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Abstract Software developers insert logging statements in their source code
to record important runtime information; such logged information is valuable
for understanding system usage in production and debugging system failures.
However, providing proper logging statements remains a manual and challeng-
ing task. Missing an important logging statement may increase the difficulty
of debugging a system failure, while too much logging can increase system
overhead and mask the truly important information. Intuitively, the actual
functionality of a software component is one of the major drivers behind log-
ging decisions. For instance, a method maintaining network communications
is more likely to be logged than getters and setters. In this paper, we used
automatically-computed topics of a code snippet to approximate the function-
ality of a code snippet. We studied the relationship between the topics of a
code snippet and the likelihood of a code snippet being logged (i.e., to con-
tain a logging statement). Our driving intuition is that certain topics in the
source code are more likely to be logged than others. To validate our intuition,
we conducted a case study on six open source systems, and we found that i)
there exists a small number of “log-intensive” topics that are more likely to
be logged than other topics; ii) each pair of the studied systems share 12% to
62% common topics, and the likelihood of logging such common topics has a
statistically significant correlation of 0.35 to 0.62 among all the studied sys-
tems; and iii) our topic-based metrics help explain the likelihood of a code
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snippet being logged, providing an improvement of 3% to 13% on AUC and
6% to 16% on balanced accuracy over a set of baseline metrics that capture
the structural information of a code snippet. Our findings highlight that topics
contain valuable information that can help guide and drive developers’ logging
decisions.

1 Introduction

Developers depend heavily on logging statements for collecting valuable run-
time information of software systems. Such information can be used for a vari-
ety of software quality assurance tasks, such as debugging and understanding
system usage in production (Chen et al., 2016a, 2017a; Mariani and Pastore,
2008; Oliner et al., 2012; Syer et al., 2013; Xu et al., 2009; Yuan et al., 2010).
Logging statements are inserted by developers manually in the code to trace
the system execution. As there exists no standard guidelines nor unified poli-
cies for software logging, developers usually miss including important logging
statements in a system, resulting in blind code spots (i.e., cannot recover sys-
tem execution paths) when debugging (Yuan et al., 2011, 2014).

However, adding logging statements excessively is not an optimal solution,
since adding unnecessary logging statements can significantly increase system
overhead (Zeng et al., 2015) and mask the truly important information (Fu
et al., 2014). Prior studies proposed approaches to enhance the information
that is contained in logging statements through static analysis (Yuan et al.,
2011, 2014) and statistical models (Lal and Sureka, 2016; Li et al., 2017a,b;
Zhu et al., 2015). These approaches help developers identify code locations that
are in need of additional logging statements, or in need of log enhancement
(e.g., requiring the logging of additional variables).

However, the aforementioned approaches do not take into account the func-
tionality of a code snippet when making logging suggestions. We believe that
code snippets that implement certain functionalities are more likely to require
logging statements than others. For example, Listing 1 and Listing 2 show two
code snippets from the Qpid-Java1 system.These two methods are of similar
size and complexity, yet the method shown in Listing 1 has a logging statement
to track a connection creation event, while the method shown in Listing 2 has
no logging statements. The different logging decisions in these two code snip-
pets might be explained by the fact that these two code snippets are related to
different functionalities: the first code snippet is concerned with “connection”,
while the second code snippet is concerned with “string builder”. In addition,
in Section 2, we show real-life requirements for adding logging statements in
the context of “connection”.

Prior research (Linstead et al., 2008; Liu et al., 2009a; Maskeri et al., 2008;
Nguyen et al., 2011) leverage statistical topic models such as latent Dirichlet
allocation (Blei et al., 2003) to approximate the functionality of a code snippet.

1 https://qpid.apache.org/components/java-broker
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public QueueConnection createQueueConnection()

throws JMSException

{

QpidRASessionFactoryImpl s = new QpidRASessionFactoryImpl(_mcf, _cm,

QpidRAConnectionFactory.QUEUE_CONNECTION);

if (_log.isTraceEnabled())

_log.trace("Created queue connection: "+s);

return s;

}

Listing 1 A logged method that is related to the “connection” topic.

public String toString( String tabs )

{

StringBuilder sb = new StringBuilder();

sb.append( tabs ).append( "LessEqEvaluator : " ).append( super.toString()

).append( "\n" );

return sb.toString();

}

Listing 2 A method that is related to the “string builder” topic.

Such topic models create automated topics (using co-occurrences of words
in code snippets), and these topics provide high-level representations of the
functionality of code snippets (Baldi et al., 2008a; Chen et al., 2016b; Thomas
et al., 2010).

We conjecture that source code that is related to certain topics is more
likely to contain logging statements. We also want to determine if there exist
common topics that are similarly logged across software systems. In particular,
we performed an empirical study on the relationship between code topics and
logging decisions in six open source systems: Hadoop, Directory-Server, Qpid-
Java, CloudStack, Camel and Airavata. We focus on the following research
questions:

RQ1: Which topics are more likely to be logged?
A small number of topics are more likely to be logged than other topics.
Most of these log-intensive topics capture communication between ma-
chines or interaction between threads. Furthermore, we observe that the
logging information that is captured by topics is not statistically correlated
to code complexity.

RQ2: Are common topics logged similarly across different systems?
Each studied system shares a portion (12% to 62%) of its topics with other
systems, and the likelihood of logging the common topics has a statistically
significant correlation of 0.35 to 0.62 among these studied systems. There-
fore, developers of a particular system can consult other systems when
making their logging decisions or when developing logging guidelines.
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RQ3: Can topics provide additional explanatory power for the like-
lihood of a code snippet being logged?
Our topic-based metrics provide additional explanatory power (i.e., an im-
provement of 3% to 13% on AUC and an improvement of 6% to 16% on
balanced accuracy) to a baseline model that is built using a set of metrics
that capture the structural information of a code snippet, for explaining
the likelihood of a code snippet being logged. Five to seven out of the top
ten important metrics for determining the likelihood of a method being
logged are our topic-based metrics.

Our paper is the first work that studies the relationship between topics and
logging decisions. Our findings show that source code related to certain topics
is more likely to contain logging statements. Future log recommendation tools
should consider topic information in order to help researchers and practitioners
in deciding where to add logging statements.

Paper Organization. Section 2 uses examples to motivate the study of
software logging using topic models. Section 3 provides a brief background
about topic models. Section 4 describes our case study setup. Section 5 presents
the answers to our research questions. Section 6 discusses potential threats to
the validity of our study. Section 7 surveys related work. Finally, Section 8
concludes the paper.

2 Motivation Examples

In this section, we use several real-life examples to motivate our study of the
relationship between code topics and logging. Table 1 lists ten JIRA issue
reports of the Qpid-Java system that we fetched from the Apache JIRA issue
repository2.

A closer examination of these ten issue reports shows that all these is-
sue reports are concerned with logging in the context of “connections”. For
example, issue report QPID-40383 proposes to log certain connection details
(e.g., local and remote addresses) after each successful connection, as “it will
provide useful information when trying to match client application behaviour
with broker behaviour during incident analysis”. The developer fixed this is-
sue by adding the required logging information. Listing 3 gives a code snippet
that is part of the code fix4 for this issue. The code snippet shows that it is
concerned with the topics that are related to “connections” (i.e., connection
setting, connecting, get user ID, etc.). In fact, in RQ1 we found that “connec-
tion management” is one of the most log-intensive topics for the Qpid-Java
system.

From these examples, we observed that software practitioners tend to use
logs to record certain functionalities (or topics), for example, “connections”.

2 https://issues.apache.org/jira
3 https://issues.apache.org/jira/browse/QPID-4038
4 Qpid-Java git commit: d606368b92f3952f57dbabd8553b3b6f426305e1
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Table 1 Examples of JIRA issues of the Qpid-Java system that are concerned with the
logging of “connections”.

Issue ID1 Issue report summary

QPID-4038 Log the connection number and associated local and remote address after
each successful [re]connection

QPID-7058 Log the current connection state when connection establishment times
out

QPID-7079 Add connection state logging on idle timeout to 0-10 connections
QPID-3740 Add the client version string to the connection establishment logging
QPID-7539 Support connection and user level logging
QPID-2835 Implement connections (CON) operational logging on 0-10
QPID-3816 Add the client version to the connection open log messages
QPID-7542 Add connection and user info to log messages
QPID-5266 The client product is not logged in the connection open message
QPID-5265 The client version is only logged for 0-8/9/9-1 connections if a clientid is

also set

1 For more details about each issue, the readers can refer to its web link which is
“https://issues.apache.org/jira/browse/” followed by the issue ID. For example, the link
for the first issue is “https://issues.apache.org/jira/browse/QPID-4038”.

ConnectionSettings conSettings = retriveConnectionSettings(brokerDetail);

_qpidConnection.setConnectionDelegate(new

ClientConnectionDelegate(conSettings, _conn.getConnectionURL()));

_qpidConnection.connect(conSettings);

_conn.setConnected(true);

_conn.setUsername(_qpidConnection.getUserID());

_conn.setMaximumChannelCount(_qpidConnection.getChannelMax());

_conn.getFailoverPolicy().attainedConnection();

+ _conn.logConnected(_qpidConnection.getLocalAddress(),

_qpidConnection.getRemoteAddress());

Listing 3 A code snippet that is part of the fix for issue QPID-4038, showing that a logging
statement was added to a code snippet within the context of “connections”.

However, we cannot manually investigate all the topics that need logging.
Therefore, in this paper, we propose to use topic modeling to understand the
relationship between software logging and code topics in an automated fashion.
Specifically, we want to study whether certain topics are more likely to be
logged (RQ1). We also want to study whether there exist common topics that
are similarly logged across systems (RQ2). Finally, we want to study whether
topics can help explain the likelihood of a code snippet being logged (RQ3).

3 Topic Modeling

In this section, we briefly discuss the background of latent Dirichlet allocation
(LDA), which is the topic modeling approach that we used in our study.

Our goal is to extract the functionality of a code snippet; however, such
information is not readily available. Thus, we used the linguistic data in the
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Top words

z1 thread, sleep, notify, interrupt
z2 network, bandwidth, timeout
z3 view, html, javascript, css

(a) Topics (Z).

z1 z2 z3

f1 0.2 0.8 0.0
f2 0.0 0.8 0.2
f3 0.6 0.0 0.4
f4 1.0 0.0 0.0

(b) Topic member-
ships (θ).

