Towards Learning Generalizable Code Embeddings using
Task-agnostic Graph Convolutional Networks

ZISHUOQO DING Concordia University, Canada

HENG LI,Polytechnique Montréal, Canada

WEIY| SHANGConcordia University, Canada
TSE-HSUN (PETER) CHEDbncordia University, Canada

Code embeddings have seen increasing applications in software engineering (SE) research and practice recently. Despite the
advances in embedding techniques applied in SE research, one of the main challenges is their generalizability. A recent study
nds that code embeddings may not be readily leveraged for the downstream tasks that the embeddings are not particularly
trained for. Therefore, in this paper, we propo&raphCodeVewhich represents the source code as graphs and leverages

the Graph Convolutional Networks to learn a more generalizable code embeddings in a task-agnostic manner. The edges
in the graph representation are automatically constructed from the paths in the abstract syntax trees, and the nodes from
the tokens in the source code. To evaluate the e ectivenes&phCodeVewe consider three downstream benchmark

tasks (i.e., code comment generation, code authorship identi cation, and code clones detection) that are used in a prior
benchmarking of code embeddings and add three new downstream tasks (i.e., source code classi cation, logging statements
prediction, and software defect prediction), resulting in a total of six downstream tasks that are considered in our evaluation.
For each downstream task, we apply the embeddings learne@iaphCodeVemd the embeddings learned from four baseline
approaches and compare their respective performance. We nd tBeaphCodeVeuutperforms all the baselines in ve

out of the six downstream tasks and its performance is relatively stable across di erent tasks and datasets. In addition, we
perform ablation experiments to understand the impacts of the training context (i.e., the graph context extracted from the
abstract syntax trees) and the training model (i.e., the Graph Convolutional Networks) on the e ectiveness of the generated
embeddings. The results show that both the graph context and the Graph Convolutional Networks can leraphCodeVec

in producing high-quality embeddings for the downstream tasks, while the improvement by Graph Convolutional Networks

is more robust across di erent downstream tasks and datasets. Our ndings suggest that future research and practice may
consider using graph-based deep learning methods to capture the structural information of the source code for SE tasks.

CCS Concepts:Computing methodologies ! Machine learning ; ~ Software and its engineering ;

Additional Key Words and Phrases: Machine learning, Source code representation, Code embeddings, Neural network

1 INTRODUCTION

Over the last few years, both researchers and practitioners have witnessed the success of applying deep learning
techniques to natural language processing (NLP) tasis The advances of these neural network methods have
led to breakthroughs in addressing a variety of NLP based research problems, including machine translation,

Authors' addresses: Zishuo Ding, zi_ding@encs.concordia.ca, Concordia University, Department of Computer Science and Software Engi-
neering, Montreal, QC, Canada; Heng Li, heng.li@polymtl.ca, Polytechnique Montréal, Department of Computer Engineering and Software
Engineering, Montreal, QC, Canada; Weiyi Shang, shang@encs.concordia.ca, Concordia University, Department of Computer Science and
Software Engineering, Montreal, QC, Canada; Tse-Hsun (Peter) Chen, peterc@encs.concordia.ca, Concordia University, Department of
Computer Science and Software Engineering, Montreal, QC, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro t or commercial advantage and that copies bear this notice and the full citation on the rst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci ¢ permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/6-ART $15.00

https://doi.org/10.1145/3542944

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3542944

2 " Ding, Zishuo et al.

document classi cation, etc. For example, in the task of document classi catidrdirectly apply convolutional
neural networks (CNN) to the text data and obtain better results compared to the traditional support vector
machine (SVM) method. As one of the key aspects in NLP, distributed vector representation of adcds word
embeddings, has attracted much attention. Word embeddings project words into a low-dimensional semantic
space, where each word is represented by a vector of real numbers. Stddids] show that the use of pre-trained

word embeddings can improve the performance of downstream tasks (e.g., sentence classi é&fjoim[addition

to the wide application of word embeddings in NLP, prior software engineering (SE) research also illustrates
the e ectiveness of distributed code representation (i.e., code embeddings) in assisting in software engineering
tasks, such as automatic program repal§] 86, 90, software vulnerability prediction 25 7(, method name
prediction [2, 6], and code clones detection [11].

Despite recent advances in code embeddings, one of the main challenges of applying such embeddings in
research and practice is their generalizability to downstream tasks that the embeddings were not particularly
trained for. Recently, Kang et gl34] evaluate two pre-trained code embeddings generated by Glé6¥egnd
code2vec], by applying these two pre-trained embeddings to three downstream SE tasks, including code
comment generation, code authorship identi cation, and code clones detection. However, the results show that
code embeddings may not be readily leveraged in the models of the downstream tasks for which they have not
been trained. In other words, pre-trained code embeddings may not generalize to.di erent downstream tasks.

On the other hand, both studied embedding techniques in the prior waH [have their limitations. In
particular, GloVe 69 treats the source code as plain text and only considers the unstructured local textual
information which may miss the useful syntax information from the source code. Code2&jgadrses each
method in the source code to an abstract syntax tree (AST) and focuses on the utilization of the structural
information extracted from such ASTs. However, the token vectors are learned using a supervised approach,
where the training objective is method name prediction instead of a task-agnostic purpose. Therefore, in this
work, we aim to nd out whether the lack of generalizability of these code embeddings can be alleviated
by learning task-agnostic embeddings from both the syntax and semantic information of the source
code in a task-agnostic manner .

Meanwhile, the recently proposed graph-based deep learning methddhpve been successfully employed
in several SE tasks such as variable name predictijrahd variable misuse predictior3]. However, such
graph-based methods have not been used for learning source code embeddings. Therefore, in this paper, we
adopt the Graph Convolutional Networks (GCN)7, 38 to learn code embeddings due to its ability for handling
structural information in graphs. We rst construct graph representations from the abstract syntax trees (ASTS)
of the source code, then leverage the GCN model to train the code embeddings from the context information
provided by the graph representations. Unlike previous wog ¢, 95 which learns code representations for
speci c tasks, this work learns task-agnostic code embeddings, aiming to e ectively apply the learned embeddings
to di erent downstream SE tasks.

