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ABSTRACT
In current DevOps practice, developers are responsible for the op-
eration and maintenance of software systems. However, the human
costs for the operation and maintenance grow fast along with the
increasing functionality and complexity of software systems. Auto-
nomic computing aims to reduce or eliminate such human interven-
tion. However, there are many existing large systems that did not
consider autonomic computing capabilities in their design. Adding
autonomic computing capabilities to these existing systems is par-
ticularly challenging, because of 1) the signi�cant amount of e�orts
that are required for investigating and refactoring the existing code
base, 2) the risk of adding additional complexity, and 3) the di�-
culties for allocating resources while developers are busy adding
core features to the system. In this paper, we share our industrial
experience of re-engineering autonomic computing capabilities to
an existing large-scale software system. Our autonomic computing
capabilities e�ectively reduce human intervention on performance
con�guration tuning and signi�cantly improve system performance.
In particular, we discuss the challenges that we encountered and
the lessons that we learned during this re-engineering process. For
example, in order to minimize the change impact to the original
system, we use a variety of approaches (e.g., aspect-oriented pro-
gramming) to separate the concerns of autonomic computing from
the original behaviour of the system. We also share how we tested
such autonomic computing capabilities under di�erent conditions,
which has never been discussed in prior work. As there are numer-
ous large-scale software systems that still require expensive human
intervention, we believe our experience provides valuable insights
to software practitioners who wish to add autonomic computing
capabilities to these existing large-scale software systems.
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1 INTRODUCTION
Due to advances in software technologies, software systems are
becoming increasingly complex and powerful. For example, VISA’s
card processing systems and BlackBerry’s enterprise systems are
able to handle millions of concurrent users. To achieve their opti-
mal performance, these complex software systems require highly
skilled developers and testers for operation and maintenance of the
software [8]. Such manual e�orts are one of the main costs of oper-
ating and maintaining modern large-scale software systems [15].
In particular, manual interventions are constantly required for such
systems given the constantly changing environment (e.g., network
bandwidth) and workloads, thereby driving up the overall opera-
tional costs [8].

Researchers have proposed the concept of autonomic computing
to reduce the necessity for human monitoring and intervention
in large-scale systems. Autonomic computing was �rst introduced
by IBM. Autonomic computing de�nes a computing framework
that is capable of managing itself, and rapidly and continuously
adapting to changing operating environments [8]. For example, the
IBM DB2 system1 contains many autonomic computing features,
among which is the feature of self-tuning memory2. The self-tuning
memory feature automatically adjusts the values of several memory
con�guration parameters in accordance with workload changes;

1https://www.ibm.com/analytics/us/en/db2
2https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.7.0/com.ibm.db2.
luw.admin.dbobj.doc/doc/r0051462.html



ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Heng Li et al.

thus, simplifying memory con�guration tasks and optimizing per-
formance.

In recent years, many real-time data analysis frameworks (e.g.,
Apache Spark and Apache Storm) have become easily accessible,
signi�cantly reducing the challenge of designing and implementing
new autonomic computing systems. Developers can easily leverage
such frameworks to implement autonomic computing systems that
require the analysis of real-time system data. However, many ex-
isting large-scale systems that were not designed with autonomic
computing capabilities in mind still su�er from the growing and ex-
pensive costs of human involvement. Adding autonomic computing
capabilities to these existing large-scale systems is a particularly
challenging software engineering task. First, adopting autonomic
computing capabilities to existing systems requires tremendous
investigation, code changes, and refactoring of the existing code,
since the systems were designed and built without an autonomic
computing mindset. Second, companies are not likely to risk fully
redesigning the system or performing signi�cant code changes,
since such changes may lead to unexpected consequences (e.g.,
introduce new functional or non-functional bugs). Finally, in mod-
ern fast-paced agile software development, companies may have
di�culties in allocating and scheduling additional resources for
implementing autonomic computing capabilities, as developers are
constantly working on delivering customers’ needs in parallel.

In this paper, we share our industrial experience of adopting au-
tonomic computing capabilities to an existing non-autonomic large-
scale software system. Our autonomic computing capabilities aim
to autonomically tune the system con�gurations to optimize sys-
tem performance and reduce human intervention. We encountered
many engineering and design challenges when adding autonomic
computing capabilities to the system. We needed to understand the
system runtime behaviour from scratch, minimize code changes
to the original system, and thoroughly test the autonomic com-
puting capabilities. In the end, we conquered the challenges and
successfully integrated autonomic computing capabilities to the
system with minimal code changes (i.e., only a few hundred lines
of code) to the original system. We believe that our experience in
transforming existing systems to become autonomic is invaluable
and can help software practitioners and researchers who want to
adopt autonomic computing to existing systems.

The main contributions of this paper are:

• We o�er an industrial experience report of the software
engineering challenges that are encountered when adopting
autonomic computing capabilities to existing large-scale non-
autonomic commercial systems.
• We provide an overview of our approach on how tominimize
code changes and performance overhead to existing systems
when adopting autonomic computing capabilities.
• We are the �rst to discuss our experience in testing the
autonomic computing capabilities that were integrated with
existing large-scale systems.

Paper organization. The rest of the paper is organized as fol-
lows. Section 2 surveys related work on software engineering of
autonomic computing. Section 3 describes our subject system and
explains the background for adding autonomic computing capa-
bilities to the system. Section 4 discusses the challenges that we

encountered in the project and our solutions to these challenges.
Section 5 describes our implementation of the autonomic comput-
ing capabilities. Section 6 discusses how we tested our autonomic
computing capabilities. Finally, Section 7 concludes the paper.