Fig. 1 An example result of topic models, where three topics are discovered from four files.
(a) The three discovered topics (z1, z2, z3) are defined by their top (i.e., highest probable)
words. (b) The four original source code files (f1, f2, f3, f4) are represented by the topic
membership vectors (e.g., {z1 = 0.2, z2 = 0.8, z3 = 0.0} for file f1).

source code files (i.e., the identifier names and comments) to extract topics of
the code snippet in order to approximate the functionality in an automated
and scalable fashion. We leveraged topic modeling approaches to derive top-
ics (i.e., co-occurring words). Topic modeling approaches can automatically
discover the underlying relationships among words in a corpus of documents
(e.g., classes or methods in source code files), and group similar words to-
gether as topics. Unlike using words directly, topic models provide a higher-
level overview and interpretable labels of the documents in a corpus (Blei et al.,
2003; Steyvers and Griffiths, 2007).

In this paper, we used latent Dirichlet allocation (LDA) (Blei et al., 2003) to
derive topics. LDA is a probabilistic topic model that is widely used in Software
Engineering research for modeling topics in software repositories (Chen et al.,
2016b). Moreover, LDA generated topics are less likely to overfit and are easier
to interpret, in comparison to other topic models such as probabilistic latent
semantic analysis (PLSA), and latent semantic analysis (LSA) (Blei et al.,
2003).

In LDA, a topic is a collection of frequently co-occurring words in the
corpus. Given a corpus of n documents f1, ..., fn, LDA automatically discovers
a set Z of topics, Z = {z1, ..., zK}, as well as the mapping θ between topics
and documents (see Figure 1). The number of topics, K, is an input that
controls the granularity of the topics. We use the notation θij to describe the
topic membership value of topic zi in document fj . In a nutshell, LDA will
generate two matrices – a topic-word matrix and a document-topic matrix.
The topic-word matrix shows the most probable words in each topic, and the
document-topic matrix shows the most probable topics in each document.

Formally, each topic is defined by a probability distribution over all of
the unique words in the corpus (e.g., all source code files). Given two Dirichlet
priors (used for computing Dirichlet distributions), α and β, LDA will generate
a topic distribution, called θj , for each file fj based on α, and generate a
word distribution, called φi, for each topic zi based on β. We exclude the
mathematical details of LDA since they are out of the scope of this paper.
Interested readers may refer to the original paper on LDA (Blei et al., 2003)
for the details.
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Table 2 Overview of the studied systems.

System Release LOC
Number of
methods

Number of
logged

methods

Number of
filtered

methods

Filtered
logged

methods

Number of
remaining
methods

Remaining
logged

methods

Hadoop 2.5.0 1,194K 42.7K 2.9K (6.7%) 25.6K 156 (0.6%) 17.1K 2.7K (15.9%)
Directory-S. 2.0.0-M20 399K 7.9K 883 (11.2%) 3.3K 46 (1.4%) 4.5K 837 (18.4%)
Qpid-Java 6.0.0 476K 20.0K 1.3K (6.6%) 13.1K 62 (0.5%) 6.9K 1.2K (18.2%)
CloudStack 4.8.0 820K 40.1K 4.4K (10.9%) 28.4K 251 (0.9%) 11.7K 4.1K (35.1%)
Camel 2.17.0 1,342K 41.1K 2.9K (7.0%) 21.4K 126 (0.6%) 19.8K 2.7K (13.8%)
Airavata 0.15 446K 29.4K 1.8K (6.1%) 11.1K 26 (0.2%) 18.4K 1.8K (9.6%)

4 Case Study Setup

This section describes the studied systems and the process that we followed
to prepare the data for our case study5.

4.1 Studied Systems

We performed a case study on six open source Java systems: Hadoop, Directory-
Server, Qpid-Java, CloudStack, Camel and Airavata (Table 2). The studied
systems are large and successful systems across different domains with years
of development. Hadoop is a distributed computing platform; Directory-Server
is an embeddable directory server; Qpid-Java is a message broker; CloudStack
is a cloud computing platform; Camel is a rule-based routing and mediation
framework; and Airavata is a framework for executing and managing com-
putational jobs and workflows on distributed computing resources. The Java
source code of these systems uses standard logging libraries such as Log4j 6,
SLF4J 7, and Commons Logging8. We excluded test files from our analysis,
since we are interested in the logging practices in the main source code files
of these systems, and we expect that logging practices will vary between main
and test code.

4.2 Data Extraction

Our goal is to study the relationship between logging decisions and the topics
of the source code. We use topics to approximate the functionality of a code
snippet. Therefore, we applied LDA at the granularity level of a source code
method, since a method usually implements a relatively independent function-
ality. We did not apply LDA at the class level granularity because a class
typically implements a mixture of functionalities. For example, a calculator
class may implement input, internal calculation, and output functionalities.

Figure 2 presents an overview of our data extraction approach. We fetched
the source code files of the studied systems from their Git repositories. We used

5 We share our replication package online: http://sailhome.cs.queensu.ca/replication/LoggingTopicModel
6 http://logging.apache.org/log4j
7 http://www.slf4j.org
8 https://commons.apache.org/logging
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Source 
code files

Extract 
methods

Remove small 
methods

Remove logging 
statements

PreprocessLDA

Filtered 
methods

Log-
removed 
methods

Methods

Pre-
processed 
methods

Topics

Fig. 2 An overview of our data extraction approach.

the Eclipse Java development tools (JDT9) to analyze the source code and ex-
tract all the methods. Small methods usually implement simple functionalities
(e.g., getters and setters, or initialize fields of a class object). Intuitively, such
methods are less likely to have logging statements. For example, 95% of the
logged methods are among the top 40% (17.1K out of 42.7K) largest meth-
ods, while only 5% of the logged methods in the Hadoop system are among
the rest 60% (25.6K out of 42.7K) of the methods. Moreover, topic models are
known to perform poorly on short documents. Therefore, for each system, we
filtered out the methods that are smaller, in terms of LOC, than a predefined
threshold. We defined the threshold for each system as the LOC of the 5%
smallest methods that contain a logging statement. The thresholds are 8, 8, 8,
5, 8 and 4 for Hadoop, Directory-Server, Qpid-Java, Camel, CloudStack and
Airavata, respectively. Table 2 also shows the effect of our filtering process, i.e.,
the number of methods that are filtered and kept, as well as the portions of
them being logged, respectively. Section 5 discusses the effect of such filtering
on our modeling results.

In order to study the relationship between logging decisions and the topics
of methods, we removed all the logging statements from the logged methods
before we performed the topic modeling. The use of standard logging libraries
in these systems brings uniform formats (e.g., logger.error(message)) to the
logging statements, thus we used a set of regular expressions to identify the
logging statements. Finally, we preprocessed the log-removed methods and
applied topic modeling on the preprocessed corpus of methods (see Section 4.3
“Source Code Preprocessing and LDA”).

4.3 Source Code Preprocessing and LDA

In this subsection, we discuss our source code preprocessing approach, and
how we apply LDA on the preprocessed source code.

We extracted the linguistic data (i.e., identifier names, string literals, and
comments) from the source code of each method, and tokenized the linguistic
data into a set of words, similar to an approach that was proposed by Kuhn

9 http://www.eclipse.org/jdt
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et al. (2007) and used in many prior studies (Chen et al., 2016b). With the set
of words for each method, we applied common text preprocessing approaches
such as removing English stop words (e.g., “a” and “the”) and stemming (e.g.,
from “interruption” to “interrupt”). We also removed programming language
keywords (e.g., “catch” and “return”) from the set of words for each method.
An open source implementation by Thomas (2012) eased our preprocessing of
the source code. Finally, we applied LDA on both unigram (i.e., single word)
and bigram (i.e., pairs of adjacent words) in each method, since including
bigrams helps improve the assignments of words to topics and the creation of
more meaningful topics (Brown et al., 1992).

Running LDA requires specifying a number of parameters such as K, α,
and β (as explained in Section 3), as well as the number of Gibbs sampling
iterations (II) for computing the Dirichlet distributions (i.e., per-document
topic distributions and per-topic word distributions). These LDA parameters
directly affect the quality of the LDA generated topics. However, choosing the
optimal parameters values can be a computational expensive task (Panichella
et al., 2013), and such optimal values may vary across systems and tasks (Chang
et al., 2009; Panichella et al., 2013; Wallach et al., 2009). As a result, we ap-
plied hyper-parameter optimization to automatically find the optimal α and
β when applying LDA using the MALLET tool (McCallum, 2002). A prior
study by Wallach et al. (2009) found that using optimized hyper-parameters
can improve the quality of the derived topics. We also set the number of Gibbs
sampling iterations II to a relatively large number (10,000) such that LDA
can produce more stable topics (Binkley et al., 2014).

We chose our K to be 500 when applying LDA on each studied system. As
suggested by prior studies (Chen et al., 2016b; Wallach et al., 2009) using a
larger K does not significantly affect the quality of LDA generated topics. The
additional topics would have low topic membership values (i.e., noise topics),
and can be filtered out. On the other hand, choosing a smaller K can be more
problematic, since the topics cannot be separated precisely. We also tried other
values of K in our study. However, we did not notice any significant differences
in our findings (Section 6).

5 Case Study Results

In this section, we present the results of our research questions. For each
research question, we present the motivation behind the research question, the
approach that we used to answer the research question, and our experimental
results.
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RQ1: Which topics are more likely to be logged?

Motivation

In this research question, we study the relationship between topics in the source
code and logging decisions. By studying this relationship, we can verify our
intuition that the source code related to certain topics is more likely to contain
logging statements. We are also interested in understanding which topics are
more likely to contain logging statements. Since topics provide a high-level
overview of a system, studying which topics are more likely to contain logging
statements may provide insights about the logging practices in general.

Approach

We applied LDA on each of our studied systems separately to derive the topics
for individual systems. In order to quantitatively measure how likely a topic
is to be logged, we define the log density (LD) for a topic (zi) as

LD(zi) =

∑n
j=1 θij ∗ LgN(mj)∑n
j=1 θij ∗ LOC(mj)

. (1)

where LgN(mj) is the number of logging statements of method mj , LOC(mj)
is the number of lines of code of method mj , n is the total number of source
code methods, and θij is the topic membership of topic zi in method mj . A
topic with a higher LD value is more likely to be logged.