To quantitatively assess the quality of our learned code embeddings in SE tasks, we use and extend the existing
benchmark tasks published by Kang et f4]. Specially, we add three new downstream tasks to the existing
ones, resulting in a total of six downstream tasks: code comment generation, code authorship identi cation, code
clones detection, source code classi cation, logging statements prediction, and software defect prediction. We
apply our learned code embeddings in these benchmark tasks and compare it with four baseline approaches.
Speci cally, we organize the discussion of our results along with the following three research questions (RQs).

RQ1 How e ective is GraphCodeVammpared with other baseline embedding techniques in representing the
source code? We compa@raphCodeVewith other four state-of-the-art baseline embedding techniques in
the six downstream tasks. We observe tt@taphCodeVeautperforms the baseline approaches in ve out
of the six downstream tasks.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks ~ 3

RQ2 How does the structural context information of the source code impact the e ectiveness of the embeddings
generated byGraphCodeV@dNe perform an ablation experiment to understand the impact of the context
information extracted from the structures of the source code (i.e., the ASTSS@phCodeVetVe nd
that although overall, such structural context information can ben&traphCodeVen producing code
embeddings for the downstream tasks, there may be cases where the structural information may not
provide additional bene t.

RQ3 How does the GCN model impact the e ectiveness of the embeddings generat&rdgyhCodeVediNe
perform another ablation experiment to understand the impact of the used model (GCN) for training the
code embeddings. We nd that using the GCN model performs better than using a shallow neural network
as used in Word2vec.

The main contributions of this work include:

We propose a source code embeddings appro&hphCodeVewhich represents the source code as graphs
and utilizes the Graph Convolutional Networks (GCN) to learn task-agnostic code token representations.
We extend an existing benchmark to a total of six downstream SE tasks for evaluating code embeddings.
We conduct comprehensive experiments on the benchmark downstream tasks, which demonstrates that
GraphCodeVaierforms comparable or better than the existing approaches on all the studied downstream
tasks.

We perform ablation experiments to understand the impact of the important modeling decisions (i.e.,
training context and training model) on our approach and demonstrate that both the structural context
information and the GCN model bene t our approach in producing more generalizable code embeddings.
We share our trained embeddings and downstream tasks with the research comménity.

Paper organization. We present the background and survey prior research that is related to our work in
Section 2. In Section 3, we describe our proposed approach. Section 4 presents our experimental setup. Section 5
discusses the experimental results of evaluati@gpphCodeVealong three research questions. In Section 6,
we further discuss the impact of di erent parameter settings and di erent data sampling strategies on the
performance of code embeddings. Section 7 discusses the threats to the validity of our study. Finally, Section 8
concludes this paper.

2 BACKGROUND AND RELATED WORK
2.1 Background

2.1.1 Word embeddings in NIEcentlyw i , Y i
in-naturallanguageprecesing- Word embeddlngs are a Way to represent WOI’dS ofa vocabulary into a space with
real-valued numbers. A meaningful word embedding projects each word into a low-denominational space (i.e.,
vector), where words with similar semantics are located closer to each other (i.e., vectors with shorter distances).
Considering the importance of word embeddings in NLP, in this subsection, we present the recent development
of in uential word embeddings models.
The eld of word embeddings has witnessed a fast growth since the release of Word®¢e67. Word2vec
uses a simple two-layer neural architecture to learn distributed word representations. Word2vec contains two
di erent but related models: Continuous Bag-Of-Words (CBOW) and Skip-gram. The CBOW model tries to
predict the target word by considering its surrounding words within the context window. The goal of the model

1The embeddings and downstream tasks are available at Google Drive.

ACM Trans. Softw. Eng. Methodol.

https://drive.google.com/drive/folders/1BPyl2WPW2G4uHcqkqulGsWMc4IxV3d9o?usp=sharing

4 " Ding, Zishuo et al.

is to minimize the following loss function:

16 0
I = #— |Og? FdFQg (1)

G1 2 9 2:%0

whereFcis the target word,_2 is the context window size, an@ FgFc o is the conditional probability of
generating the central target worHi c from given context wordF ¢, ¢. Di erent from CBOW which utilizes the
context words to predict the target one, Skip-gram model tries to predict the surrounding context words given

the target word. The goal of the model is to minimize the following loss function:
16 0

Gl 2 9 2.%0

|Og? FQ 9jFC (2)

whereFcis the target word_2 is the context window size, an@t F¢ ojF ¢ is the conditional probability of
generating the context wordF ¢ g from the given central target wordF ¢

GloVe [69 is a popular unsupervised embedding learning algorithm that is based on the words co-occurrence
statistics. To obtain the vector representation for each word in the vocabulary, Pennington gg9jladopt the
following loss function to train word embeddings,

G 2
= 5 -g.9 FyFo 10g- g9 (3)
881
where- denotes the word-word co-occurrence matrix? © is a weighting functionFg andFg are the corre-
sponding word vectors, respectively.

fastText [1Q is another recent prominent embedding technique proposed by Facebook's Al Research lab.
Compared to previous mentioned embedding techniques which ignore the internal structure of a word (i.e.,
character level information), fastText extends Skip-gram model and exploits subword information to construct
word embeddings. To include the internal information of each word, fastText represents each word as a bag of
character n-grams (i.e., each subword is represented by a n-gram) and learns the vector for each n-gram. Finally,
each word is represented by the sum of the vector representations of its subword n-grams.

Due to the ability to capture the semantics interpretable for machines, word embeddings play an important
role for many downstream NLP tasks. For example, Li e{4B] and Vashishth et al[84] adopt the trained word
embeddings to initialize the embedding layer of neural networks based models for the task of named entity
recognition (NER) which'is to identify and classify the entity mentions into prede ned categories, such as persons,
locations, etc. Meanwhil&] computes a linear combination of word embedding of each word in the text, which
is then fed as the features into a logistic regression model for the task of sentiment classi cation to determine
whether a document is positive or negative.

