on all the
datasets are higher than 0.9. Meanwhile, there is only one
parameter that will result in an agreement lower than 0.9 for
PILAR on HDFS(0.5) and Mac(0.5). Moreover, the gap values
of PILAR are very small, with two cases (0.11) on HDFS and
(0.14) on Spark over 0.1. Except for Spark, the gap values
of PILAR are even smaller or very close to the smallest gap
values obtained from other parsers on the same datasets. For
HDFS and Spark, PILAR does not lag far behind the gaps of
other parsers, which range from 0.01 to 0.15 and 0.03 to 0.12
based on Table VI and IX. In addition, PILAR has an average
agreement that is better or roughly comparable to other parsers
as reported by Table VI and IX. Therefore, PILAR is not
sensitive to data samples with identical datasets and fixed
parameter values.

PILAR is parameter-insensitive in all scenarios compared
to all other log parsers.

B. Evaluating PILAR with the General Quality Metrics of Log
Parsers

We evaluate log parsers based on two widely used metrics:
accuracy and efficiency [5]. Accuracy measures a log parser’s
ability to correctly identify static text and dynamic variables

in log messages, while efficiency measures a log parser’s
processing time.
Accuracy. For accuracy, we only consider the highest accuracy
among all parameters on each dataset. The average accuracy
for PILAR is 0.85, which is the second highest average parsing
accuracy among all log parsers. The highest average accuracy
is achieved by Drain, which is 0.88. For AEL, Lenma, Spell,
IPLoM and Logram, the average accuracy is 0.82, 0.80, 0.81,
0.77 and 0.74 separately. Based on the LogPai benchmark, we
also count the number of cases where the tools have either
the highest accuracy or an accuracy above 0.9. PILAR can
achieve the highest accuracy or an accuracy higher than 0.9
on 11 datasets, while Drain has 12. For AEL, Lenma, Spell,
IPLoM and Logram, the number is 8, 7, 9, 6 and 8 separately.
Although Drain has a slightly better accuracy, it may need
parameter tuning to achieve the accuracy; while PILAR is
much less sensitive with its parameter (see Section V-A).
Efficiency. We compare the end-to-end time for parsing 100
MB of Android logs, 500 MB of BGL logs and 1GB of
HDFS, Windows and Spark logs, respectively. The smallest
size of Android and BGL are due to their relatively smaller
data available in the LogPai benchmark. For each dataset of
logs, we also measure the time for parsing 300 KB, 1 MB, 10
MB logs, to understand whether the parsing time scales with
the growth of log data. Except for Logram, which is designed
to have extremely high efficiency, PILAR exceeds all other
parsers in efficiency (see Figure 2). For example, PILAR is
almost 2 times faster than the next most efficient log parser
Drain on HDFS, and 3 times faster on BGL.

PILAR has the second highest accuracy and efficiency
among all log parsers, being only slightly behind the most
accurate parser Drain and the most efficient parser Logram.

VI. THREATS TO VALIDITY

Construct Validity. In this paper, we study and compare
PILAR with six log parsers that are selected based on their
high parsing results reported in prior research [5], [18]. Future
research may further study the influence of configuration
parameters of other log parsers. For the first two aspects in
our study, the ground truth is based on the 2,000 manually
labeled log lines per dataset from the LogPai benchmark.
Future research may consider evaluating these aspects on a
larger number of manually labeled logs. In addition, Khan
et al. [31] present a new metrics to evaluate the accuracy of

TABLE IX
AGREEMENT RESULTS ACROSS VARIOUS DATA SAMPLES WITH IDENTICAL DATASETS AND FIXED PARAMETER VALUES FOR PILAR.

BGL Hadoop HDFS HealthApp HPC Mac OpenSSH Spark Thunderbird Windows Zookeeper

PILAR

Highest >0.99 0.98 >0.99 >0.99 >0.99 0.97 >0.99 0.97 0.98 0.98 0.99
Lowest >0.99 0.95 0.89 >0.99 0.90 0.89 0.96 0.82 0.95 0.94 0.92
Average >0.99 0.97 0.98 >0.99 >0.99 0.94 0.99 0.91 0.96 0.96 0.97
Gap <0.01 0.03 0.11 <0.01 0.10 0.08 0.04 0.15 0.03 0.04 0.06

Other parsers Highest average >0.99 0.97 >0.99 >0.99 >0.99 0.97 >0.99 0.95 0.97 0.98 0.99
Smallest gap <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 <0.01 0.04 <0.01

Row Highest/Lowest/Average indicates the highest/lowest/average agreement achieved by different parameter values. Row Gap denotes the difference between the
highest and lowest agreement. The Highest/Lowest/Average agreement values < 0.9 and the Gap values > 0.1 are highlighted. Row Highest average/Smallest
gap is the highest average agreement/smallest gap of other log parsers.