As the LD metric does not consider the popularity of a topic, i.e., how many
times a topic is logged, we also follow the approach of prior studies (Chen et al.,
2012, 2017b) and define a cumulative log density (CumLD) for a topic
(zi) as

CumLD(zi) =

n∑
j=1

θij ∗
LgN(mj)

LOC(mj)
, (2)

A topic with a higher CumLD value is logged more often than a topic with a
lower CumLD value. While the LD metric indicates the likelihood of a method
of a particular topic being logged, the CumLD metric captures the overall
relationship between a topic and logging. A topic might have a very high
LD value, but there might only be a small number of methods that have
a membership of such a topic; in contrast, such a topic would have a low
CumLD value. Therefore, we consider both LD and CumLD metrics when we
determine the top-log-density topics for detailed analysis. We define a topic
as a log-intensive topic if the topic has both a high LD value and a high
CumLD value.

We analyzed the statistical distribution of the log density values for all
500 topics in each system, to verify the assumption that some topics are more
likely to be logged than other topics. We also manually studied the topics that
have the highest log density values, i.e., the log-intensive topics, to find out
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Table 3 The five number summary and the skewness of the LD values of the 500 topics in
each of the six studied systems.

System Min 1st Qu. Median 3rd Qu. Max. Skewness

Hadoop 0.00 0.01 0.01 0.02 0.07 0.98
Directory-S 0.00 0.00 0.01 0.02 0.10 2.10
Qpid-Java 0.00 0.00 0.01 0.01 0.06 1.72
Camel 0.00 0.01 0.01 0.02 0.10 1.61
Cloudstack 0.00 0.02 0.03 0.04 0.14 0.88
Airavata 0.00 0.00 0.01 0.02 0.16 2.32

Table 4 The five number summary and the skewness of the CumLD values of the 500 topics
in each of the six studied systems.

System Min 1st Qu. Median 3rd Qu. Max. Skewness

Hadoop 0.00 0.11 0.24 0.44 3.55 2.90
Directory-S 0.00 0.01 0.04 0.10 3.68 9.76
Qpid-Java 0.00 0.01 0.05 0.16 7.58 13.49
Camel 0.00 0.11 0.25 0.57 5.95 3.65
CloudStack 0.00 0.16 0.42 0.82 5.14 2.64
Airavata 0.00 0.01 0.06 0.20 15.69 10.53

which topics are more likely to be logged. For each log-intensive topic, we not
only analyzed the top words in this topic, but also investigated the methods
that have the largest composition (i.e., large θ value) of the topic, as well as
the context of the methods, to understand the meaning and context of that
particular topic.

Results

A small number of topics are much more likely to be logged. Table 3
shows the five number summary and the skewness of the log density (LD)
values of the 500 topics for each studied system. The LD distribution is always
positively skewed in every studied system. Taking the Hadoop system as an
example, the minimal LD value for a topic is 0.00, the inter-quantile-range
(the range from the first quantile to the third quantile) ranges from 0.01 to
0.02, while the maximum LD value for a topic is 0.07. The LD distribution for
the Hadoop system has a skewness of 0.98 (a skewness of 1 is considered highly
skewed (Groeneveld and Meeden, 1984)). Other studied systems have similar
or more skewed distributions of the LD values, i.e., skewness ranges from 0.88
to 2.32. The high positive skewness indicates that a small number of topics
are much more likely to be logged than other topics. Table 4 shows the five
number summary and the skewness of the cumulative log density (CumLD)
values of the 500 topics for each studied system. The CumLD values also
present a highly skewed distribution, i.e., with a skewness of 2.64 to 13.49.
The high skewness of the CumLD values implies that a small number of topics
are logged more often than other topics.
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Table 5 Top six log-intensive topics in each system. The listed topics have the highest LD
values and highest CumLD values. A topic label is manually derived from the top words in
each topic and its corresponding source code methods. We use underscores to concatenate
words into bigrams. A topic label marked with a “∗” symbol or a “†” symbol indicates
that the topic is concerned with communication between machines or interaction between
threads, respectively.

System LD CumLD Top words Topic label

Hadoop

0.07 1.32 attr, file, client, nfsstatu, handl network file system ∗
0.05 3.55 thread, interrupt, except, interrupt except, sleep thread interruption †
0.05 1.04 write, respons, verifi, repli, channel handling write request ∗
0.04 1.85 deleg, token, deleg token, number, sequenc delegation tokens ∗
0.04 2.31 event, handl, handler, event handler, handler handl event handling †
0.04 1.07 command, shell, exec, executor, execut OS command execution †

Directory-S

0.09 0.48 statu, disconnect, connect, replic statu, replic connection management ∗
0.08 0.78 target, target target, mojo, instal, command installer target
0.08 0.84 session, messag, session session, session write, write session management ∗
0.08 0.41 ldap, permiss, princip, permiss except, ldap permiss LDAP1permission ∗
0.06 2.17 contain, decod except, except, decod, length decoder exception
0.06 3.68 close, debug, inherit, except, close except cursor operation

Qpid-Java

0.06 7.58 except, messag, error, except except, occur message exception ∗
0.06 0.73 activ, spec, endpoint, handler, factori Qpid activation
0.05 1.15 connect, manag, manag connect, info, qpid connection management ∗
0.05 1.21 resourc, except, resourc except, resourc adapt, adapt JCA2 ∗
0.05 0.66 interv, heartbeat, setup interv, heartbeat interv, setup heartbeat3 ∗
0.05 0.78 locat, transact manag, manag, transact, manag locat transaction management

Camel

0.10 2.63 level, level level, info, warn, messag customized logging
0.07 2.09 header, event, transact, event header, presenc agent event header ∗
0.07 2.41 interrupt, sleep, thread, reconnect, except thread interruption †
0.06 2.52 file, gener, gener file, except, fail remote file operation ∗
0.06 4.23 channel, close, channel channel, futur, disconnect channel operation ∗
0.05 2.30 send, messag, send messag, websocket, messag send sending message ∗

CloudStack

0.10 1.75 result, router, execut, control, root router operation ∗
0.09 2.68 agent, host, attach, disconnect, transfer agent connection ∗
0.08 1.84 wait, except, timeout, interrupt, thread thread interruption †
0.08 1.92 command, citrix, base, resourc base, citrix resourc citrix connection ∗
0.07 2.64 context, context context, overrid context, overrid, manag VM context operation
0.07 3.02 host, hyper, hyper host, context, vmware host command request ∗

Airavata

0.16 9.21 object, overrid, object object, format, format object customized logging
0.13 15.69 type, resourc, except, resourc type, registri resource operation
0.10 2.14 channel, except, queue, connect, exchang channel operation ∗
0.09 1.40 except, client, airavata, airavata client, except airavata client connection ∗
0.09 1.85 server, derbi, start, jdbc, except server operation exception ∗
0.08 2.63 server, port, transport, except, server port server operation ∗

1 Lightweight directory access protocol.
2 Java EE Connector Architecture (JCA) is a solution for connecting application servers and enterprise information
systems.
3 A heartbeat is a periodic signal sent between machines to indicate normal operations.

Most of the log-intensive topics in the studied systems can be
generalized to topics that are concerned with communication be-
tween machines or interaction between threads. Table 5 list the top
six log-intensive topics for each system. In order to ensure that the six topics
for each system have both the highest LD and CumLD values, we used an
iterative approach to get these topics. Initially, we chose the intersection of
the six topics with the highest LD values and the six topics with the highest
CumLD values. If the number of topics in the intersection set is less than six,
we chose the intersection of the seven topics with the highest LD values and
the seven topics with the highest CumLD values. We continued expanding
our search scope until we got the top six log-intensive topics. By manually
studying the log-intensive topics in the studied systems, we labeled the mean-
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ing of each of these log-intensive topics in Table 5. 61% (22 out of 36) of
the top log-intensive topics capture communication between machines, while
14% (5 out of 36) of the top log-intensive topics capture interactions between
threads. We use a ∗ symbol in Table 5 to mark topics that are concerned with
communication between machines, and use a † symbol in Table 5 to mark
topics that are concerned with interactions between threads. For instance, the
first log-intensive topic in the Directory-Server system, as well as the third
log-intensive topic in the Qpid-Java system, are concerned with “connection
management”. Developers tend to log the management operations, such as
connecting, refreshing, closing, and information syncing, of a connection be-
tween two machines. As the communication process between two machines
cannot be controlled or determined by a single machine, logging statements
provide a way for developers, testers, or users to monitor the communication
processes and provide rich information for debugging such processes. Simi-
larly, the interaction between threads cannot be controlled by a single thread,
thus developers may also use logging statements more often to track such in-
teractions between threads. As an example, the second log-intensive topic in
Hadoop is about “thread interruption”.

Most top log-intensive topics only appear in one individual sys-
tem, but a few topics emerge across systems. As we applied LDA on
each studied system separately, it is not surprising that we generate mostly
different topics for different systems, likewise for top log-intensive topics. For
example, the first log-intensive topic in Hadoop is related to “network file sys-
tem” (NFS). Developers use logging statements to track various operations
on a network file system, such as creation, reading, writing and lookup. Al-
though we know that such a topic is concerned with communication, the topic
itself is not a general topic for all systems. Systems that do not use network
file systems would not consider logging such a topic. Another example is the
fourth log-intensive topic “LDAP permission” in Directory-Server. If a party
is accessing a directory but it does not have the permission to access that
particular directory, such a behavior would be logged as an error. Only the
systems that use LDAP need to consider logging such a topic. However, a few
topics do emerge across systems. For example, the second log-intensive topic
in Hadoop, the third log-intensive topic in Camel and the third log-intensive
topic in CouldStack are all concerned with “thread interruption”. For another
example, the fifth log-intensive topic in Camel and the third log-intensive topic
in Airavata are both related to “channel operation”. The findings motivate
us to study how common topics (i.e., topics shared by multiple sys-
tems) are logged across different systems (see RQ2).

Discussion

Impact of choosing a different number of topics. In this RQ, we use
LDA to identify 500 topics for each system and study the distribution of log
density among these topics. We now explore how the choice of the number of
topics impacts our analysis in this RQ. In this sub-section, we consider the



14 Heng Li et al.

Table 6 The five number summary and the skewness of the LD values of the topics in the
Hadoop system.

Number of topics Min 1st Qu. Median 3rd Qu. Max. Skewness

100 0.00 0.01 0.01 0.02 0.04 0.71
500 0.00 0.01 0.01 0.02 0.07 0.98
1,000 0.00 0.01 0.01 0.02 0.07 1.29

Table 7 The five number summary and the skewness of the CumLD values of the topics
in the Hadoop system.