2.1.2 Code embeddingsmilar to word embeddings, code embeddings are a way to represent each source code
token into a space with real-valued numbers. Prior research proposes various approaches for learning distributed
code representations (i.e., code embeddings). In this section, we present a background of existing code embedding
techniques. Based on the training context, the existing code embedding techniques can be classi ed into two
categories: (1) textual context-based and (2) structural context-based methods.

Textual context-based embeddings. Similar to natural languages, programming languages are usually repetitive

and predictable 26. Thus, prior research0, 20, 81] considers source code as plain text and directly applies
existing word embedding techniques to source code. In this section, we review three of the most popular textual
context-based works for code embeddings, i.e., Word2vec [56, 57], GloVe [69] and fastText [10].

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks ~ 5

Grothny HUVGWPW

zopvv2u, QW hulbBAAR QGWP
e

SULQWL1OPH VRPHR|QH @o
[(ewords @@@

QDP H [} [VRPH R]Q
Fig. 1. Tree representation of the code snippet generated by JavaParser. For simplicity, only part of the tree are displayed.

As described in Section 2.1.1, Word2v86 b7, GloVe [69 and fastText [L(are all unsupervised embedding
learning algorithms and can be easily adopted for source code embeddings training. In these models, the source
code is treated as plain text and only the local textual information is considered.

Word2vec uses a local window with a xed length and considers the tokens in the window that surround
the target token as its context. The context tokens are treated equally or processed based on the distance with
the central target token. However, this is not in accord with the programming rules. For example, consider the
following class deceleration in Java.

public class Embeddings {
public static int dims;

public static float empty;

.}

Assuming the window size is ve, and the target token is Embeddings , the token dims is one of the context
tokens captured by the window, but the token empty is missed due to its long distance to the target token.
However, both should have the same importance for Embeddings , as they are the variables declared in the
same scope. Moreover, the rsttwo public keywords are also within the window, and they are treated equally
for Embeddings ; but intuitively, they should be processed di erently, as the rstis an access modi er for the
class while the other is for its attribute. fastText considers the subword information, but it still adopts a similar
strategy to construct the context and faces the same problems. Although GloVe adopts the global co-occurrence
statistics, it does not consider the structural dependencies among the tokens.

Structural context-based embeddings. Source code contains explicit structural information (e.g., classes,
methods, branches), which may not be fully represented by a sequence of tokens [61, 65, 95]. Thus, researchers
have proposed approaches that consider the structural information in the source &dé4,[29 95. In this part,

we rst introduce the abstract syntax tree (AST) and then describe code28g@[baseline approach in our
experiments, which produces the embeddings based on ASTs.

Theabstract syntax tree represents the programs with the syntax information using a tree. As illustrated in
Figure 1, the leaf nodes are the tokens of the program, and others are AST node types. Considering its power in
preserving all levels of information of the source code, including the text as well as the syntactic structure, ASTs
have been applied into a variety of software tasks, such as log levels suggeg&famfl code clones detectio®§,
etc.

ACM Trans. Softw. Eng. Methodol.

6 " Ding, Zishuo et al.

Code2vecis a code representation model recently proposed by Alon ef@l Like many other AST-based
models, code2vec is also trained and evaluated on a single task, namely, method name prediction. In particular,
in this model, the authors rst extract all the methods from the selected code repository. Then the methods
are transformed into a collection of ASTs. Next, triplets are constructed from the trees, where the rst and last
elements are the terminal nodes of the AST, and the middle element is the path connecting them. Once having
the training corpus (i.e., the triplets), a path-attention networ js used to learn token and method names as
well as the path vectors. Code2vec uses the cross-entropy loss to train the model, and the learned embeddings
are task-speci c.

2.2 Related work

Source code embeddings is an essential part of many SE t&slé 11, 15 16 25 70 86 90. Due to the
advancement of neural networks, researchers propose various approaches for learning code embeddings to
assist in SE tasks. In this section, we report related works for each category of code embedding presented in
Section 2.1.2.

Textual context-based code embeddings. Prior work extracts the local textual information from the source

code and then applies embeddings techniques on the extracted textual information. For example, Efstathiou
and Spinelli20] treat the source code as plain text and use fastTéq fo train the embeddings for di erent
languages. Harer et aJ25] convert code tokens into a vectorial representation using the Word2vec algorithm.
They collect open-source C/C++ programs and apply the lexer on the source code. The trained embeddings are
used to initialize the feature embedding layer of the TextCNN mod# [which is later used for vulnerability
detection. Chen and Monperry46] train Doc2vec #1] on a corpus of Java les. Source code components from
each java le are extracted and tokenized. The tokenized source code components are used to train a Doc2vec
model for automated program repair. Similarly, White et §0] adopt Word2vec to transform the le-level
corpus for each program revision into streams of embeddings. Intuitively, using local textual context is reasonable
as developers always code the related statements together. However, during the embeddings training, neither
using a too-large local window nor a too-small window is desired. A too-large local window size may include
redundant or unrelated tokens (i.e., noise tokens) in, while a too-small local window size may lose the important
context tokens. In addition, considering the code snippet as plain text results in the omitting of the structural
information in the source code that may be important for some downstream tasks.

AST-based code embeddings.To leverage the structural information of source code, some researchers propose
AST-based representation approaches. An AST represents the source code with a tree structure, which has been
proven to be useful in a wide range of software engineering elds. Zhang e{@8] propose an AST-based
neural network for'source code representation. In their work, ASTs are split into a sequence of small statement
trees, which are later encoded into vectors. Alon et [&l] propose code2vec and parse ASTs to a collection

of triples, where the rstand last elements are leaf nodes in the tree representation, and the middle element
is the path connecting these two nodes. Then, they feed the triples to an attention model for learning vector
representations for arbitrarily-sized snippets of code. Buich and Andrzeldkinplement an AST-based Recursive
Neural Network (RNN) for code clones detection. Recently, Allamanis.d8hbhdopt graph-based deep learning
methods 7] for variable name prediction task and variable misuse prediction task. However, all of them train
the embeddings on a speci ¢ task and thus require well-labelled data and may su er the generalizability problem.
Tufano et al [83] rst train four separate code embeddings based on di erent training contexts (i.e., identi ers,
AST, bytecode, & CFG) and then use these four embeddings in detecting similar code fragments. Our work is
di erent from these works from both the training context extraction and the embedding learning aspects.
Downstream SE tasks using code embeddings. Similar to the usage of word embeddings for downstream NLP
tasks as described in Section 2.1.1, the trained code embeddings can also be integrated for downstream SE tasks