Fig. 2. The elapsed time of parsing five different log data with various sizes. The x and y axes are both in log scale.

parsing results. We plan to integrate this metric in our future
work to evaluate the impact of parameters on parsing results.
Internal Validity. We leverage the automated parsing accuracy
method from LogPai [5]. Prior research also proposed a stricter
accuracy measure [18] that depends on manual examination
and requires extensive manual effort, which is not suitable for
this large-scale study. Future research may revisit our results
with manually verified results or with other accuracy measures.
Although being parameter-insensitive, PILAR may still further
improve its results with choosing the optimal configuration by
practitioners. Hence, we opt to keep the ability of manually
choosing the parameter value when building the tool.
External Validity. Wieringa [32] provides strategies for gen-
eralization, among which we follow the lab-to-lab strategies.
Evaluation of PILAR and other log parsers on additional log
datasets can improve the generalizability of this paper.

VII. CONCLUSION

In this paper, we first conducted an empirical study on
the influence of configuration parameters on the results of
automated log parsers. We evaluated the influence in three
aspects: 1) varying parameters on the same dataset, 2) fixed
parameters on different datasets and 3) fixed parameters on
different samples of the same dataset. The result shows that
the configuration parameters have a strong influence on the
parsing result, which illustrates the challenge of achieving
optimal parsing results when these log parsers are adopted in
practice. Therefore, we propose an entropy-based parameter
insensitive log parser named PILAR. By evaluating PILAR
through the same three aspects as our empirical study, we
find that PILAR is the most insensitive log parser to the vari-
ations in parameters. Meanwhile, PILAR also has a near-top
high accuracy and efficiency. This paper is the first research
effort that studies and addresses the influence of configuration
parameters in automated log parsers. Our paper can help ease
the adoption of automated log parsers in practice.

REFERENCES

[1] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qualitative
study of the benefits and costs of logging from developers’ perspectives,”
IEEE Transactions on Software Engineering, 2020.

[2] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-
patterns in the logging code,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. IEEE Press, 2017,
p. 71–81. [Online]. Available: https://doi.org/10.1109/ICSE.2017.15

[3] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-
in-time suggestions for log changes,” Empirical Softw. Engg.,
vol. 22, no. 4, p. 1831–1865, Aug. 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9467-z

[4] C. Gülcü, The complete log4j manual. QOS. ch, 2003.
[5] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,

“Tools and benchmarks for automated log parsing,” in Proceedings
of the 41st International Conference on Software Engineering:
Software Engineering in Practice, ICSE (SEIP) 2019, Montreal,
QC, Canada, May 25-31, 2019, H. Sharp and M. Whalen,
Eds. IEEE / ACM, 2019, pp. 121–130. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2019.00021

[6] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sherlog:
Error diagnosis by connecting clues from run-time logs,” in Proceedings
of the Fifteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XV.
New York, NY, USA: Association for Computing Machinery, 2010, p.
143–154. [Online]. Available: https://doi.org/10.1145/1736020.1736038

[7] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. USA: USENIX
Association, 2012, p. 293–306.

[8] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser, and
P. Flora, “Leveraging performance counters and execution logs to diag-
nose memory-related performance issues,” in 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 110–119.

[9] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console logs,” in
Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 117–132. [Online]. Available:
https://doi.org/10.1145/1629575.1629587

[10] Q. Fu, J.-G. Lou, Q. Lin, R. Ding, D. Zhang, and T. Xie, “Con-
textual analysis of program logs for understanding system behaviors,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR ’13. IEEE Press, 2013, p. 397–400.

https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1007/s10664-016-9467-z
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1145/1736020.1736038
https://doi.org/10.1145/1629575.1629587

[11] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in Pro-
ceedings of the 37th International Conference on Software Engineering
- Volume 1, ser. ICSE ’15. IEEE Press, 2015, p. 415–425.

[12] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12. USA: USENIX Association, 2012, p. 26.

[13] K. Yao, G. B. de Pádua, W. Shang, C. Sporea, A. Toma, and
S. Sajedi, “Log4perf: suggesting and updating logging locations
for web-based systems’ performance monitoring,” Empir. Softw.
Eng., vol. 25, no. 1, pp. 488–531, 2020. [Online]. Available:
https://doi.org/10.1007/s10664-019-09748-z

[14] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automated
performance analysis of load tests,” in 25th IEEE International
Conference on Software Maintenance (ICSM 2009), September 20-26,
2009, Edmonton, Alberta, Canada. IEEE Computer Society, 2009,
pp. 125–134. [Online]. Available: https://doi.org/10.1109/ICSM.2009.
5306331

[15] W. Shang, A. E. Hassan, M. N. Nasser, and P. Flora, “Automated
detection of performance regressions using regression models on
clustered performance counters,” in Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, Austin, TX,
USA, January 31 - February 4, 2015, L. K. John, C. U. Smith,
K. Sachs, and C. M. Lladó, Eds. ACM, 2015, pp. 15–26. [Online].
Available: https://doi.org/10.1145/2668930.2688052

[16] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in 2017 IEEE International
Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June
25-30, 2017, I. Altintas and S. Chen, Eds. IEEE, 2017, pp. 33–40.
[Online]. Available: https://doi.org/10.1109/ICWS.2017.13

[17] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” Journal of
Software Maintenance, vol. 20, no. 4, pp. 249–267, 2008.