Number of topics Min 1st Qu. Median 3rd Qu. Max. Skewness

100 0.30 0.87 1.37 2.35 8.66 1.99
500 0.00 0.11 0.24 0.44 3.55 2.90
1,000 0.00 0.02 0.08 0.23 3.56 4.21

Hadoop system as an example, and vary the number of topics between 100
and 1,000. Table 6 and Table 7 summarize the distributions of the LD values
and the CumLD values for the Hadoop system when varying the number of
topics. As we increase the number of topics, the skewness of the LD values
and the skewness of the CumLD values both increase. This phenomenon can
be explained by the intuition that using a larger number of topics can better
distinguish log-intensive topics from other topics. However, both the LD values
and the CumLD values still present highly positive-skewed distributions when
we vary the number of topics, which supports our observation that a small
number of topics are much more likely to be logged.

Table 8 lists the top six log-intensive topics in the Hadoop system when
choosing a different number of topics (i.e., 100, 500, and 1,000). The top log-
intensive topics do not remain the same when we vary the number of topics,
because using different number of topics generates topics at different granu-
larity. However, some topics, such as “thread interruption”, “event handling”,
“network file system”, and “OS command execution”, do appear among the
top log-intensive topics when varying the number of topics. We highlight these
common topics in bold font in Table 8. Moreover, even when we vary the num-
ber of topics, most of the log-intensive topics are still about communication
between machines or interaction between threads. We also have similar obser-
vations in the other studied systems.

Relationship between topics and structural complexity. In this RQ,
we found that a few topics are more likely to be logged than other topics.
However, it is possible that these differences are related to the differences of
the code structures. In this sub-section, we examine the relationship between
the topics and the structural complexity of a method.

We use McCabe’s cyclomatic complexity (McCabe, 1976) (CCN) to mea-
sure the structural complexity of a method. We define two metrics, topic diver-
sity (TD) and topic-weighted log density (TWLD), to measure the diversity
of topics in a method (i.e., cohesion) and the log density of a method which is
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Table 8 Top six log-intensive topics in the Hadoop system, using different number of topics.
A topic label marked with a “∗” symbol or a “†” symbol indicates that the topic is concerned
with communication between machines or interaction between threads, respectively. The
bold font highlights the common topics that appear among the top log-intensive topics
when varying the number of topics.

Number
of topics

Top words Topic label

100

thread, except, interrupt, interrupt except, wait thread interruption †
servic, server, stop, start, handler server operation ∗
event, event event, handl, event type, handler event handling †
block, replica, datanod, pool, block block work node operation ∗
resourc, request, contain, prioriti, node resource allocation ∗
contain, contain contain, statu, launch, contain statu container allocation ∗

500

attr, file, client, nfsstatu, handl network file system ∗
thread, interrupt, except, interrupt except, sleep thread interruption †
write, respons, verifi, repli, channel handling write request ∗
deleg, token, deleg token, number, sequenc delegation tokens ∗
event, handl, handler, event handler, handler handl event handling †
command, shell, exec, executor, execut OS command execution †

1000

attr, file, client, nfsstatu, handl network file system ∗
bean, mbean, info, object, info bean bean object
node, path, node path, data, path node work node operation ∗
thread, interrupt, except, interrupt except, wait thread interruption †
state, deleg, master, secret manag, manag delegation tokens ∗
command, shell, exec, exit, exit code OS command execution †

inferred from its topics, respectively. The topic diversity, which is also called
topic entropy (Hall et al., 2008; Misra et al., 2008), of a method is defined as

TD(mj) = −
∑T

i=0 θij log2θij , where θij is the membership of topic i in method
j and T is the total number of topics. A larger topic diversity means that a
method is more heterogeneous, while a smaller topic diversity means that a
method is more coherent.

The topic-weighted log density of a method j is defined as TWLD(mj) =∑T
i=0 θijLDi,−j , where LDi,−j is the log density of topic i that is calculated

from Equation 1 considering all the methods except for the method j. When
calculating the TWLD value of a method, we excluded that particular method
from Equation 1 to calculate the log density of topics, in order to avoid bias.
A large TWLD value means that a method contains a large proportion of
log-intensive topics.

Figure 3 shows the pairwise Spearman rank correlation between cyclo-
matic complexity (CCN), topic diversity (TD), and topic-weighted log density
(TWLD) of all the methods in our studied systems. We use the Spearman rank
correlation because it is robust to non-normally distributed data (Swinscow
et al., 2002). In fact, the Shapiro-Wilk normality test shows that the distri-
butions of these three metrics are all statistically significantly different from
a normal distribution (i.e., p-value < 0.05). Topic diversity and cyclomatic
complexity have a positive correlation of 0.22 to 0.39 in the studied systems.
In other words, more structurally complex methods tend to have more diverse
topics, which matches prior findings (Liu et al., 2009b). On the other hand,
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Fig. 3 Pairwise Spearman correlation between cyclomatic complexity (CCN), topic diver-
sity (TD), and topic-weighted log density (TWLD). The symbols below the correlation values
indicate the statistical significance of the respective correlation: o p ≥ 0.05; * p < 0.05; **
p < 0.01; *** p < 0.001.

the topic-weighted log density of a method has a very weak (-0.15 to 0.21) cor-
relation (Swinscow et al., 2002) with the cyclomatic complexity of a method,
which means that the log intensity of the topics is unlikely to be correlated
with the cyclomatic complexity of the code. Therefore, even though struc-
turally complex methods tend to have diverse topics, the logging
information that is captured by these topics is not correlated with
code complexity.

�

�

�

�

A small number of topics are more likely to be logged than other
topics. Most of these log-intensive topics in the studied systems cor-
respond to communication between machines or interaction between
threads. Our findings encourage future work to develop topic-based
logging guidelines (i.e., which topics need developers’ further atten-
tion for logging).
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RQ2: Are common topics logged similarly across different systems?

Motivation

In RQ1, we applied LDA on each system separately and we got mostly dif-
ferent top log-intensive topics for different systems. However, we did find a
few top log-intensive topics that emerge across different systems. Therefore, in
this research question, we quantitatively study how common topics are logged
across different systems. If common topics are similarly logged across differ-
ent systems, we might be able to provide general suggestions on what topics
should be logged across systems; otherwise, developers should make logging
decisions based on the context of their individual system.

Approach

Cross-system topics. In order to precisely study the logged topics across
different systems, we combined the methods of the studied systems together
into one corpus, and applied LDA using K=3,000. We use 3,000 topics as we
hope to identify topics that have the same granularity as the topics that we
identified in RQ1 (i.e., 500 topics ∗ 6 systems). We used the same preprocessing
and topic modeling approach as we had applied to individual systems in RQ1.
We refer to the resulting topics as “cross-system topics”. With the cross-system
topics, we firstly need to determine whether a topic exists in each studied
system. If a topic exists in multiple systems, then this topic is common among
multiple systems.

Topic assignment in a system. We use the topic assignment to measure
the total presence of a topic in a system. The assignment of a topic in a system
is the sum of that topic’s memberships in all the methods of that system. A
higher topic assignment means that a larger portion of the methods is related
to the topic (Baldi et al., 2008b; Thomas et al., 2014). The assignment of topic
zi in system sk is defined as

A(zi, sk) =

Nk∑
j=0

θij , (3)

where Nk is the number of methods in system sk, and θij is the topic mem-
bership of topic zi in method mj .

As different systems have different number of methods, it is unfair to com-
pare the assignment of a topic in different systems. Therefore, we instead use
a normalized definition of assignment:

AN(zi, sk) =

Nk∑
j=0

θij/Nk, (4)

The normalized assignment values of all the topics sum up to 1 for each indi-
vidual system. We refer to normalized assignment as “assignment” hereafter.
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Fig. 4 The cumulative assignment of all the topics in each studied system. The topics are
sorted by their assignments from high to low.

Common topics shared across systems. Figure 4 shows the cumulative
assignments of all the topics in each system when sorting the topics by their
assignments. For each system, a small portion of topics (208 to 696 out of
3,000 topics) account for 90% of the total assignment of each system. In other
words, only a small portion of topics are significantly assigned in each system.
For each system, we define its important topics as its most assigned topics
that account for 90% of the total assignment of that particular system. For
example, 696 out of 3,000 topics are important topics in the Hadoop system.

We define a topic to be a common topic if the topic is important in
multiple systems. For example, if a topic is important in two systems, then
this topic is commonly shared between the two systems. If a topic is important
in all the studied systems, then this topic is commonly shared across all the
studied systems.

Log density correlation. In order to study whether common topics are
logged similarly across different systems, we measured the pairwise correla-
tion of the log density of the common topics that are shared among different
systems. Specifically, for each pair of systems, we first calculated their respec-
tive log density values for their common topics, so we calculate two sets of
log density values for the same set of common topics. We then calculated the
Spearman rank correlation between these two sets of log density values. A
large correlation value indicates that the common topics are logged similarly
across these two systems. As discussed in RQ1, the log density values of the
topics have a skewed distribution. In fact, the Shapiro-Wilk test shows that
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Table 9 Number of topics that are shared by N ∈ {1, 2, ..., 6} systems.

# Systems N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

# Shared
topics

1,359
(45%)

1,130
(38%)

203
(7%)

109
(4%)

77
(3%)

83
(3%)

39
(1%)

the distributions of the log density values are statistically significantly dif-
ferent from a normal distribution (i.e., p-value < 0.05). Therefore, we chose
the Spearman rank correlation method because it is robust to non-normally
distributed data (Swinscow et al., 2002). Prior studies also applied Spearman
ranking correlation to measure similarity (e.g. Goshtasby, 2012).

Results

All the studied systems share a portion (i.e., 12% to 62%) of their
topics with other systems. Table 9 lists the number of topics that are
shared by N ∈ {1, 2, ..., 6} systems. Among all the 3,000 topics, around half
(1,641) of them are important in at least one system, while the rest of them
(1,359) are not important in any system. Around one-sixth (511 topics) of the
topics are shared by at least two systems, among which only 39 topics are
shared by all the six studies systems. Figure 5 lists the numbers of common
topics that are shared between each pair of systems. For each system, Figure 5
also shows the percentage of its topics that are shared with each of the other
systems. As shown in the figure, each studied system shares 12% to 62% of its
topics with each of the other systems. In general, Hadoop and Camel share
the most topics with other systems, possibly because they are platform or
framework applications that contain many modules of various functionalities.
In comparison, Airavata share the least topics with other systems. Specifically,
Hadoop and Camel share the most topics (296) between them, while Directory-
server and Airavata share the least topics (51).