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 7

-, P——
OHWKRG $EVWUDFW VIQWD
H[WUDFYLRQ (IWUDFWHG[PHWKRGV JHQHUDWUYRQ \t
~ ~

—

1 P——— l
(YDOXDWLR|Q R .
GRZOVWUHD P WO\l VRNHQ HPEHEGLRIYPEHGGLYYY OHWKRG Jljesk *UDSK FRQ
oHDUQLRY UHSUHVHQWDWI JHQHUDWU

Fig. 2. The overall framework @raphCodeVeblote: we apply the same token embeddings trained from a general dataset
on all downstream tasks.

in the same way. That is, these embeddings can support both deep learning and traditional machine learning
SE tasks34). Some researcher8f 83 use the embeddings of tokens in programs as a feature vector and then
feed these features into traditional machine learning methods. For example, Tufano[8B&lrst learn the
code embeddings for each program fragment and then they adopt the ensemble learning (i.e., random forest) for
detecting similarities of di erent code fragments. In addition, code embeddings can also be used as initialization
of embeddings layers of the neural network based models for downstream SE tasks. For example, Zhang et al
[95] adopt the embeddings generated by Word2vec to initialize the.embedding layer's parameters in their neural
network based model for the tasks of clone detection and code classi cation..
The limitations of the existing work. On one hand, Word2vec and GloVe only utilize the textual context
without incorporating the structural context explicitly to learn code embeddings. On the other hand, most of the
existing structural context-based models learn code embeddings in a supervised way, which heavily rely on the
availability of well-annotated training data which is usually not available. Moreover, the embeddings are often
trained and evaluated on the same task, raising the concern that the learned embeddings may not generalize well
to other tasks.

Considering the limitations of existing works that leverage textual or AST-based code embeddings, we propose
GraphCodeVewhich improves the code embeddings by representing source code as graphs and training the
embeddings in an task-agnostic manner, aiming to learn task-agnostic code token representations.

3 APPROACH

Prior work [34] nds that pre-trained code embeddings may not be readily leveraged for the downstream tasks
that the embeddings are not trained for. However, considering the limitations of the existing code embedding
techniques, we propos&raphCodeVeavhich consists of a training context preparation phase followed by

an embedding learning phase. Figure 2 outlines the overall framewor&m@phCodeVeGraphCodeVerst

extracts methods from a collection of source code les (i.e., Java classes), which are later transformed into AST
representations. Based on these AST representations of methods, a context graph is then constructed for each
extracted method. In the embedding learning phase, the GCN embedding appréddh {ised to train the token
embeddings based on the graph context. Below, we describe the training context preparation and embedding
learning phases in detail.

3.1 Training context preparation

In this section, we describe the procedures of how to represent the source code using a graph. Formally, given a
code snippeD = FeFp* """ «E°, whereF- is the=th token in the code, the goal of this step is to generate its
graph representationG = 1V «E°, whereV is the set of nodes (i.e., tokens in the source colie}, 4p.4D*ER V

refers to the edges in the grapld.erepresents the edge connecting nod2andb).

ACM Trans. Softw. Eng. Methodol.

8 " Ding, Zishuo et al.

3.1.1 AST generatiofipart from using the local window to construct the context, many NLP tasks adopt
Syntactic Dependency Parse (SDP) to composite the context [40, 42, 43, 71, 92]. Meanwhile, previous studies [5,
9, 72 demonstrate that software engineering tasks can greatly bene t from leveraging the syntax information
of programming languages. Hence, in this section, we follow a similar approach with that of Alon o
extract the AST representations of source code.

In GraphCodeVesource code is rst transformed into ASTs using JavaPasehich provides the functionality
of converting source code into tree representations. The structural syntax information of each method is preserved
in an AST tree. For example, given the following code snippet, JavaParser produces the tree representation shown
in Figure 1.

public void printName (String someone){
name = someone;
System.out.printin(name);

}

As Figure 1 shows, the leaf nodes are tokens in the source code which are connected by a set of JavaParser AST
node types that provide the syntax structure of the code.

Based on the AST, we then extract the nodes and edges from the AST and represent the source code using a
graph. Our work shares a similar way with Alon et al. [5, 6].

3.1.2 Graph context constructi@mce we have the AST representation of each method of the source code, we
start to construct the graph context. We rst traverse the extracted ASTs (see Section 3.1.1) to collect all the
leaf nodes for each method (i.e., code tokens in the source code). The collected leaf nodes are the nodes in the
constructed graph. We adopt the depth- rst search algorithm implemented in TreeVisitdor the traversal. To
construct a graph representation of the method, we also need to identify the AST node types connecting these leaf
nodes. The identi ed AST node types are the edges in the constructed graph. Given any two di erent leaf nodes,
F1 andF», the edge4.; is the shortest path between these two nodes in the method's AST. We also keep the path
traversing direction to preserve as much information as possible. As a result, we can collect two di erent type
paths for each pair of leaf nodes. The reason why we preserve the path direction is that di erent paths represent
di erent syntactic relationships between these nodes. For example, in our above example, name = someone; ,
for the token name, someone is the source expression (i.e., assigner) and for the token someone, name
is the target variable (i.e., assignee). In other words, the dependency relationship from name to someone is
di erent from the dependency relationship from someone to name . Moreover, the direction of the dependency
relationship is not only considered in SE tasks(e.@]) put also in NLP tasks (e.g48§). By doing such a directed
structural traversal, we construct the graph representation of the source code, where nodes represent the code
tokens in the source code while the edges represent the AST node types connecting two nodes. In the constructed
graph, there aré# nodesandt 1# 1° directed edgeSdescribing the syntactic relationship between any two
nodes, andf is the number of leaf nodes in the AST (i.e., code tokens in the source code).