2 RELATEDWORK
In this section, we discuss related work to our study. We divide
the related work into two categories: 1) background of autonomic
computing and 2) adopting autonomic computing capabilities to
existing systems.

2.1 Autonomic computing
Many existing studies focus on the methodologies for designing a
software system with autonomic computing capabilities. However,
our paper shares our experience of adding autonomic computing
capabilities to an existing large-scale software system that did not
consider autonomic computing in its design. IBM is one of the
biggest initializers for autonomic computing. They �rst de�ned the
term autonomic computing as computing systems that can manage
themselves given high-level objectives from developers [12]. IBM
later proposed an architectural approach for creating autonomic
components and composing these autonomic components into au-
tonomic systems [8, 20]. They also validated many of their ideas
in two prototype autonomic computing systems. Dobson et al. [5]
discussed the progress and the state-of-the-art approaches of auto-
nomic computing in the �rst 10 years since it was proposed. They
argue that the original vision of autonomic computing remains
unful�lled, and that researchers must develop a comprehensive en-
gineering approach (i.e., autonomic systems engineering) to create
e�ective solutions for the next-generation of software systems.

2.2 Adding autonomic computing capabilities
into existing systems

There are a few studies on adding autonomic computing capabili-
ties to existing systems. Mulcahy et al. [15] described a commercial
software project in which they added autonomic computing capa-
bilities into a legacy order-placing system. The resulting system has
the ability of self-monitoring, self-con�guration and self-healing.
Their autonomic computing capabilities signi�cantly reduced the
human e�orts that were involved in placing orders, which also
reduced the costs associated with human error in system operation
activities. Mulcahy et al. [16] also proposed an approach to add
autonomic computing capabilities into a legacy order-ful�llment
system. They used the service-oriented architecture to add a new
autonomic component to the original system. Their approach re-
duced the cost of human labor for screening orders and also reduced
errors in the screening process. Amoui [1] proposed an approach to
add autonomic computing capabilities to an existing software in an
evolution process. The approach tried to implement self-adaptive
requirements by using a co-evolution model in which the auto-
nomic requirements are added to the original software system by a
set of transformations.

Our work is unique and di�erent from the above-mentioned stud-
ies. While these existing studies focus on the architecture design
and the algorithms for parameter tuning, our work focuses on the
software engineering challenges (e.g., testing) that one might face
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when adding autonomic computing capabilities to existing large-
scale non-autonomic software systems. In particular, we focus on
the challenges that we encountered during the design (e.g., how can
we bring minimal impact to the original system), implementation
(e.g., how to avoid introducing too many code changes), and test-
ing (e.g., testing of robustness) of the added autonomic computing
capabilities.

3 BACKGROUND
In this section, we brie�y discuss our subject system and the back-
ground story for adding automatic computing capabilities to the
system.

Our subject system is a large-scale enterprise system. Due to
competitive and critical nature of the system, we cannot give the
exact details of the subject system. However, the system is very large
in size (millions of lines of code), under active development, and
maintained by a large number of software developers. Thousands
of organizations around the world depend on the subject system
for their mission-critical operations.

Similar to other non-autonomic large-scale systems, our sub-
ject system requires expensive manual e�orts for operation and
maintenance. Due to the increasing popularity of DevOps (devel-
opment and operations), such manual e�orts are usually handled
by developers who have an in-depth knowledge about the system.
However, although developers are very familiar with the system,
in our experience, they still have di�culties �nding the optimal
values for performance-related con�guration parameters. There
are several reasons. First, in existing systems that were not built
with autonomic computing capabilities in mind, the values of the
con�guration parameters are usually read o�ine (e.g., from static
con�guration �les), which increases the challenge of real-time con-
�guration tuning. Second, performance-related con�guration pa-
rameters are sensitive to the working environment (e.g., network
bandwidth or latency) and the workload (e.g., the amount of user
requests, which is constantly changing and shows high variations).
Hence, �nding the con�guration values that can lead to the optimal
system performance is extremely expensive and requires develop-
ers’ constant attention.

In order to reduce the needed manual costs to constantly tune
the parameters, our industrial partner wanted to add autonomic
computing capabilities to the enterprise system so that the system
can autonomically tune its parameters without human intervention.
However, the subject system was designed without the autonomic
computing mindset. Signi�cant investigation, code changes, and
refactoring are needed to add such autonomic computing capabili-
ties. Therefore, our industrial partner cooperated with us to explore
the feasibility of adding the autonomic computing capabilities to the
existing system with minimal code changes, as a research project
that is independent from the development and maintenance of the
system. As embedded researchers, we had limited support from the
development teams, since developers are actively working on deliv-
ering customers’ needs in a fast-paced agile software development
setting.

In order to minimize the risk of changing too much code, we
proposed a set of solutions that successfully added autonomic com-
puting capabilities to the system with minimal code changes (i.e.,

only a few hundred lines of code) to the original system. As a re-
sult of the project, the system gets the abilities of self-monitoring
its performance measures and workloads, self-optimizing its pa-
rameter values, and self-con�guring the optimal parameter values.
Moreover, we designed our autonomic computing capabilities in
a way that would not bring too much side e�ect to the normal
behaviour of the system, which signi�cantly improves the adoption
of our research results.