The likelihood of logging the common topics has a statistically
significant correlation of 0.35 to 0.62 among all the studied systems.
Figure 6 shows the Spearman correlation of the log density between each
pair of systems on their common topics. For each pair of systems, their log
density values of the common topics have a statistically significant (i.e., p-
value < 0.05) correlation of 0.35 to 0.62. In other words, the likelihood of
logging the common topics is statistically significantly correlated between each
pair of the studied systems. The Hadoop system and the Cloudstack system
have the largest log density correlation (0.62) on their common topics. As a
distributed computing platform and a cloud computing platform, respectively,
these two systems are likely to share similar logging needs for their common
topics. The Qpid-Java system and the Airavata system have the smallest log
density correlation (0.35) on their common topics. As a message broker and a
framework for managing and executing computational jobs, respectively, these
two systems are less likely to have similar logging needs.
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Fig. 5 The number of topics that are shared between each pair of systems. The numbers in
the diagonal cells show the number of important topics per system. The percentage values
show the percentage of topics in the system indicated by the row name that are shared with
the system indicated by the column name.

Discussion

How do similar systems log common topics? In our case study, we chose
six systems from different domains. We found that each system shares a por-
tion (12% to 62%) of topics with other systems, and that the likelihood of
logging the common topics is statistically significantly correlated among these
systems. It is interesting to discuss how similar systems log their common
topics. Therefore, we analyzed the common topics that are shared by two sim-
ilar systems: Qpid-Java and ActiveMQ. Both systems are popular open source
message brokers implemented in Java. Specifically, we added the ActiveMQ
system into our cross-system topic modeling. We still set the number of topics
to be 3,000, as we found that adding the new system into our cross-system
topic modeling does not significantly change the number of important topics
of the existing systems.

Table 10 shows the number of common topics between these two systems
and their log density correlation. As shown in the table, ActiveMQ has a wider
range of topics than Qpid-Java. The former has 675 important topics while
the later has 432 important topics. The larger number of important topics in
ActiveMQ is likely because ActiveMQ is not only a message broker, but it
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Fig. 6 The Spearman correlation of the log density of the common topics that are shared
between each pair of systems. The values in the diagonal cells show the average log density
correlation between each system and other systems on the shared topics. The symbols below
the correlation values indicate the statistical significance of the respective correlation: o
p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

also supports many other features such as enterprise integration patterns10.
These two systems share 294 common topics. The Qpid-Java system shares
68% (the largest percentage for each pair of systems) of its topics with the
ActiveMQ system. The respective log density values of these common topics
have a statistically significant correlation of 0.45, which is not the highest
correlation value between each pair of systems. In summary, for similar systems
such as Qpid-Java and ActiveMQ, they may share a relatively large portion of
common topics; however, their likelihood of logging such common topics does
not necessarily have a larger correlation than a pair of systems from different
domains.

Topics shared by all the studied systems. As shown in Table 9, there are
only 39 topics that are commonly shared among all the studied systems. We
measured each system’s log density for these 39 topics and calculated their
pairwise Spearman correlations. The log density values of the studied systems
have a statistically significant correlation of 0.38 to 0.70. In other words, the
likelihood of logging these common topics is statistically correlated among all
the studied systems. Table 11 also lists the six most log-intensive topics and

10 http://activemq.apache.org



22 Heng Li et al.

Table 10 Common topics between two similar systems: Qpid-Java and ActiveMQ. The
symbols below a correlation value indicate the statistical significance of the correlation: ***
p < 0.001.

System # Important topics # Common topics Log density correlation

Qpid-Java 432 294 (68%) 0.45
***ActiveMQ 675 294 (44%)

Table 11 The common topics that are shared by all of the six studied systems: The six
most log-intensive topics and the six least log-intensive topics. A topic label marked with
a “∗” symbol or a “†” symbol indicates that the topic is concerned with communication
between machines or interaction between threads, respectively.

Top words Topic label

Most
likely
logged
topics

stop, except, overrid, stop except, overrid stop, servic , except stop, shutdown, servic stop, stop servic stopping server ∗
except, except except, error, thrown, except thrown, param, occur, error occur, except error, thrown error throwing exception
host, host host, list host, find, host type, list, host list, host find, type host, find host finding host ∗
connect, connect connect, except, except connect, connect except, close, connect close, creat connect, con-
nect host, creat

connection management ∗

event, event event, handl, event type, type, event handler, handler, handler handl, overrid, event applic event handling †
messag, messag messag, except, except messag, messag except, messag param, param messag, ob-
ject messag, overrid, object

message exception ∗

Least
likely
logged
topics

hash, code, hash code, overrid, overrid hash, code result, prime, prime result, result prime, code hash hash coding
equal, object, overrid, equal object, overrid equal, result equal, equal equal, object equal, equal type,
type equal

equal operation

append, append append, builder, builder builder, overrid, builder append, overrid builder, length append,
time append, type append

string builder

system, println, system println, print, usag, except system, println system, exit, println usag, usag system printing
index, index index, substr, start index, param, substr index, length, length index, size, list index string indexing
node, node node, node list, list node, param node, type node, except node, node type, node param, param graph node management

the six least log-intensive topics among the 39 common topics. After manual
analysis and labeling, we found that these two groups of topics have very
distinguishable patterns. Most of the top-logged topics are concerned with
communication between machines or interactions between threads, such as
“stopping server” and “finding host”. In comparison, most of the least-logged
topics are concerned with low-level data structure operations, such as “hash
coding” and “string indexing”.

Impact of choosing a different number of topics. In this RQ, we chose
3,000 topics for the cross-system topic modeling. We now examine whether our
choice of the number of topics impacts our results. Using the Hadoop system
as an example, Table 12 shows the cross-system topic modeling results when
varying the number of topics from 3,000 to 2,000 and 1,000. As we decrease
the number of topics from 3,000 to 1,000, the number of important topics for
the Hadoop system also decreases from 696 to 384, at a lower decreasing ratio.
The median number of common topics that are shared between Hadoop and
other systems also decreases from 233 to 148. However, the percentage of the
common topics increases from 33% to 39%. In other words, as we decrease the
number of topics, the topics become more coarse-grained and they are more
likely to be shared by multiple systems. Finally, the log density correlation of
the common topics between the Hadoop system and other systems does not
change significantly when we vary the number of topics from 3,000 to 1,000;
in fact, the median correlation values remain around 0.5 and the correlations
are always statistically significant while we vary the number of topics. Similar
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Table 12 Cross-system topic modeling results when varying the number of topics, using
the Hadoop system as an example.

System # Topics # Important topics
# Common topics

(median)
Log density correlation

(median)

Hadoop
3,000 696 233 (33%) 0.49
2,000 584 213 (36%) 0.45
1,000 384 148 (39%) 0.53

observations also hold to the other studied systems. Overall, our results in this
research question are not sensitive to the number of topics that is used in the
cross-system topic modeling.�

�

�

�

Each studied system shares a portion (12% to 62%) of its topics
with other systems. The likelihood of logging the common topics has
a statistically significant correlation of 0.35 to 0.62 among all the
studied systems. Developers of a particular system can consult other
systems when making their logging decisions or when developing
logging guidelines.

RQ3: Can topics provide additional explanatory power for the like-
lihood of a code snippet being logged?

Motivation

In RQ1, we observed that source code that is related to certain topics is more
likely to be logged. In this RQ, we further studied the statistical relationship
between topics and logging. We are interested in knowing whether our code
topics can offer a different view of logging. Namely, we want to study whether
adding topic-based metrics to a set of baseline metrics can provide additional
explanatory power for the likelihood of a code snippet being logged.

Approach

To answer this research question, we built regression models to study the
relationship between the topics in a method and the likelihood of a method
being logged. The response variable of our regression models is a dichotomous
variable that indicates whether a method should have a logging statement
or not, and the explanatory variables are represented by a set of baseline
metrics and topic-based metrics. The baseline metrics capture the structural
information of a method, while the topic-based metrics capture the semantic
information of a method.

Baseline metrics. We used 14 baseline metrics, as listed in Table 13, to
capture the structural information of a method. Prior studies (Fu et al., 2014;
Yuan et al., 2012a; Zhu et al., 2015) found that the structure of a code snippet
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Table 13 Selected baseline metrics and the rationale behind the choices of these metrics.

Metric Definition (d) — Rationale (r)

LOC
d: Number of lines of code in a method.
r: Large methods are likely to have more logging statements.

CCN
d: McCabe’s cyclomatic complexity (McCabe, 1976) of a method.
r: Complex methods are likely to have more logging statements.

NUM TRY
d: Number of try statements in a method.
r: A try block indicates developers’ uncertainty about the execution outcome
of code, thus developers tend to use logging statements for monitoring or
debugging purposes.

NUM CATCH
d: Number of catch clauses in a method.
r: Exception catching code is often logged (Apache-Commons, 2016; Fu et al.,
2014; Microsoft-MSDN, 2016; Yuan et al., 2012a; Zhu et al., 2015).

NUM THROW
d: Number of throw statements in a method.
r: A logging statement is sometimes inserted right before a throw state-
ment (Fu et al., 2014); developers also sometimes re-throw an exception in-
stead of logging an exception.

NUM THROWS
d: Number of throws clauses in a method declaration.
r: Methods that throw exceptions are likely to have logging statements.

NUM IF
d: Number of if statements in a method.
r: Developers tend to log logic-branch points for understanding execution
traces (Fu et al., 2014).

NUM ELSE
d: Number of else clauses in a method.
r: Developers tend to log logic-branch points for understanding execution
traces (Fu et al., 2014).

NUM SWITCH
d: Number of switch statements in a method.
r: Developers tend to log logic-branch points for understanding execution
traces (Fu et al., 2014).

NUM FOR
d: Number of for statements in a method.
r: Logging statements inside loops usually record the execution path or status
of the loops.

NUM WHILE
d: Number of while statements in a method.
r: Logging statements inside loops usually record the execution path or status
of the loops.

NUM RETURN
d: Number of return statements in a method.
r: More return statements indicates a more complex method (i.e., more pos-
sible execution outcomes); such a method is more likely to be logged for
monitoring or debugging purposes.

NUM METHOD
d: Number of method invocations in a method.
r: Developers tend to check and log a return value from a method invoca-
tion (Fu et al., 2014).

FANIN
d: The number of classes that depend on (i.e., reference) the containing class
of a method.
r: High fan-in classes like libraries might have less logging statements to avoid
the generation of too much logging.

exhibits a strong relation with its logging needs. Table 13 also briefly explains
the rationale behind studying each of these baseline metrics.