Figure 3 illustrates a simple example of how to construct a graph from an AST. Basically, we start from one
leaf node and keep traversing until nding the shortest path that connects to another leaf node. The detailed
procedure is as follows:

(1) Given an abstract syntax tree of a method, e.g., printName , we rst collect all the leaf nodes.

(2) We then choose two of the leaf nodes as the target and source nodes (e.g., String and someone),

respectively.
https:/ljavaparser.org/.

Shttps://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.6.0/com/github/javaparser/ast/visitor/ TreeVisitor.html.
“We further lter the edges by a length threshold, explained later in this section.

ACM Trans. Softw. Eng. Methodol.

https://javaparser.org/
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.6.0/com/github/javaparser/ast/visitor/TreeVisitor.html

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks ~ 9

SULQWI1DPH

SXEOLF

6WULQJ YRLG

Fig. 3. Graph representation of the code snippet based on the AST. For simplicity, only part of the graph are displayed.

(3) Next, we extract the paths from the root nodelethodDeclaration, to the target and source nodes respec-
tively (i.e., iMethodDeclaration, parameters, Parameter,ClassOrinterfaceType, SimpleName i
and hMethodDeclaration, parameters, Parameter, SimpleName). The longest common pre x of
these two paths isMethodDeclaration, parameters, Parameter i.

(4) We then remove the longest common pre x from the two paths, resulting in two sub-paths,
hClassOrlinterfaceType, SimpleNamd and hSimpleNamie We keep the last element of the common
pre x (i.e., Parameter).

(5) We preserve the path direction from the target node to the source node and connect the path elements with
Speci cally, we reverse the sub-path connecting the target node and assign the up direction (represehjed as
For the sub-path connecting the source node, we remain the same order and assign the down dlrectlon (rep-
resented a%). For example, after this step, the two paths becoBimpleNameClassOrinterfaceType
and SimpleNante

(6) We then concatenate the two sub-paths with the preserved last element of the common
prex (i.e., Parameten, SimpleNameClassOrinterfaceType ' -ParameterSimpleNanie Fi-
nally, we have two nodes, String and someone and the edge connecting them, i.e.,
SimpleNameClassOrinterfaceType “-Parameter-SimpleNanig where the" and# are the traversing
directions and no direction means an in ection node of a traversing path.

(7) We repeat steps (2) through (6) for each pair of source and target nodes, until we collect all the nodes and
edges in the AST.

However, the number of edges is approximately the square of the number of tokens (i.e., leaf nodes). To reduce
the size of the training data, we follow previous worlé] and limit the number of edges by a maximum length: if
the length of an edge (i.e., the number of AST node types in the shorted path) exceeds the threshold, the edge
will be ignored. In our work, we follow the work of code2veé]| and set the threshold to eight as we nd that
two tokens connected by a longer edge usually do not have a direct structural relationship. Note that a relatively
longer edge can preserve a more complete relationship between the leaf nodes, in other words, with a larger
threshold, inthe constructed graph, the target node can have edges to more other nodes and thus, generating more
training context. Meanwhile, if the threshold is too large, more indirect relationships with the target node would
be included, which may introduce more noise to the training corpus, leading to poor quality of the generated code
embeddings. And if the threshold is too small, although the target token would have a more direct relationship
with other nodes, the number of connected nodes would be small and lead to insu cient training data. Thus, the
threshold should be tuned for speci c tasks or training context.

The output of our training context preparation phase (i.e., the graph context of code tokens) are used as the
input for our embedding learning.

ACM Trans. Softw. Eng. Methodol.

10 ~ Ding, Zishuo et al.

SXEOLF
YRLG
SULQWI1DPH PP hb
w 1
, SULQWIDITTIT] |
6WULQJ 6WUL; [Etiii VRPHRQH
(? ' Wy
VRPHR@gA—> (kL ; Py, 1) —>
QDPH QWuLQ) A SULQWI1DPH RoPHO h 1
W4
Oy SULQ YRUGI(O) OO b
VRPHRQH R .
Q SXEOLF Pk P
VAVWHP YRL 30

b

Fig. 4. An overview of our embedding learning phase: assume the target code token is someone , the nodes in blue are the
relevant context tokens which are fed into a one-layer Graph ConvolutionalNetwork (GCN) for learning the distributed
representations of the target token.r,, F are the hidden represetations of context token and target token, respectively.

3.2 Embedding learning

This section provides a detailed description of our approach to.learning distributed token representations in a
task-agnostic manner. More specially, in this work, we adopt the Graph Convolutional Networks (G&Njd

train the token embeddings based on the graph context generated in Section 3.1. The reason why we choose GCN
is that it can not only preserve both the semantic information (i.e., leaf nodes in ASTs), but also the structural
information (i.e., the connecting paths in ASTs) of the source code [3].

Figure 4 illustrates our embedding learning phase. Assuming the target token is someone , the relevant context
tokens (e.g., name, String, printName , void) are fed into the GCN model for predicting the target token,
someone .Formally, given a graph representing the source code snippet, G = 1V <E°, the goal is to learn
a 3-dimensional embedding for each tokenin V..

Similar to the Continuous Bag-Of-Words (CBOW) modBE[57], which tries to predict the target token
using its surrounding tokens within a local window, our approach utilizes the directly connected nodes (i.e., its
neighbors), g to predict the given target nodeé ¢

Hidden representation for each node. The hidden representation (hidden state) of each node is the output
of a convolutional layer in GCN. As Figure 4 shows, the hidden representation of the target toked R® is
updated based on:its neighbors in the graph context. More specially, the representation for the targeFpade
the 1; | 1°th layer in GCN is computed by:

0 a
R © ; ; ;
Fc - 5_ 4 4F2'FC Fo s 14F2'FC ® (4)
22 Fc -

where, 4F2.FC andli,\tz.FC are a trainable weight matrix and a bias, ang, is the hidden representation for context
nodeF at the;th layer.