[18] H. Dai, H. Li, C. Chen, W. Shang, and T.-H. P. Chen, “Logram: Efficient
log parsing using n-gram dictionaries,” IEEE Transactions on Software
Engineering, vol. PP, 07 2020.

[19] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 178–189.

[20] M. Du and F. Li, “Spell: Streaming parsing of system event
logs,” in IEEE 16th International Conference on Data Mining,
ICDM 2016, December 12-15, 2016, Barcelona, Spain, F. Bonchi,
J. Domingo-Ferrer, R. Baeza-Yates, Z. Zhou, and X. Wu, Eds.
IEEE Computer Society, 2016, pp. 859–864. [Online]. Available:
https://doi.org/10.1109/ICDM.2016.0103

[21] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the 22nd ACM Symposium on Operating Systems Principles 2009,
SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, 2009, pp.
117–132.

[22] ——, “Online system problem detection by mining patterns of console
logs,” in ICDM 2009, The Ninth IEEE International Conference on Data
Mining, Miami, Florida, USA, 6-9 December 2009, 2009, pp. 588–597.

[23] J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from console
logs for system problem detection,” in 2010 USENIX Annual Technical
Conference, Boston, MA, USA, June 23-25, 2010, 2010.

[24] Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in ICDM 2009,
The Ninth IEEE International Conference on Data Mining, Miami,
Florida, USA, 6-9 December 2009, 2009, pp. 149–158.

[25] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in 24th IEEE International
Conference on Software Maintenance (ICSM 2008), September 28 -
October 4, 2008, Beijing, China, 2008, pp. 307–316.

[26] “Automated root cause analysis for spark application
failures - o’reilly media,” https://www.oreilly.com/ideas/
automated-root-cause-analysis-for-spark-application-failures,
(Accessed on 08/13/2019).

[27] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications when
deploying on hadoop clouds,” in 35th International Conference on

Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013, 2013, pp. 402–411.

[28] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on
log parsing and its use in log mining,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2016, pp. 654–661.

[29] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS quarterly, pp. 75–105, 2004.

[30] K. Yao, H. Li, W. Shang, and A. E. Hassan, “A study of the
performance of general compressors on log files,” Empirical Softw.
Engg., vol. 25, no. 5, p. 3043–3085, sep 2020. [Online]. Available:
https://doi.org/10.1007/s10664-020-09822-x

[31] Z. A. Khan, D. Shin, D. Bianculli, and L. Briand, “Guidelines for
assessing the accuracy of log message template identification tech-
niques,” in 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE), 2022, pp. 1095–1106.

[32] R. Wieringa and M. Daneva, “Six strategies for generalizing software
engineering theories,” Science of computer programming, vol. 101, pp.
136–152, 2015.

https://doi.org/10.1007/s10664-019-09748-z
https://doi.org/10.1109/ICSM.2009.5306331
https://doi.org/10.1109/ICSM.2009.5306331
https://doi.org/10.1145/2668930.2688052
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICDM.2016.0103
https://www.oreilly.com/ideas/automated-root-cause-analysis-for-spark-application-failures
https://www.oreilly.com/ideas/automated-root-cause-analysis-for-spark-application-failures
https://doi.org/10.1007/s10664-020-09822-x

	Introduction
	Background and Related Work
	Log parsing
	Configurations of log parsers

	Studying the influence of configuration parameter values of log parsers
	Varying parameters on the same dataset
	Fixed parameters on different datasets
	Fixed parameters on different samples of the same dataset

	PILAR: A Configuration Parameter In-Sensitive Log Parser
	Processing raw logs
	Generating n-grams dictionaries
	Calculating the entropy-based probability of each token
	Identifying dynamic and static log tokens
	Generating log templates

	Evaluation of PILAR
	Evaluating the influence of configuration parameter values of PILAR
	Varying parameters on the same dataset
	Fixed parameters on different datasets
	Fixed parameters on different samples of the same dataset

	Evaluating PILAR with the General Quality Metrics of Log Parsers

	Threats to Validity
	Conclusion
	References