Topic-based metrics. The topic modeling results give us the membership
(θ) assigned for each of the topics in each method. We consider the membership
values that are assigned to the topics as the topic-based metrics, denoted by
T0-T499. Prior studies also used similar topic-based metrics to predict or
understand the relationship between topics and software defects (Chen et al.,
2012; Nguyen et al., 2011). We filtered out topic membership values that are
less than a threshold (we use 0.01 as the threshold) to remove noise topics for
each method (Chen et al., 2012; Wallach et al., 2009).
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Model construction. We built LASSO (least absolute shrinkage and se-
lection operator (Tibshirani, 1996)) models to study the relationship between
the explanatory metrics of a method and a response variable that indicates
whether a method should have a logging statement or not. We use a LASSO
model because it uses regularization to penalize a complex model that leads to
over-fitting and it conducts feature selection simultaneously (Kuhn and John-
son, 2013; Tibshirani, 1996). An over-fitted model performs very well on the
data on which the model was built, but usually has poor accuracy on a new
data sample (Kuhn and Johnson, 2013). It is generally true that more complex
models are more likely to lead to over-fitting (Kuhn and Johnson, 2013). The
LASSO model uses a λ parameter to penalize the complexity of a model: the
larger the λ value, the simpler the model (Tibshirani, 1996). Among the 500
topic-based metrics, many of them have little or no contribution for determin-
ing the logging likelihood of a method. A LASSO model, with a proper setting
of the λ parameter, enables us to significantly reduce the number of variables
in the model and reduce the possibility of over-fitting (Tibshirani, 1996).

We used the stratified random sampling method (Kuhn and Johnson, 2013;
Witten and Frank, 2005) to split the dataset of a system into 80% of train-
ing dataset and 20% of testing dataset, such that the distributions of logged
methods and unlogged methods are properly reflected in both the training and
testing datasets. We used the 80% training dataset to construct the model and
tune the λ parameter, and left the 20% testing dataset only for testing purpose
using the already tuned λ parameter. Similar “80%:20%” splitting approaches
were also used by prior studies (Kuhn and Johnson, 2013; Martin et al., 2012).
Splitting the dataset into distinct sets for model construction (including pa-
rameter tuning) and model evaluation ensures that we avoid over-fitting and
that we provide an unbiased sense of model performance (Kuhn and Johnson,
2013).

We used 10-fold cross validations to tune the λ value in a LASSO model,
using only the training dataset. For each λ value, we used a 10-fold cross
validation to measure the performance of the model (represented by AUC)
using the λ value, and repeated for different λ values until we find a λ value
with the best model performance. In this way, we got a LASSO model with
the best cross-validated performance and we can avoid over-fitting. We used
the “cv.glmnet” function in the “glmnet” R package (Friedman et al., 2010;
Simon et al., 2011) to implement our model tuning process.

Model evaluation. We used balanced accuracy (BA) as proposed by a
prior study (Zhu et al., 2015) to evaluate the performance of our LASSO mod-
els. BA averages the probability of correctly identifying a logged method and
the probability of correctly identifying a non-logged method. BA is widely
used to evaluate the modeling results on imbalanced data (Cohen et al., 2004;
Zhang et al., 2005; Zhu et al., 2015), since it avoids over optimism on imbal-
anced data sets. BA is calculated by Equation (5):

BA =
1

2
× TP

TP + FN
+

1

2
× TN

FP + TN
(5)
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where TP, FP, FN and TN represent true positive, false positive, false nega-
tive and true negative, respectively.

We also used the area under the ROC (receiver operating characteristic)
curve (AUC) to evaluate the performance of the LASSO models. While the
BA provides a balanced measure on our models’ accuracy in classifying logged
methods and non-logged methods, the AUC evaluates our models’ ability of
discrimination, i.e., how likely a model is able to correctly classify an actual
logged method as a logged method, rather than classify an actual unlogged
method as a logged method. The AUC is the area under the ROC curve
which plots the true positive rate (TP/(TP +FN)) against false positive rate
(FP/(FP + TN)). The AUC ranges between 0 and 1. A high value for the
AUC indicates a classifier with a high discriminative ability; an AUC of 0.5
indicates a performance that is no better than random guessing.

Evaluating the effect of the metrics on the model output. We eval-
uated the effect of the metrics (i.e., the explanatory variables) on the model
output, i.e., the likelihood of a method being logged, by comparing the met-
rics’ standardized regression coefficients in the LASSO models. Standardized
regression coefficients describe the expected change in the response variable
(in standard deviation units) for a standard deviation change in a explana-
tory variable, while keeping the other explanatory variables fixed (Bring, 1994;
Kabacoff, 2011). A positive coefficient means that a high value of that partic-
ular variable is associated with a higher probability of a method being logged,
while a negative coefficient means that a high value of that particular variable
is associated with a lower probability of a method being logged. For example,
a topic-based metric with a positive coefficient means that a method with a
greater membership of that particular topic has a higher chance to be logged.
The standardized regression coefficients are not biased by the different scale
of different variables in the model. In this work, we calculate the standardized
regression coefficients by standardizing each of the explanatory variables to a
mean of 0 and a standard deviation of 1, before feeding the data to the LASSO
models.

Results

Table 14 shows the performance of the models that are built using the baseline
metrics, and the models that are built using both the baseline and topic-
based metrics. A high AUC indicates that our LASSO models are able to
discriminate logged methods versus not-logged methods. A high BA implies
that our LASSO models are able to provide accurate classification for the
likelihood of a method being logged. The results highlight that developers are
able to leverage a model to aid their logging decisions.

Adding topic-based metrics to the baseline models gives a 3% to
13% improvement on AUC and a 6% to 16% improvement on BA
for the LASSO models. In order to evaluate the statistical significance of
adding the topic-based metrics to our baseline models, we used a Wilcoxon
signed-rank test to compare the performance of the models that only use the
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Table 14 Performance of the LASSO models, evaluated by AUC and BA.

Project
Baseline metrics Baseline + Topics
AUC BA AUC BA

Hadoop 0.82 0.72 0.87 (+6%) 0.78 (+7%)
Directory-Server 0.86 0.75 0.94 (+9%) 0.86 (+16%)
Qpid-Java 0.80 0.74 0.90 (+13%) 0.82 (+10%)
Camel 0.86 0.78 0.90 (+4%) 0.82 (+6%)
CloudStack 0.83 0.76 0.88 (+6%) 0.80 (+6%)
Airavata 0.96 0.88 0.99 (+3%) 0.95 (+8%)
Cliff’s δ - - 0.72 (large) 0.69 (large)
P-value (Wilcoxon) - - 0.02 (sig.) 0.02 (sig.)

baseline metrics and the performance of the models that use both the baseline
and topic-based metrics. The Wilcoxon signed-rank test is the non-parametric
analogue to the paired t-test. We use the Wilcoxon signed-rank test instead of
the paired t-test because the former does not assume a normal distribution of
the compared data. We use a p-value that is below 0.05 to indicate that the
alternative hypothesis (i.e., the performance change is statistically significant)
is true. The test on the AUC values and the test on the BA values both result
in a p-value of 0.02, which means that adding the topic-based metrics statis-
tically significantly improves the performance of our LASSO models. We also
computed Cliff’s δ effect size (Macbeth et al., 2011) to compare the perfor-
mance of the models that only use the baseline metrics versus the performance
of the models that use both the baseline metrics and the topic-based metrics.
Cliff’s δ also has no assumption on the normality of the compared data. The
magnitude of Cliff’s δ is assessed using the thresholds that are provided by Ro-
mano et al. (2006), i.e., δ < 0.147 “negligible”, δ < 0.33 “small”, δ < 0.474
“medium”, and δ >= 0.474 “large”. As shown in Table 14, the effect size of the
AUC improvement is 0.72 (large), and the effect size of the BA improvement
is 0.69 (large). Therefore, topic-related metrics provide additional explanatory
power to the models that are built using the structural baseline metrics. In
other words, topics can provide additional explanatory power for the likelihood
of a method being logged.

Both our baseline and topic-based metrics play important roles in deter-
mining the likelihood of a method being logged. Table 15 shows the top ten
metrics for each LASSO model that uses both the baseline metrics and the
topic-based metrics. These metrics are ordered by the absolute value of their
corresponding standardized coefficients in the models. In each model, five to
seven of the top ten important metrics for determining the likeli-
hood of a method being logged are our topic-based metrics.

The baseline metrics NUM TRY, NUM METHOD, and NUM CATCH
have a strong relationship with the likelihood of a method being logged. Each
of these three metrics appears at least four times in the top ten metrics and has
a positive coefficient in the LASSO models for all studied systems. Developers
tend to log try blocks as they are concerned about the uncertainty during the
execution of try blocks; developers log method invocations as developers usu-
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Table 15 The top ten important metrics for determining the likelihood of a method being
logged and their standardized coefficients. A letter “T” followed by a parenthesis indicates
a topic-based metric and the manually derived topic label. A topic label followed by a ‡
symbol indicates that the particular topic is a log-intensive topic as listed in Table 5.