Edge-wise gating mechanism. As described in Section 3.1, to reduce the number of edges in the graph, we
do ltering using a threshold of edge length. In addition, there may exist di erent relationships among the leaf
nodes: some are weak and meaningless, while others may be more meaningful. For example, we see in Figure 4
that even though the target token someone is directly connected with the token void , their relationship is not
meaningful. In comparison, the relationship between name and someone is stronger. Therefore, we should

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 11

assign di erent weights to di erent context nodes when calculating the hidden representation for the target
node.

To address this issue, we adopt the edge-wise gating mecharB@nHor each target node ¢, the weight
score with its context tokerF » is calculated as follows:

; — Q . Q
64F2-Fc _f 1 4-|:2.|:C Fa s 14F2'FC (5)

where, 4%2% andlf{FZ.FC are trainable parameters arfd? ° is the sigmoid function. Thus, the hidden representa-

tion of the target nodes is formulated as:
o a
R © g A))
Fc — 5- 64-|:2.|:C v Ao F2os 14F2'FC ® (6)
«22 Fc =
Training objective. Given a graph representation of the source coGes 1V *E°, and the target nodd; ¢

(the@h node), the objective of the model is to maximize the following objective function:
O

L= log%FdCe, @
Fc2V

where Cr. is the context nodes (i.e., neighbors in the graph) of the target ndelg$6 FJC-. is the conditional
probability of observing the target nodecgiven the context node<:.. % F§Ce.. is de ned using the following
softmaxfunction:
expVe Bl
Fov EXPVEl E°
whereve and g denote the target embedding and hidden representation of the fedeespectively.
Optimization. One issue iGraphCodeVas the high cost of computation in theoftmaxfunction (i.e., Equa-
tion 8) because it involves the iteration through every node ov¥er To address this issue, di erent optimization
strategies can be applied, such as hierarchical softmax and negative sampWndjerarchical softmax P ?]
uses a binary tree to represent the tokens in the vocabul&y,where each leaf node of the tree is a token. The
probability of traversing from the root to the leaf node (i.e., target token) along the unique path is used to estimate
the conditional probability. By doing such an approximation, the complexity of calculating the probability of each
word goes down fron$ $jVj° to aroundlog,tjVj° [? ?]. While negative sampling is more straightforwar®[?].
The idea of negative sampling is to update a small sample of the token vectors rather than all of them, such that
the computing cost of thesoftmaxfunction can be reduced. In this work, following previous work9, 84?1, we
adopt the negative sampling, as it tends to give better results than hierarchical softmax [24, 69].
The output of our embedding learning phase (i.e., the token embeddings) are used as the input for our
downstream tasks for evaluation.

%FqCe, = 8)

4 EXPERIMENTAL SETUP

In this section, we present details of our embedding training settings and describe the six downstream tasks
used in our quantitative evaluation. Three of the SE tasks, i.e, (1) code comment generation, (2) code authorship
identi cation, and (3) code clones detection, are used for the evaluation of code embeddings in prior resédrch [
while the other three, i.e., (4) source code classi cation, (5) logging statements prediction and (6) code defects
prediction, are newly added in our extended benchmark. We select these tasks either due to the fact that they are
chosen for evaluating code embeddings in previous wdH[or they are of great importance for SE community

and commonly studied in the literature.

ACM Trans. Softw. Eng. Methodol.

12 ~ Ding, Zishuo et al.

4.1 Dataset preparation

In our experiments, the dataset used for embedding learning comes fronddlva-smalldataset, which is
provided by Alon et al [6] and originally based on the dataset of Allamanis et[d]. This dataset is collected
from publicly available open-source GitHub repositories.

Following the previous approach for pre-processing the source c&l& 34, we convert the tokens into
lower cases and remove all the non-identi ers (e.g., quotation marks). Meanwhile, we follow the common
practice b6 57, 69 84 and ignore all tokens with a total frequency of less than ve as there is not enough data
to do any meaningful training on those rare token&(), 73 89. While constructing the graph representation, due
to the limitation of the memory, we only keep the top-100 most frequent edge types (i.e., edges with the identical
path representation) and others are replaced with a unique identi er (i.e., -1). As during embedding learning, we
need to batch the training context with di erent edge types into the GCN model, and in the GCN model, we
create an adjacency matrix for each edge type, that means if there are a large number of edge types, the model
requires more memory to keep these matrices and would run out of memory and cannot be moved to GPU for
embedding training. Besides, as recommended by Vashishth 84| we also limit the size of each graph to a
maximum of 100 unique nodes and 800 edges; that is, if the size of the graph exceeds the threshold, the graph
will be removed from the training set. After preprocessing, we collect 637,108 training methods (there are 665,115
methods before the preprocessing), each of which is represented by a graph for subsequent embedding learning.
In this work, considering the fact that code2vec can only be trained on method level corpus (c.f., Section 2), to
have a fair comparison with these baselines, we only construct the method level graph context. However, as
ASTs can represent the source code with di erent levels (e.g., method level, statement level, class level, etc.), our
method can also be applied to other types of training data.

The datasets used in the downstream tasks may have di erent vocabulary from the training dataked,
the out-of-vocabulary (OOV) problem. To handle the OOV tokens, we choose to randomly initialize the vector
representation of tokens that only appear in downstream tasks to minimize the impact of these unseen tokens (i.e.,
to make tasks with OOV vocabulary predictable). By doing this, we can make sure that all tokens in downstream
tasks have vector representations, therefore it is always predictable (but may lead to poor performance as the
vectors representing these OOV tokens are not learned from their context).