4 CHALLENGES AND LESSONS LEARNED
Figure 1 shows our overall engineering process of adding autonomic
computing capabilities to our subject system which was designed
without an autonomic computing mindset. Overall, our engineer-
ing process contains four parts: understanding system behaviour,
adding autonomic computing capabilities, adding the capability to
monitor and control the autonomic computing capabilities, and
testing the autonomic computing capabilities.

In this section, we provide detailed discussions on the challenges
that we encountered when adding autonomic computing capabil-
ities, our solutions to these challenges, and the lessons that we
learned. We also describe the details of our engineering process
in our discussions. Our methodology for testing the autonomic
computing capabilities is discussed in detail in Section 6.

4.1 Understanding system runtime behaviour
from scratch

Challenge. An autonomic system should be able to adapt itself
according to the changing environment and workloads. In order to
add autonomic computing capabilities to our subject system, we
�rst need to understand how the system behaves under di�erent
environment and workloads, and how the con�guration parameters
impact its behaviour. However, compared to autonomic systems,
for which the system behaviour is carefully examined to support
autonomic computing capabilities, the runtime behaviour of a large-
scale software system without autonomic considerations (e.g., our
subject system) is usually never well understood. In such systems
without autonomic considerations, even experienced developers
may not clearly understand the runtime performance impact of the
con�gurable parameters. Namely, developers can only change the
values of these con�guration parameters o�ine (e.g., read once at
startup), without the ability to know the impact of changing the
parameters under evolving environment and workloads. Therefore,
our �rst challenge is to understand the system runtime behaviour,
and in particular, how the con�guration parameters impact the
runtime performance of the system.

Solution. In order to understand how the con�guration param-
eters impact the runtime performance of the system, we �rst dis-
cussed with senior developers about which parameters might im-
pact the system performance, and how developers typically set the
parameter values during their own testing. We then ran testing
experiments with di�erent parameter con�gurations to understand
runtime system behaviour and how di�erent con�gurations ac-
tively impact the performance of the system. The senior developers’
advice and our exploratory experiments provided us a rough idea
about the con�guration parameters’ impact on the system perfor-
mance.
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Figure 1: Our overall engineering process of adding autonomic computing capabilities to an existing large-scale system.

However, before adding autonomic computing capabilities to
the system, we need a better quantitative understanding of the
relationship between the parameters and the system performance.
Therefore, we want to collect enough test data that describes the
setting of parameter values and the corresponding performance
measures. One way to fully understand the e�ect of the con�gu-
ration parameters on system performance is to exhaustively run
di�erent combinations of the parameter values. However, such an
approach is unfeasible. Supposing that we have �ve parameters
and we want to test ten values for each parameter, we would need
to run the system 100,000 (i.e., 105) times. Each test takes hours to
�nish so we would need tens of years to collect the data.

As an alternative, we use a Monte Carlo method [14] to generate
repeated random samples of the parameter values. The advantage
of the Monte Carlo method is that the number of random sam-
ples does not increase with the number of independent parameters.
Speci�cally, in each sample, the Monte Carlo method randomly
chooses the values for the parameters within given ranges. In total,
we generate 60 randomly sampled sets of parameter values, and
we measure the performance of the system under these parameter
settings. Running tests using these 60 randomly sampled sets of
parameter values took only a few days. Even though we only sam-
pled 60 sets of parameter values in total, we actually evaluated 60
random values for each parameter. These experiments were fully
automated and did not need any additional human resources. For
each test, we recorded the values of the con�guration parameters
and the resulting performance measures.

After we collected the performance data for the 60 tests (i.e.,
60 parameter settings), we performed a sensitivity analysis to un-
derstand the con�guration parameters’ impact on the system per-
formance. Speci�cally, we built Multivariate Adaptive Regression
Splines (MARS) [6] models to understand the relationship between
the parameters and the performance measures. The MARS mod-
els can automatically model the nonlinear relationship between
the response variable (e.g., our performance measures) and the
explanatory variables (e.g., our parameters), as well as the inter-
actions between the explanatory variables. We found that only
some of the parameters have a statistically signi�cant impact on
the performance of the system. We removed those statistically in-
signi�cant parameters from further consideration in our work. The
MARS models also describe, for each performance measure, which
parameters have a positive (or negative) impact.

Our approach signi�cantly reduces the search space (i.e., by
reducing the number of con�guration parameters) and helps �nd
the optimal parameter values faster. The knowledge that we get

from the statistical analysis (e.g., which parameters have a positive
or negative impact on performance measures) is also crucial for
us to design our optimization engine to autonomically tune the
parameter values for optimal performance.

Lessons learned. Leveraging statistical techniques to under-
stand system behaviour. In this work, we use a Monte Carlo
method to design the experiments to collect the data that is later
used to understand the relationship between the con�guration
parameters and the system performance. We also use the MARS
models to model the relationship between the parameters and the
performance of the system. However, our goal is not to fully un-
derstand the relationship between the con�guration parameters
and the performance measures, and our models are not targeted
to predict the performance measures under certain parameter val-
ues. Even with test automation, testing resources (e.g., hardware)
are still a huge bottleneck for running a large number of tests to
fully understand the relationship. Instead, our goal is to �nd the
con�guration parameters that have the most signi�cant impact
on the performance measures (i.e., performance critical parame-
ters), and how changing these con�guration parameters impact the
performance measures (i.e., positive or negative impact).

Even though there might be other con�guration parameters that
have less signi�cant impact on the performance measures, we only
consider these performance critical parameters for performance
tuning. We do so for several reasons: 1) tuning these parameters can
more e�ectively improve the performance of the system; 2) tuning a
smaller number of parameters improves the speed of searching for
the optimal con�guration; and 3) we introduce fewer code changes
to the system.