Hadoop Directory-Server Qpid-Java

Metric Coef Metric Coef Metric Coef
NUM METHOD 0.72 NUM METHOD 0.73 T (message exception) ‡ 0.77
NUM CATCH 0.42 NUM TRY 0.58 LOC 0.62
T (prototype builder) -0.31 T (cursor operation ‡) 0.43 NUM RETURN -0.54
CCN 0.28 T (decoder exception ‡) 0.31 T (list iteration) -0.49
T (server protocal) -0.26 T (cursor exception) -0.28 NUM IF -0.26
NUM TRY 0.25 T (string builder) -0.24 T (connection management ‡) 0.25
NUM THROW -0.22 T (naming exception) -0.22 NUM CATCH 0.25
T (client protocal) -0.21 FANIN -0.18 T (object attribute) -0.20
T (equal operation) -0.15 T (state transition) -0.18 T (write flag) -0.19
T (string builder) -0.14 T (tree operation) 0.15 T (session management) ‡ 0.17

Camel CloudStack Airavata

Metric Coef Metric Coef Metric Coef
NUM METHOD 1.13 NUM TRY 0.80 NUM TRY 2.09
NUM TRY 0.29 NUM METHOD 0.62 FANIN -0.83
NUM THROWS 0.28 NUM CATCH 0.44 T (Thrift code - object reader) -0.69
T (JSON schema) -0.22 T (search parameter) -0.25 T (Thrift code - object writer) -0.69
NUM CATCH 0.22 T (search entity) -0.25 NUM THROWS 0.39
NUM THROW -0.17 T (server response) -0.20 NUM METHOD 0.37
T (string builder) -0.16 T (legacy transaction) -0.16 T (result validation) -0.33
T (model description) -0.15 T (search criteria) -0.15 T (resource operation) ‡ 0.31
T (REST configuration) -0.13 NUM RETURN 0.14 T (customized logging) ‡ 0.23
T (event handling) ‡ 0.11 T (equal operation) -0.14 T (result transfer) 0.17

ally need to check and record the return values of such method invocations;
developers log catch blocks as a mean to handle exceptions for debugging pur-
poses (Apache-Commons, 2016; Microsoft-MSDN, 2016). The baseline metrics
NUM THROW, NUM THROWS and FANIN each appears twice in the top
ten metrics. The NUM THROW metric has a negative coefficient in both of
these two occurrences, indicating that developers tend not to throw an ex-
ception and log it at the same time; instead, they tend to log when they are
catching an exception. In contrast, the NUM THROWS metric has a positive
coefficient, showing that developers tend to add logging statements in meth-
ods that specify potential exceptions that might be thrown in that particular
method or callee methods (with the latter case being more usual). The FANIN
metric has a negative coefficient, indicating that high fan-in code tends to be
associated with less logging statements, possibly for reducing logging overheads
when called by other methods. Both the LOC and CNN metrics appear only
once in the top ten metrics. The LOC metric has a positive coefficient, which
is obvious as larger methods are more likely to require logging statements. The
CCN metric also has a positive coefficient, indicating that developers tend to
log complex methods which may need future debugging (Shang et al., 2015).

The topic-based metrics play important roles in the LASSO mod-
els; in particular, the log-intensive topics have a strong and positive
relationship with the likelihood of a method being logged. As shown
in Table 15, we manually derived the topic label for each topic-based metric,
by investigating the top words in the topic, the methods that have the largest
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membership of the topic, and the containing classes of these methods. We
use a ‡ symbol to mark the log-intensive metrics that we uncovered in RQ1.
The metrics based on the log-intensive topics that are labeled as “cursor op-
eration”, “decoder exception”, “message exception”, “session management”,
“connection management”, “event handling”, “resource operation” and “cus-
tomized logging”, have positive coefficients in the LASSO models, indicating
that these topics have a positive relationship with the likelihood of a method
being logged.

In particular, the topic labeled as “message exception” has the strongest
relationship with the likelihood of a method being logged in the Qpid-Java
system. The topics that are labeled as “cursor operation” and “decoder ex-
ception”, also play the most important roles in determining the likelihood
of a method being logged in the Directory-Server system. The “tree opera-
tion” topic in the Directory-Server system and the “result transfer” topic in
the Airavata system also have a positive relationship with the likelihood of
a method being logged. We found that the “tree operation” topic has an LD
value of 0.03; and the “result transfer” topic has an LD value of 0.07. These
two topics are also considered as log-intensive topics. Other topics that are
listed in Table 15 have a negative relationship with the likelihood of a method
being logged. These topics have an LD value of 0.00 to 0.01, which are much
smaller than the log density values of the log-intensive topics (i.e., methods
related to these topics most likely do not have any logging statements).

Discussion

Cross-system evaluation. In this research question, we evaluated the per-
formance of our log recommendation models in a within-system setting. It is
also interesting to study the performance of the models in a cross-system eval-
uation, i.e., train a model using one system (i.e., the training system) then
use the trained model to predict the likelihood of logging a method in another
system (i.e., the testing system). Like what we did in RQ2, we applied cross-
system topic modeling on a combined corpus of the six studied systems and
set the number of topics to be 3,000. Then we derived topic-based metrics that
are used as explanatory variables in our LASSO models.

As discussed in RQ2, however, different systems have different sets of im-
portant topics. This issue poses a challenge to our cross-system evaluation,
i.e., the training system and the testing system have different variable set-
tings, which results in the poor performance of the cross-system models that
leverage topic-based metrics.

Even though we cannot fully overcome the fact that different systems have
different sets of important topics which leads to the poor performance of cross-
system models, we took two strategies to alleviate the issue:

– When training a LASSO model, we used the common topics between the
training system and the testing system as our topic-based topics. We used
the method mentioned in RQ2 to get the common topics of each pair of
systems.
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Table 16 The performance (AUC) of the cross-system models using baseline metrics. The
row names indicate the training systems and the column names indicate the testing systems.

Hadoop Directory-Server Qpid-Java CloudStack Camel Airavata
Hadoop - 0.80 0.66 0.82 0.86 0.88

Directory-Server 0.74 - 0.61 0.74 0.78 0.91
Qpid-Java 0.60 0.69 - 0.53 0.43 0.61

CloudStack 0.78 0.80 0.61 - 0.84 0.93
Camel 0.80 0.81 0.65 0.82 - 0.90

Airavata 0.74 0.81 0.61 0.80 0.78 -
Average 0.73 0.78 0.63 0.74 0.74 0.85

Table 17 The performance (AUC) of the cross-system models using both baseline and
topic-based metrics. The row names indicate the training systems and the column names
indicate the testing systems.

Hadoop Directory-Server Qpid-Java CloudStack Camel Airavata
Hadoop - 0.82 0.67 0.83 0.86 0.90

Directory-Server 0.78 - 0.63 0.79 0.81 0.92
Qpid-Java 0.74 0.69 - 0.71 0.67 0.82

CloudStack 0.79 0.80 0.70 - 0.84 0.90
Camel 0.82 0.82 0.69 0.82 - 0.90

Airavata 0.74 0.81 0.67 0.80 0.80 -
Average 0.77 0.79 0.67 0.79 0.79 0.89

(+5%) (+1%) (+6%) (+7%) (+7%) (+5%)

– When training the LASSO model, we assigned more weight to the methods
in the training system that have a larger membership of the important
topics in the testing system. Specifically, for each method in the training
system, we gave it a weight that is its total membership of all the important
topics in the testing system.

Tables 16 and 17 list the performance (AUC) of the cross-system models
that use the baseline metrics and the performance (AUC) of the cross-system
models that use both the baseline and topic-based metrics, respectively. For
each system, we also calculated the average performance (AUC) of the models
that were trained using other systems and tested on that particular system.
The average AUC values increase by 1% to 7% when topic-based metrics are
added to the baseline models. We also used a Wilcoxon singed-rank test and
computed Cliff’s δ effect size to compare the average AUC values when using
baseline metrics and when using both the baseline and topic-based metrics.
The Wilcoxon signed-rank test got a p-value of 0.02, which indicates that the
topic-based metrics bring statistically significant improvement to the baseline
models. The Cliff’s δ effect size is 0.44, which means that the improvement is
considered as “medium”.
The effect of choosing a different number of topics. In this paper, we
derived 500 topics from the source code of a software system and leveraged
these topics to study the relationship between the topics of a method and the
likelihood of a method being logged. In order to evaluate the impact of the
choice of number of topics on our findings, we conducted a sensitivity analysis
to quantitatively measure how the different number of topics influence the
topic model’s ability to explain the likelihood of a code snippet being logged.
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Table 18 Performance (AUC) of the LASSO models that leverage the baseline metrics and
the topics-based metrics derived from different numbers of topics.

Project Baseline
Baseline + 20–3,000 topics

20 50 100 300 500 800 1,000 1,500 2,000 2,500 3,000
Hadoop 0.82 0.83 0.84 0.84 0.86 0.87 0.88 0.88 0.86 0.86 0.87 0.86
Directory-S. 0.86 0.88 0.87 0.90 0.93 0.94 0.94 0.94 0.94 0.93 0.94 0.93
Qpid-Java 0.80 0.83 0.85 0.88 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.89
Camel 0.86 0.87 0.88 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.90
Cloudstack 0.83 0.85 0.86 0.86 0.89 0.88 0.88 0.88 0.88 0.87 0.88 0.88
Airavata 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99

Cliff’s δ1 - 0.33M 0.44M 0.56L 0.67L 0.72L 0.72L 0.72L 0.67L 0.67L 0.72L 0.67L

1 The superscripts S, M, and L represent small, medium, and large effect sizes, respectively.

Specifically, we changed the number of topics that we used in RQ3 from 500 to
various numbers (i.e., from 20 to 3,000), and built LASSO models that leverage
both the baseline metrics and the topic-based metrics. Table 18 shows the
performance (evaluated using AUC) of these LASSO models that leverage the
baseline metrics and the topic-based metrics that are derived from different
number of topics. As we increase the number of topics from 20 to 3,000, the
AUC values of the LASSO models increase until they reach a plateau. The
AUC values of the LASSO models stay at or slightly fluctuate around the
maximum point as we continue to increase the number of topics. Taking the
Directory Server system for example, the AUC values of the LASSO models
increase from 0.88 to 0.94 as we increase the number of topics from 20 to 500.
However, as we continue to increase the number of topics, the AUC values
stay around 0.94. As observed by Wallach et al. (2009), the reason may be
that as the number of topics increases, the additional topics are rarely used
in the topic assignment process. Thus, these additional topics are removed by
the LASSO models.

The AUC values reach their maximum points (highlighted in bold) when
using 50 to 800 topics for the studied systems. In particular, four out of the
six systems reach their maximum AUC values when using 300 topics or less.
The LASSO models that leverage both the baseline metrics and topic-based
metrics that are derived from 300 topics achieve an 3% to 13% improvement
of AUC over the LASSO models that only leverage the baseline metrics.

Table 18 also shows the Cliff’s δ effect sizes of comparing the performance
of the models that only use the baseline metrics versus the performance of the
models that use both the baseline metrics and the topic-based metrics. Using
20 or 50 topics improves the AUC of the baseline models with a medium effect
size; using 100 or more topics improves the AUC of the baseline models with
a large effect size.
The impact of filtering out small methods. In this paper, we filtered
out small methods for each studied system (Section 4.2), as intuitively small
methods usually implement simple functionalities (e.g., getters and setters)
and are less likely to need logging statements. We now examine the effect of
filtering out small methods on our models. Table 19 shows the performance of
the LASSO models without the filtering process. Without filtering out small
methods, both the models that leverage baseline metrics and the models that
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Table 19 Performance of the LASSO models (without filtering out small methods), evalu-
ated by AUC and BA.