4.2 Training details

While training the model, we follow the settings in prior workd, 34, 95 and set the dimension of token vectors
to 128. To prevent over tting and avoid performance degradation, we set the number of GCN layers to 1, as
GCN tends to su er performance degradation with increased depth (i.e., number of layerg){ ? 7. The
training batch size is set to 64 by default. Considering 1) the small number of weights of our model (i.e., one layer
and 128 input dimension), 2) the relatively large size of the training data (i.e., more than half million graphs),
and 3) the remarkable learning ability of GCNs from the graph data, we train our embeddings for one epoch
and the training loss is small enough. This is consistent with the nding of Mikolov et[&l6], that is for word
embeddings, training a model on a relatively large dataset using one epoch gives comparable or better results
than more epochs on the same dataset. As it is indicated in a prior work by Mikolov.d6&], the number of
negative samples in the range of two to ve is useful for large training datasets and ve to 20 for small training
data. Hence, in this work, to balance the e ciency and accuracy, we set the number to ve. The training of our
embeddings are conducted in a machine with an NVIDIA GTX 1080Ti GPU and 32GB memory. We summarize
the thresholds and hyperparameters used in our experiment in Table 1.

We evaluate the quality of the trained embeddings on six downstream tasks. For the downstream tasks that use
neural network-based models, the embeddings are used to initialize the embedding layer of neural networks, as

Shttps://s3.amazonaws.com/code2vec/dataljava-small_data.tar.gz

ACM Trans. Softw. Eng. Methodol.

https://s3.amazonaws.com/code2vec/data/java-small_data.tar.gz

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 13

Table 1. Hyperparamters and thresholds used during the two stageSmafphCodeVdor generating the code embeddings.

Stage Name Default Description
value
Edge length (c.f., Sec. 3.1) is the number of AST nodes connecting two leaf nodes (i.e., code tokens). It
would in uence the quality and quantity of the training context. A smaller value would result in a
Edge more tight connection but less connected nodes to the target token, leading to not enough training

length context. On the contrary, a larger value may include more unrelated token pairs and introduce noise
to the training context. In our work, we follow the work of code2veé][and set it to eight to make g
fair comparison.
Unique node (c.f., Sec. 4.1) refers to the number of unique tokens (c.f., Sec. 3.1.2) within each method.
This parameter would in uence the size of each constructed graph for training. The values should be

. tuned based on the GPU memory size, as we need to batch the graphs into the GPU for training, if the
Unique : ;
N node 100 | graphs are too Iarge_, the model requires more memory to l_<eep these data and would throw "gut of

Training context memory" error. Vashishth et al84 suggest the number of unique node should be set no larger than

generation 100. And in our settings, only about 4% of the graphs are Itered which not only has a small e ect on

(c.f., Sec. 3.1 and RQ2) the quantity of the training context but also can avoid the memory error.
Edge (c.f., Sec. 4.1) refers to the total number of extrated AST node types (c.f., Sec. 3.1.2) within each
method. It has a similar e ect with the parameter Unique node on the size of contracted graph. Also,
the values should be tuned based on the GPU memory size, And in our work, we set this parameter to
800, as we nd that only about a small portion (i.e., 4%) of the graphs are Itered out.
Window (c.f., RQ2) is the maximum distance between the current and its neighboring word within a
method. It is similar to edge length, which also has an impact on the constructed training cortext.
A larger window size would be able to capture more broad context, but with the possibility of
5 introducing noise as the context tokens might not be tightly related to the target token. On the
contrary, a smaller window size may contain more focused information about the target word| but
may not be able to capture su cient context. Setting the context window size to ve is commonly
done in the literature [10, 42, 56, 57, 73].
Layer (c.f., Sec. 4.2) refers to number of layers in GCN. It controls the depth of a GCN and directly
in uences the quality of the model. Previous worl?[? ? ? 9 shows that GCN tends to su er|
performance degradation with increasing depth (i.e., number of layers). In our work, we follow the
work of [84] and use the default value.
Dim. (c.f., Sec. 4.2) is the dimensionality (i.e., vector size) of each token. It has a non-negligible impact
on the quality of the embeddings. A small vector size cannot preserve the properties of the tokens of
Dim. 128 | high dimensional spaces, leading to the degradation of quality of learned embeddings. However, a too
large size requires more computing resources and training time, and may su er the sparsity problem
if the training data is not enough. In our work, we follow the settings in prior work [6, 34, 95].
Neg. (c.f., Sec. 3.2) refers to the number of negative samples used when updating the wightg of the
model. A larger value means more samples to calculate and thus more training time needed|. This

Edge 800

Window
(c.f., RQ2

Layer 1

Embedding learnin Neg. > parameter should be adjusted based on the size of training context. As suggested by Mikolov et
(cf Stgc 3.2) g al. [56, 57], 5-20 samples works well for smaller datasets, and 2-5 words for large datasets.
o e Batch Batch size (c.f., Sec. 4.2) de nes the number of training samples presented in a single batch. Allarger

64 | size can speed up the training process but requires more GPU men®jnyiiile using small batch

Sizg sizes achieves better training stability [53]. In this work, we use the default 64.
Dropout rate is the probability of dropping a unit out. Dropout is a regularization technique for
Dropout avoiding the model over tting. As larger models (more layers or more units) tend to more easily

rate over t the training data [? ?] and considering the small size of our model, we don't use this strategy,
instead, we reduce the training epochs to avoid over tting.
Epoch (c.f., Sec. 4.2) is the number of iterations through the entire training dataset. This factor g ects
the performance of the embeddings directly. Increasing the number of epochs may over t the model
Epoch 1 and a small number of epochs may lead to a not fully trained model. In our work, considering

the size of the training dataset and the number of weights of our model (i.e., one layer, 128 |nput
dimensions) [56, 57], we train our model for one epoch, as the training loss is small enough.

changing the embeddings of the embedding layer would a ect the way the model is learnt and thus the models
with di erent code embeddings would have di erent performance. For the downstream tasks that use traditional
machine learning models, the embeddings are used as feature vectors (i.e., each dimension of the embeddings is
treated as a feature). For example, we have a code snippet String name = someone , and each token (string,
name, and someone ; = is removed) within the vocabulary has its corresponding vector representation, such

ACM Trans. Softw. Eng. Methodol.

14 ~ Ding, Zishuo et al.

as[0.1,0.2,0.3,..],[0.1,0.1,0.1, ...]and [0.2, 0.2, 0.3, ...], these vectors can be summed up (or other operations) as a
feature vector (each feature is one dimension of the embedding), which later can be used for traditional machine
learning models.