Using test automation tominimize experimental overhead.
In this work, we need to repeatedly test the performance of the
system under di�erent parameter settings to collect the data for an-
alyzing the relationship between the con�guration parameters and
the system performance. As the system does not support updating
parameters dynamically, for each parameter setting, we need to
stop the previous test, cleanup the system to remove the impact of
the previous test (e.g., restoring the database), change the parame-
ter setting, and restart the system, etc. Manually repeating these
steps is cumbersome and has the risk of introducing human errors
(e.g., forgetting to cleanup the system before restarting a new test).
Therefore, we implemented test automation tools to automate the
entire process.

Nevertheless, even after we use the Monte Carlo method to re-
duce the number of tests, it is still challenging to schedule testing
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resources for these tests, as these testing resources are usually de-
manded by other higher-priority tests (e.g., continuous integration
tests). Therefore, test automation also allowed us to e�ectively
leverage the testing resources by running tests in machine-spare
time (e.g., during holidays or weekends).⌫

�



�

We leverage both domain experts’ experience and statistical tech-
niques, e.g., Monte Carlo experiments and sensitivity analysis, to
understand the relationship between the con�guration parame-
ters and system performance. Test automation is also critical for
minimizing manual e�ort during the experiments and leveraging
testing resources during machine-spare time.

4.2 Adding autonomic computing capabilities
to a non-autonomic system with minimal
code changes

Challenge. Non-autonomic systems often read con�gurations
statically (e.g., at startup and usually from �les), and developers
cannot easily change the values of the con�guration parameters
when the system is running. In addition, many existing systems do
not continuously monitor their production behaviour for informa-
tion such as performance (e.g., CPU and memory) and workloads
(e.g., user requests).

Hence, in order to add autonomic computing capabilities to exist-
ing non-autonomic systems, we need to add three main capabilities
to the systems: a self-monitoring capability that monitors the per-
formance measures, a self-optimizing capability that searches for
optimal parameters based on the monitored performance measures,
and a self-con�guring capability that dynamically updates the val-
ues of the con�guration parameters. However, adding these auto-
nomic computing capabilities to existing systems requires changing
the software requirements, which may cause severe risks [1]. Even
if we decided to change the requirements, we would need to per-
form signi�cant code changes and a�ect the overall design of the
system, which may cause additional bugs, development overheads,
and maintenance problems.

Solution. We propose an autonomic computing solution that in-
troduces minimal changes to the system and comes with negligible
system overhead. We separate the autonomic computing capabili-
ties from the original system. The separated autonomic computing
capabilities are able to: 1) collect and compute performance mea-
sures from the system (self-monitoring); 2) search for the optimal
con�guration parameters based on the performance measures (self-
optimizing); and 3) updating the system con�guration parameters
(self-con�guring). We found that separating the autonomic comput-
ing capabilities signi�cantly reduced required code changes to the
original system and minimized the performance overhead. Below,
we discuss how we refactored the system to become autonomic.

Self-monitoring. To minimize performance impact and the re-
quired code changes when monitoring the system, we leverage
existing system logs (e.g., web server access logs) and collect per-
formance counters (e.g., sampled CPU and memory usage). The
readily-available logs and the performance counters allow us to
monitor many system-speci�c performance measures (e.g., through-
put) and other general performance measures (e.g., CPU usage),

respectively. By taking advantage of the existing logs, we do not
need to make code changes to the original system for collecting
system-speci�c performance measures. On the other hand, the per-
formance overhead of collecting performance counters is very low
(under 1% CPU overhead) and does not require any code changes
(e.g., can be handled by the underlying OS).

Self-optimizing. To minimize code changes and the analysis
overhead on the original system, we separated the optimization
component from the original system. We analyze collected perfor-
mance counters and logs on separate machines so that we would
not a�ect the original system.

Self-con�guring. To minimize the code changes to the system,
we use an aspect-oriented programming approach based on re�ec-
tion [18] to dynamically con�gure the values of the parameters
in the system. Using an aspect-oriented programming approach
separates the self-con�guring concern and signi�cantly simpli�es
dynamic parameter tuning. Aspect-oriented programming is a gen-
eral programming paradigm that aims to increase modularity by
separating cross-cutting concerns [13]. Aspect-oriented program-
ming is particularly useful for adding behaviour that is not central
to the business logic of a program (e.g., the autonomic computing
capabilities) without bringing much impact to the core business
logic of the system. In the end, our approach only required changing
a few hundreds lines of code to the original system.

Lessons learned. Avoiding code merging con�icts in paral-
lel development. In our project, we are developing our autonomic
computing capabilities while developers are focusing on developing
the next release of the original system. Therefore, many con�icts
may occur when we are merging the code. However, we �nd that by
adopting an aspect-oriented programming approach, we minimize
the dependencies between the autonomic computing capabilities
and the original system. Thus, the development of the autonomic
computing capabilities and the active development of the original
system can be done in parallel, while minimizing potential code
merging con�icts.

Maintaining the performance pro�le of the original sys-
tem. Software systems usually need to maintain a certain level of
service-level agreement, such as the number of machines required
for handing X number of users and the hardware requirements. By
separating the autonomic computing capabilities, we ensure that
we would not negatively impact the performance of the original sys-
tem and change the known performance pro�les and service-level
agreements.