Project
Baseline metrics Baseline + Topics
AUC BA AUC BA

Hadoop 0.92 0.81 0.94 (+2%) 0.84 (+4%)
Directory-Server 0.89 0.78 0.95 (+7%) 0.89 (+14%)
Qpid-Java 0.89 0.79 0.93 (+4%) 0.84 (+6%)
Camel 0.92 0.83 0.93 (+1%) 0.86 (+4%)
CloudStack 0.95 0.82 0.96 (+1%) 0.89 (+9%)
Airavata 0.97 0.92 0.99 (+2%) 0.97 (+5%)
Cliff’s δ - - 0.53 (large) 0.72 (large)
P-value (Wilcoxon) - - 0.02 (sig.) 0.02 (sig.)

leverage baseline and topic-based metrics have better performance in terms of
AUC and BA. Yet the topic-based metrics still bring a 1% to 7% improvement
on AUC and a 4% to 14% improvement on BA, over the baseline metrics, for
the LASSO models. The AUC improvement has an effect size of 0.53 (large)
and the BA improvement has an effect size of 0.72 (large), both of which are
statistically significant.

However, the additional explanatory power (i.e., 1% to 7% improvement
on AUC and 4% to 14% improvement on BA) is smaller than it is when a
filtering process is applied (i.e., 3% to 13% improvement on AUC and 6% to
16% improvement on BA). These results can be explained by the fact that
the filtered small methods are much less likely to have logging statements.
Taking the Hadoop system for example, the filtered small methods make up
60% of all the methods, but they only contain 5% of all the logged methods.
The structural metrics (e.g., LOC) can simply be used to predict such small
methods as being not logged. In other words, topic-based metrics are less likely
to bring additional explanatory power to the small methods. However, such
methods are far less likely to be logged.�

�

�

�

Our LASSO models that combine baseline metrics and topic-based
metrics achieve an AUC of 0.87 to 0.99 and a BA of 0.78 to 0.95.
The topic-based metrics provide an AUC improvement of 3% to
13% and a BA improvement of 6% to 16%, over the baseline met-
rics. The topics-based metrics play important roles in the LASSO
models; in particular, the log-intensive topics have a strong and
positive relationship with the likelihood of a method being logged.

6 Threats to Validity

External Validity. Different systems are concerned with different topics. The
discussions on the specific topics in this paper may not be generalized to other
systems. Findings from additional case studies on other systems can benefit
our study. However, through a case study on six systems that are of different
domains and sizes, we expect that our general findings (i.e., the answers to the
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research questions) can stand for other systems. We believe that developers
can leverage the specific topics in their own systems to help understand and
guide their logging decisions.

Our study focused on the source code (i.e., production code) of the stud-
ied systems and excluded the testing code. We are more interested in the
production code because the logging in the source code directly impacts the
customer’s experience about the performance and diagnosability of a system.
On the other hand, testing code is mainly used for in-house diagnosis, and
the impact of logging is usually less of a concern. However, it is interesting to
study the differences between the logging statements in the production code
and the testing code. We expect future studies to explore the differences be-
tween production code logging and testing code logging.
Internal Validity. The regression modeling results present the relation be-
tween the likelihood of a method being logged and a set of software metrics.
The relation does not represent the casual effects of these metrics on the like-
lihood of a method being logged.

In RQ3, we used 14 structural metrics to form the baseline of our models.
The selected metrics do not necessarily represent all the structural information
of a method. However, we used both the general information (e.g., LOC and
CCN) and the detailed information (e.g., the number of if-statements and
the number of catch blocks), trying to cover a large spectrum of structural
information about a method.

In this paper, we studied the relationship between logging decisions and
the underlying topics in the software systems. Our study was based on the as-
sumption that the logging practices of these projects are appropriate. However,
the logging practices of these projects may not always be appropriate. In order
to avoid learning bad practices, we chose several successful and widely-used
open source systems.
Construct Validity. Interpreting LDA-generated topics may not always be
an easy task (Hindle et al., 2014), and the interpretation may be subjective.
Thus, the first author of the paper tried to first understand the topics and
derive topic labels, and the second author validated the labels. In case a topic
that is hard to interpret, we study the source code (i.e., both classes and
methods) that are related to the topic.

As suggested by prior studies (Chen et al., 2016b; Wallach et al., 2009),
we chose 500 topics for the topic modeling of individual systems in RQ1.
However, determining the appropriate number of topics to be used in topic
modeling is a subjective process. As our primary purpose of using topic models
is for interpretation, the appropriateness of a choice of topic number should be
determined by how one plans to leverage the resulting topics for interpreting
the meaning of the source code. We found that using 500 topics for each
studied system provides reasonable and tractable results for us to interpret
the generated topics. Besides, we discuss how the different numbers of topics
influence the observations of each RQ.

When running LDA, we applied MALLET’s hyper-parameter optimization
to automatically find the optimal α and β values. However, the optimization
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heuristics are designed for natural language documents instead of source code
files. As the source code is different from natural language, we may not get
the optimal topics. Future in-depth studies are needed to explore this wide-
ranging concern across the multitude of uses of LDA on software data (Chen
et al., 2016b).

Topic models create automated topics that capture the co-occurrences of
words in methods. However, one may be concerned about the rationale of
studying the logging practices using topics instead of simply using the words
that exist in a method. We use topics instead of words for two reasons: 1)
topic models provide a higher-level overview and interpretable labels of a code
snippet (Blei et al., 2003; Steyvers and Griffiths, 2007); 2) and using words in
a code snippet to model the likelihood of a code snippet being logged is very
computationally expensive and the resulting model is more likely to over-fit.
Our experiments show that there are 2,117 to 5,474 different words (excluding
English stop words and programming language keywords) in our studied sys-
tems, hence one would need to build a very expensive model (2,117 to 5,474
metrics) using these words. Our experiments also show that using 2,117 to
5,474 words as explanatory variables provides 3% to 10% (with a median of
4%) additional explanatory power (in terms of AUC) to the baseline models.
In comparison, using only 300 topics as explanatory variables provides 3%
to 13% (with a median of 6%) additional explanatory power to the baseline
models.

7 Related Work

In this section, we discuss two areas of prior studies that are related to our
paper.

7.1 Software Logging

Empirical studies of software logging. Researchers have performed em-
pirical studies on various aspects of software logging practices, including where
to log (Fu et al., 2014), log change behaviors (Kabinna et al., 2016; Li et al.,
2017a; Yuan et al., 2012b), verbosity level of logging (Li et al., 2017b), log
evolution (Shang et al., 2014), anti-patterns in the logging code (Chen and
Jiang, 2017), and logging practices in industry (Fu et al., 2014; Pecchia et al.,
2015). However, there exists no research that studies the relationship between
logging decisions and the underlying topics behind the logged source code.

Improving software logging. Prior research also proposed approaches
to improve logging statements. Errlog (Yuan et al., 2012a) analyzes the source
code to detect unlogged exceptions (abnormal or unusual conditions) and au-
tomatically insert the missing logging statements. A recent tool named LogAd-
visor (Zhu et al., 2015) aims to provide developers with suggestions on where
to log. LogAdvisor extracts contextual features (such as textual features) of a
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code snippet and leverages the features to suggest whether a logging statement
should be added to a code snippet. However, they only focus on the excep-
tion snippets and the return-value-check snippets which together cover 41%
of the logging statements (Fu et al., 2014). The tool cannot suggest inserting
logging statements outside the exception snippets and the return-value-check
snippets, such as the logging statement in Listing 1. Their text features count
the frequencies of each word that appear in a code snippet. In comparison, our
topic-based metrics provide a better explanation of the semantic meanings of
a code snippet. All these tools try to improve software logging by adding ad-
ditional logged information or suggesting where to log. Based on our reported
results in this paper, these tools should also consider the topics of a code
snippet when providing logging suggestions.

7.2 Applying Topic Models on Software Engineering Tasks

Topic models are widely used in the Software Engineering research for various
tasks (Chen et al., 2016b; Sun et al., 2016), such as concept location (Cleary
et al., 2008; Poshyvanyk et al., 2007; Rao and Kak, 2011), traceability link-
ing (Asuncion et al., 2010), understanding software evolution (Hu et al., 2015;
Thomas et al., 2011), code search (Tian et al., 2009), software refactoring (Bavota
et al., 2014), and software maintenance (Sun et al., 2015a,b). Recent stud-
ies explored how to effectively leverage topic models in software engineering
tasks (Panichella et al., 2013, 2016). However, there is no study of software
logging using topic models (Chen et al., 2016b). Some prior studies (Chen
et al., 2012; Nguyen et al., 2011) successfully show that topics in source code
are correlated to some source code metrics (e.g., quality). Thus in this paper,
we followed up on that intuition and we studied the relationship between code
topics and logging decisions.

Prior studies (De Lucia et al., 2012, 2014) also found that most LDA-
generated topics are easy for developers to understand, and these topics can
be useful for developers to get a high-level overview of a system (Thomas et al.,
2011). In this paper, we also conducted a manual study on the topics, and our
study provides a high-level overview of which topics are more likely to need
logging statements in our studied systems.

8 Conclusion

Inserting logging statements in the source code appropriately is a challeng-
ing task, as both logging too much and logging too little are undesirable. We
believe that the code snippets of different topics have different logging require-
ments. In this paper, we used LDA to extract the underlying topics from the
source code, and studied the relationship between the logging decisions and
the recovered topics. We found that a small number of topics, in particular,
the topics that can be generalized to communication between machines or
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interaction between threads, are much more likely to be logged than other
topics. We also found that the likelihood of logging the common topics has a
significant correlation across all the studied systems, thus developers of a par-
ticular system can consult other systems when making their logging decisions
or developing logging guidelines. Finally, we leveraged the recovered topics in
regression models to provide additional explanatory power for the likelihood
of a method being logged. Our case study on six open source software systems
suggests that topics can statistically help explain the likelihood of a method
being logged.

As code topics contain valuable information that is correlated with logging
decisions, topic information should be considered in the logging practices of
practitioners when they wish to allocate limited logging resources (e.g., by
allocating more logging resources to log-intensive topics). Future work on log-
ging recommendation tools should also consider topic information in order to
help software practitioners make more informed logging decisions. Further-
more, our findings encourage future work to develop topic-influenced logging
guidelines (e.g., which topics need further logging).

This work suggests that there is a strong relationship between the topics of
a code snippet and the likelihood of a code snippet containing logging state-
ments. As different log levels (e.g., “debug” or “warning”) indicate different
logging purposes (e.g., for debugging or for revealing problems), we also en-
courage future work to study the relationship between code topics and different
log levels (i.e., different logging purposes).
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