Leveraging existing logs to monitor system runtime be-
haviour. System logs contain rich information about the runtime
behaviour of a system [2, 22, 23]. These logs are usually leveraged
by developers and testers to detect abnormal conditions or debug
system failures [3, 11]. In this work, we calculate performance mea-
sures based on the readily available logs. For example, we measure
the occurrence of some speci�c events (e.g., requests) by counting
the number of corresponding log lines. We then calculate some goal
measures based on the occurrences of the speci�c events. Many
existing systems already use tools such as syslog [21] to collect
their runtime logs to external machines. In such cases, analyzing
the logs would not cause any additional overhead to the deployed
system.
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An alternative approach for monitoring system runtime be-
haviour would be applying the aspect-oriented programming para-
digm to instrument probes in the source code of the original sys-
tem. However, the needed information that we derive from logs
comes from several di�erent computing components, which are
written in di�erent programming languages and may be developed
by other organizations. Therefore, it is very challenging to use
aspect-oriented programming approaches to instrument probes in
these components.✏

�

�

�
We minimize code changes to the original system by separating
the autonomic computing concerns from the original business
logic, as well as leveraging readily available system logs to mon-
itor system runtime behaviour.

4.3 Working with domain experts with limited
knowledge of autonomic computing

Challenge. Adding autonomic computing capabilities to an ex-
isting large-scale software system involves all aspects of a software
system’s life cycle, including requirement collection, design, im-
plementation, testing, and operation. In order to accomplish the
project with limited resources and tight schedules, we need to drive
the domain experts (e.g., developers, testers, and operators) to make
their contributions to the project through di�erent ways. For ex-
ample, we need to drive testers to set up the system’s running
environment and �x problems in the environment; we need devel-
opers’ buy-in to change the code of the system, even though we
minimized the code changes to the original system, to support the
autonomic computing capabilities; and we need operators’ help
to deploy and test the autonomic computing capabilities in a real
working environment.

However, domain experts are usually busy with their day-to-day
responsibilities. For example, developers may follow fast-paced
agile software development cycles to meet customers’ growing
functional needs. Hence, domain experts may not be able to a�ord
much extra time to contribute to this research project. More impor-
tantly, since the system was initially designed without autonomic
computing mindsets, domain experts only have limited knowledge
about the concept of autonomic computing. Thus, it is challenging
to drive the domain experts to make contributions to this research
project. Even worse, these domain experts often come from dif-
ferent business groups, which poses additional challenges when
dealing with cross-team and cross-organization cooperation issues.

Solution. In order to build e�ective autonomic computing capa-
bilities for the system, we worked closely with the domain experts
of the system. These domain experts have years of experience in
developing, testing, and operating the system. As an e�ective way
of communication, we had regular meetings with these domain ex-
perts. In these regular meetings, we presented our approaches and
progress, as well as the challenges that we encountered. In this way,
the domain experts were continuously kept on the same page as us.
Therefore, they were able to e�ectively share their expertise and
provide us with valuable suggestions. For example, we discussed
the relationship between the parameters and the system perfor-
mance in many meetings, and the domain experts provided very

helpful suggestions for us to determine the initial set of parameters
that may impact the system performance. We also continuously
demonstrated the value of the autonomic computing capabilities,
to motivate the domain experts to make their contributions to
the research project from di�erent perspectives (e.g., changing the
source code or testing the autonomic computing capabilities in a
real production environment).

The domain experts usually have limited knowledge of auto-
nomic computing. In order to drive them to make contributions to
the research project, we used evidence to illustrate the e�ectiveness
of the autonomic computing capabilities. The �rst thing that we
had to do is to show the value and feasibility of adding autonomic
computing capabilities to the system. Hence, before directly asking
domain experts to contribute to the project, we conducted initial
experiments to demonstrate that the autonomic computing capabil-
ities can signi�cantly improve system performance and reduce hu-
man intervention (i.e., proof of concept). Initially, we demonstrated
the concept of autonomic computing without changing the source
code of the system, i.e., without the ability to dynamically update
the parameter values. Speci�cally, when our self-optimizing compo-
nent determines new values of con�guration parameters, we used
a script to automatically stop the system, make changes to the pa-
rameter values, and restart the system. Although the search process
would take a very long period of time (each search step requires re-
running the test), through this initial experiment, we demonstrated
that the autonomic computing capabilities can achieve much bet-
ter performance than using a default parameter setting with some
manual tuning.

With the proof of concept, we worked with the developers to
change the system code to �rst support dynamic con�guration of
several important con�guration parameters (i.e., ones with a high
in�uence on system performance). Then, we integrated develop-
ers’ code changes to our autonomic computing capabilities so that
we can dynamically change these con�guration parameters. We
further conducted experiments to illustrate that, with the dynamic
con�guration, our autonomic computing capabilities can e�ciently
improve the system performance and reduce human intervention.
Finally, we convinced the developers and worked with them to pro-
vide dynamic con�guration for the rest of the parameters. In short,
to minimize development risks and engage other domain experts,
we �nd that it is important to work incrementally to uncover the
bene�ts of adding autonomic computing capabilities.

Lessons learned. Minimizing the risks of adding autonomic
computing capabilities.Whileworkingwith developers and testers
across the company, we found one major obstacle that discouraged
domain experts from contributing to the project: “Domain experts
are particularly concerned with the additional risks that the au-
tonomic computing capabilities may bring to the original system,
since their top priority is to ensure the correct functionality and
scalable behaviour of the current system”. Therefore, to minimize
the risks, we designed our autonomic computing capabilities as a
separate component to the original system. Therefore, the auto-
nomic computing capabilities can be disabled whenever a problem
occurs, without a�ecting the normal system behaviour. Besides,
we always recover the system back to the default state in case of
failures (e.g., crashes) of the autonomic computing capabilities, so
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that the failures of the autonomic computing capabilities will not
interrupt the normal execution of the original system. We also re-
cover the system to the default state after completing a workload,
so that the autonomic computing capabilities does not impact the
execution of future workloads. Such design signi�cantly attracted
developers’ attention on the research project and motivated their
participation.

Providing prompt feedback to the domain experts. Provid-
ing prompt feedback to the domain experts can keep their enthusi-
asm in the research project, thus they are more likely to provide fur-
ther contribution on the project. For example, once developers made
code changes to support dynamic con�guration for the �rst set of
impactful parameters, we quickly integrated such changes into our
autonomic computing capabilities. We then provided prompt feed-
back to the developers and showed them the bene�ts of the code
changes on the autonomic computing capabilities. Developers were
encouraged by the results and were willing to support the dynamic
con�guration of the rest of the parameters. We think that providing
prompt feedback is another e�ective way of communication and it
can keep the domain experts more passionate about the autonomic
computing capabilities.◆

✓

⇣

⌘

We use e�ective communication and experimental evidence to
motivate the domain experts to make contributions from di�erent
perspectives (e.g., development, testing, and operation). We also
minimize the risk of adding autonomic computing capabilities,
which further motivates domain experts’ contributions.

4.4 Increasing the adoption of the autonomic
computing capabilities

Challenge. We �nd that, due to an incomplete understanding
of the added autonomic computing capabilities, developers may
not always want to adopt the autonomic computing capabilities in
production. More speci�cally, some developers are concerned that
our autonomic computing capabilities were not designed as part of
the original system, which may cause unexpected consequences to
the deployed system, especially given the wide number of deploy-
ment sites. Although we minimized the risks of adopting autonomic
capabilities by implementing them as a separate component to the
original system (Section 4.2), developers may still have concerns
regarding the additional capabilities.

Solution. To solve the challenge, we integrated more manual
control and debugging information in our autonomic computing
version. The autonomic computing version also allows developers
to enable/disable the autonomic computing capabilities in real-
time, providing full control to the developers. We also made our
autonomic computing capabilities easy to use for people who do
not understand autonomic computing. For example, we designed
a simple UI so that developers can simply click a button to en-
able or disable the autonomic computing capabilities (e.g., in case
unexpected errors occur). Enabling or disabling the autonomic com-
puting capabilities does not interrupt the normal execution of the
system. Developers can also observe the dynamic parameter set-
tings and optimal parameter searching, as well as the performance
measures of the system through the UI. We �nd that by providing

full control to the developers, they can slowly start trusting the
autonomic computing capabilities (i.e., it is not completely auto-
nomic in a way that developers cannot monitor or control), which
signi�cantly helps in the adoption of the capabilities.

Lessons learned. Providing real-time debugging support to
developers. Most of the existing research in autonomic comput-
ing focuses on the architecture design or parameter tuning algo-
rithms [4, 5]. However, we �nd that it is important to make the
e�ect of such autonomic computing capabilities transparent to de-
velopers. Our real-time monitoring features allow developers to
easily debug problems in the system (i.e., problems that are related
to either the autonomic computing capabilities, or the original sys-
tem in general) early in the software development process, and
hence reduces costs. In addition, through the debugging process,
developers slowly gain more con�dence in the overall system and
are more willing to adopt our autonomic computing capabilities in
the production environment.

Stress testing of the autonomic computing capabilities. To
provide more con�dence to the development teams, we found that
it is important to stress test the autonomic computing capabilities.
Unlike regular performance tests, where we aim to simulate real-
world workloads and observe any abnormal system behaviour [3],
we want to ensure that our autonomic computing capabilities would
still work expectedly under extreme workloads. We want to report
the overload pro�les of the autonomic computing capabilities, so
we can illustrate that under extreme workloads: 1) whether it is
possible for the autonomic computing capabilities to recover in case
of failures; 2) whether the autonomic computing capabilities would
misbehave (e.g., �nding worse parameters); and 3) whether the
feature for enabling/disabling the autonomic computing capabilities
can still work. By showing a complete overload pro�le, developers
gained signi�cantly more trust in the reliability of the autonomic
computing capabilities in a production environment.⌫

�



�

In order to increase the adoption of the autonomic computing
capabilities, we provide full control to developers on debugging,
monitoring, and enabling/disabling the autonomic computing
capabilities. We also stress test the autonomic computing capa-
bilities to ensure that the system can still work expectedly under
extreme workloads.

5 IMPLEMENTATION
In this section, we brie�y discuss the overall structure and the
implementation of our autonomic computing capabilities.

Figure 2 illustrates the overall structure of our autonomic com-
puting capabilities. Our autonomic computing capabilities mainly
contain four components: the self-monitoring component, the self-
optimizing component, the self-con�guring component, and the
monitoring and controlling component. The original system takes
an initial con�guration of the parameters and executes a given
workload. The self-monitoring component collects performance
related log data and calculates corresponding performance mea-
sures. The self-optimizing component searches for a better set of
parameter values based on the monitored performance measures.
The self-con�guring component updates the parameter values of
the system on-the-�y. These self-monitoring, self-optimization, and
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Figure 2: The overview structure of our autonomic comput-
ing capabilities.

self-con�guring processes repeat until an optimal performance is
achieved. Finally, the monitoring and controlling component moni-
tors the status of the entire autonomic computing capabilities and
supports external control of the autonomic computing capabilities.

The original system. The performance of the original system
is determined by the working environment, the workload, and a set
of performance-related con�guration parameters. As the working
environment and the workload are constantly changing, we need
to update the values of the con�guration parameters to adapt to
the changing environment and workload.

The self-monitoring component. The self-monitoring com-
ponent contains two parts: a data stream producer and a data stream
consumer. The producer uses Kafka3 to collect log data and generate
log data stream in real-time. The consumer uses Spark4 streaming
to process the log data stream and calculate performance measures.
The self-monitoring component also provides performance mea-
sures to other components (i.e., the self-optimizing component and
the monitoring and controlling component) in real-time. The per-
formance measures are written into a document-based database
(e.g., MongoDB) for analysis and storage purposes. The producer
can be located on a separate machine that has reading access to the
system logs. The consumer is located on a separate machine.

The self-optimization component.The self-optimization com-
ponent uses a local search algorithm to search for the optimal con-
�guration point. We use a local search instead of global search
algorithms or genetic algorithms because the local search can re-
sponse faster to the changing environment and workload [7]. The
local search algorithm continually evaluates its neighbour points
(i.e., con�guration points with the closest parameter values) and
moves in the direction that improves system performance, and ter-
minates when it reaches a peak (no neighbour point has a better
performance). As discussed in Section 4.1, we use Monte Carlo
experiments and MARS models to �nd the performance critical
parameters and their impact on the performance of the system.
We only consider the performance critical parameters, thus we
signi�cantly reduce our search space. Furthermore, we implement
a guided search algorithm, based on the known relationship be-
tween the parameters and performance measures, to evaluate only

3https://kafka.apache.org
4https://spark.apache.org

the neighbour points that may improve system performance. Our
search algorithm ensures that we can reach an optimization point
faster (e.g., within minutes) and can react quickly to changes in the
workload. The self-optimization component is located on a separate
machine from the original system.

The self-con�guring component.The self-con�guration com-
ponent updates the parameter values of the system while the sys-
tem is still running. Many locations (i.e., reference locations) of the
system’s code use these parameter values in their business logic.
Changing all the reference locations to support the dynamic update
of the parameter values is cumbersome and risky. Instead, we use an
aspect-oriented programming paradigm to separate the concern of
dynamically changing the parameter values from the original busi-
ness logic of the system. Speci�cally, we de�ne the cross-cutting
concerns of dynamically changing parameter values as aspects, and
automatically apply these aspects at the code locations where the
parameter values are referenced (i.e., join points). We reduce the
impact of code changes to the original system by separating the
concerns of dynamically updating the parameter values from the
original business logic of the system.

The monitoring and controlling component. The monitor-
ing and controlling component provides a web UI for developers to
monitor the status of our autonomic computing capabilities in real-
time. It monitors the performance measures that are calculated by
the self-monitoring component; it monitors the searching process
of the self-optimizing component; it also monitors the values of the
con�gured parameters from the self-con�guring component. The
monitoring and controlling component also provides options for
developers to enable or disable the autonomic computing capabili-
ties at any time (i.e., before or while the original system is running),
or manually change the values of the con�guration parameters
while the system is running. In summary, the monitoring and con-
trolling component makes our autonomic computing capabilities
transparent to developers.

6 TESTING
As shown in Figure 1, the last step in our engineering process is to
test the autonomic computing capabilities. Testing of re-engineered
autonomic computing capabilities needs to consider additional per-
spectives other than traditional functional testing and load testing.
However, prior studies [1, 15, 16] never discussed the testing of
re-engineered autonomic computing capabilities.

Testing autonomic computing capabilities is a long and com-
plicated software engineering process. We need to test not only
the autonomic computing capabilities, but also the original system
while the autonomic computing capabilities are enabled. In addition
to the testing of the e�ectiveness and robustness of the autonomic
computing capabilities, we also need to test whether the autonomic
computing capabilities are needed at all (i.e., whether we can �nd
a universally optimal con�guration and apply it in all the system
deployment). Finally, we need to test whether the autonomic com-
puting capabilities can be e�ectively monitored and controlled by
developers.

In this section, we brie�y discuss our testing strategies for en-
suring that the autonomic computing capabilities meet our require-
ments (e.g., e�ectiveness and robustness). We also brie�y discuss
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Figure 3: Comparing the performance of the system with
andwithout autonomic computing capabilities. The key per-
formance indicator ranges from 0 to 1, the lower the better.

how the autonomic computing capabilities are adopted in produc-
tion.

6.1 Testing of e�ectiveness
In our testing environment, we use a performance testbed that
involves multiple machines to verify the e�ectiveness of our auto-
nomic computing capabilities. We tested the autonomic computing
capabilities in a wide range of workloads. We varied our workloads
to consider di�erent combinations of total users, concurrent users,
and types of requests. We also tested the autonomic computing ca-
pabilities in a wide range of environmental condition. For example,
we used di�erent numbers of servers to host the original system
under di�erent constraints (e.g., network latencies or bandwidth).
In each test, we compare the performance of the system with and
without enabling the autonomic computing capabilities. We applied
our prior data-driven performance test analysis techniques [3, 9–
11, 17, 19] aiming to identify how and where the performance is
di�erent.

Enabling the autonomic computing capabilities achieves
a much better performance than using the default con�gu-
ration. Figure 3 shows the results of an example test in which we
execute a very large workload to the system (similar workloads
are expected in some real production environment). The key per-
formance indicator ranges from 0 to 1, the lower the better. The
�gure shows the evolution of the key performance indicator over
time, with or without enabling the autonomic computing capabili-
ties. Figure 3 shows that after enabling the autonomic computing
capabilities, we signi�cantly improve the performance of the sys-
tem (i.e., the key performance indicator improved from over 0.8
to nearly zero). Our autonomic computing capabilities also adapt
to the changing workload very fast (i.e., in several minutes). Our
tests under di�erent environmental conditions and workloads show
similar results. Note that the label and values on the �gures are
normalized due to the competitive nature of the system.

6.2 Testing of necessity
A potential question regarding our autonomic computing capabili-
ties may be whether our framework is able to �nd a single optimal
con�guration that may work for all workloads. If that is the case,
then the autonomic computing capabilities that we developed using
our approach would not be valuable.

There does not exist a universally optimal con�guration.
In order to �nd out whether there is a universally optimal con�gu-
ration that can be applied to all the environment and workloads,
we designed experiments to apply previously-found optimal con�g-
urations to new tests. We �rst ran some tests with the autonomic
computing capabilities enabled, under di�erent environment and
workloads. We collected the optimal con�gurations from these tests
(the autonomic computing capabilities reach an optimal con�gura-
tion for a certain working environment and a workload, and remain
stable at the optimal con�guration point). Then, we statically ap-
plied these optimal con�gurations to the same tests (i.e., under the
same environment and workloads) without enabling the autonomic
computing capabilities. We found that using the autonomic comput-
ing capabilities always achieves better performance than statically
using a previously-found optimal con�guration. We analyzed the
reasons and we found that as the environmental condition and
the workloads are highly dynamic, a static con�guration cannot
always adapt to the changing environment and workloads. Namely,
the con�gurations are constantly tuned and improved until they
reach a stable and optimal point. Hence, there is no single optimal
con�guration that will work for the system.

6.3 Testing of manual control
A key feature of our autonomic computing capabilities is that they
are transparent to developers. Developers have full control of the
autonomic computing capabilities. We tested various cases where
manual control might be needed: 1) enabling/disabling the auto-
nomic computing capabilities before the system services aworkload;
2) enabling/disabling the autonomic computing capabilities while
the system is servicing a workload; 3) disabling and re-enabling the
autonomic computing capabilities when the system is servicing a
workload; 4) manually changing the values of the con�guration pa-
rameters when the autonomic computing capabilities are disabled;
5) manually changing the values of the con�guration parameters
when the autonomic computing capabilities are enabled. In all cases,
we found that developers were able to use the manual control with-
out any problems.

6.4 Testing of robustness
We want to ensure that our autonomic computing capabilities work
expectedly under extreme workloads. Therefore, we tested, under
extreme workloads: 1) whether the autonomic computing capa-
bilities would fail and what is the impact of a failure; 2) whether
the autonomic computing capabilities would bring negative im-
pact (e.g., �nding worse con�gurations); 3) whether we can still
manually control the autonomic computing capabilities; 4) what
would happen if we enable/disable the autonomic computing ca-
pabilities in the middle of a workload. Our test results show that
our autonomic computing capabilities are robust under extreme
workloads.
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6.5 Testing of high variance workloads
In a real production environment, the workload is constantly chang-
ing. Therefore, we want to test how the autonomic computing ca-
pabilities behave under a high variance workload. We introduced
a signi�cant amount of variance in the workloads when the auto-
nomic computing capabilities are enabled. Our testing results show
that our autonomic computing capabilities can quickly adapt to
the changing workloads (i.e., in several minutes) and optimize the
performance to desired ranges.

6.6 Field testing
We tested our autonomic computing capabilities in a real produc-
tion environment. Our testing results show that, under production
workloads, our autonomic computing capabilities achieve similar
performance improvement as in the testing environment.

6.7 Adoption of our autonomic computing
capabilities

We presented our approaches and experimental results to the pro-
duction solution team, who makes plans for new features or en-
hancing current production deployment. Our autonomic computing
capabilities are very well-received by the developers and are inte-
grated into the production environment.◆

✓

⇣

⌘

Through testing of our autonomic computing capabilities, we
show that they can e�ectively improve the performance of the
system while freeing developers frommanually tuning con�gura-
tion parameters. Our autonomic computing capabilities are also
tested to be robust under extreme or high variance workloads.

7 CONCLUSION
As software systems become increasingly complex, human costs
for system operation and maintenance play a more and more sig-
ni�cant role in the overall cost of software systems. Autonomic
computing was proposed to reduce the necessity for human in-
tervention in large software systems. However, it is challenging
to add autonomic computing capabilities to the existing systems
that were not designed with the autonomic computing mindset.
In this paper, we document our experience of successfully adding
autonomic computing capabilities into an existing large-scale non-
autonomic system with minimal changes to the original system. In
particular, we focus on the software engineering challenges that we
encountered during the process, howwe overcame these challenges,
and the lessons that we learned. We also share our high-level im-
plementation of the autonomic computing capabilities and how
we test such capabilities under di�erent conditions. We believe
that our experience on transforming existing systems to become
autonomic can help software practitioners who also want to adopt
autonomic computing capabilities to existing non-autonomic large-
scale systems. As there are many large-scale software systems that
still su�er from expensive human costs, we encourage future work
on investigating research methodologies that can help developers
add autonomic computing capabilities to these existing software
systems in a cost-e�ective manner.
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