4.3 Baselines

To evaluate the e ectiveness of our trained embeddings, we com@nephCodeVegith the following existing
embedding models (i.e., the baselines):

Word2vec® is a popular unsupervised word embedding method proposed by Mikolov et al. [56] . We use
the implementation in Gensir[73].

GloVe is an unsupervised algorithm using token-token co-occurrence statistics, proposed by Pennington
et al. [69].

fastText is proposed by Facebook's Al Research Iad.[It is an unsupervised algorithm, which utilizes

the subword information to enrich the word vectors. In their approach, each word is represented as a bag
of character n-grams, and the word is represented as the sum of these character n-grams representations.
We use the implementation in Gensfhii73].

code2velis arecently proposed supervised model for source code representation. Prior @4rifaluates
code2vec on three downstream SE tasks. This model is proposed by Alon[6} ahd utilizes the AST
information to learn code embeddings.

We train these embeddings on the same dataset that is used for trainingssaphCodeVeambeddings (i.e., the
Java-smalidataset). To make a fair comparison, we do the same preprocessing as in Section 4.1, that is converting
the tokens into lower cases and removing all the non-identiers, as well as ignoring all tokens with a total
frequency lower than ve.

4.4 Downstream tasks for evaluation

In this section, we brie y describe the six downstream tasks, including the approaches, the corresponding datasets
used for the evaluation, and the evaluation criteria.

To control the quality of the embeddings evaluation experiments, we enrich the work of Kang. §84]
by adding three new tasks and adopting di erent modeling methods for the six tasks, including deep learning
approaches and traditional machine learning methods. Speci cally, for the rst ve tasks, including (1) code
comment generation, (2) code authorship identi cation, (3) code clones detection and (4) source code classi cation,
and (5) logging statements prediction, we use neural network-based approaches; while for the task of (6) software
defect prediction, we follow the approaches used in their original work and adopt traditional machine learning
methods (i.e., logistic regression, LR in short).

We intentionally select-both the deep learning and the traditional machine learning approaches to ensure
the code embeddings are adequately evaluated across di erent tasks (i.e., six downstream tasks) and modeling
approaches (i.e., traditional machine learning and deep learning). However, we speci cally select LR for the only
task of software defect prediction due to the fact that most of the downstream tasks that rely on code embeddings
use deep learning models, thus we only select one task and put more focus on the impact on deep learning models.
We run the experiments with 10-fold cross validation to mitigate the e ects of the random separation of the
training and test sets, and report the average scores of the results of the 10-fold cross validation. For the models

6There are two variants in the implementation of Word2vec (i.e., Skip-gram and CBOW) and two di erent optimization strategies (i.e., negative
sampling and hierarchical softmax). Following previous woBd], we here select the CBOW with negative sampling as a representation for
comparison.

"https://radimrehurek.com/gensim/

8https://radimrehurek.com/gensim/

Shttps://github.com/tech-srl/code2vec

ACM Trans. Softw. Eng. Methodol.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://github.com/tech-srl/code2vec

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 15

selection for downstream SE tasks, we follow the rules that 1) are used in previous V@drk§ 87), and 2) are
commonly used and have the state-of-the-art or competitive resusig 95. To further ensure a fair comparison
with baselines, we either follow the parameter settings in previous work or use the default parameters and avoid
only ne-tuning these settings only for our method.

In the evaluation, our focus is the e ectiveness of di erent embeddings instead of the approaches for the speci ¢
tasks themselves. Thus, we do not aim to reach the SOTA for a speci ¢ task. Moreover, for each downstream task,
we try to use the same experimental settings that are reported in the literature, hence only examining the impact
of di erent embedding techniques on the downstream tasks.

4.4.1 Code comment generati@inzen a code shippet, which can be either a method or a class, the task is
to automatically generate the corresponding code comme2$ 55 59 7§, in order to assist in program
understanding and maintenance.
Approach. Following Kang et al[34], we use the Sequence-to-Sequence (Seg2Seq) approach proposed by Hu
et al [29]to generate the comments. Hu et §29] consider the comment generation task as a neural machine
translation task. A Recurrent Neural Network-based Seq2Seq model is applied to generate comments based on
the context of the source code.

We train the model using OpenNMP [39 and keep the hyperparameters the same with literatusj} We
set the number of layers to 2 and use Long Short-Term Memory (LSTM)ds both the encoder and the decoder.
Each LSTM has 500 hidden states, the learning rate is set to 0.5, and the dropout ratio is 0.5. The model is trained
for 50 epochs , and we select the model that has the best results on the validation set as the nal model. Both the
encoder and decoder contain an embedding layer, which can be initialized by di erent embeddings.
Dataset. The evaluation dataset is provided by prior wdrk[29, which was initially collected from GitHub.
We preprocess the dataset by converting all the tokens into lower cases and remove all the non-identi ers (e.g.,
guotation marks). After preprocessing, the dataset contains 470,485 <Java method, comment> pairs for training,
58,810 pairs for validation and 58,810 pairs for testing.
Evaluation. We evaluate the quality of the generated code comments using two machine translation evaluation
metrics i.e., BLEUH7 and ROUGE?[?] as they are widely used in the task of code comment generati2® B4?
?]. BLEU is calculated as follows: 3 |

& !
BLEU= % exp F-log?- 9

0 = 1 8523 A
41 A2 852 A
where?- is the modi ed n-gram precision (i.e., the maximum number of n-grams co-occurring in the automatically
generated code comment and the reference comment divided by the the total number of n-grams in the generated
comment)F- are positive weights that can be con gured) is a brevity penaltyp is the length of the generated
comment andAis the length of the reference comment. In our evaluation, we chogse 4 and uniform weights
F- = 1e#, same as prior work [29]. ROUGIIE is calculated as follows:

gpo<-245 >D=Coc2 '6A0<°
" 6a0<.245 >D=C6A0<°

where=is the length of the n-gram@A0<), and >D=Cyc2 6A0<° is the number of n-grams co-occurring in
the automatically generated code comment and the reference code comméntSpeci cally, following previous

(10)

ROUGE-r=

11)

10https://opennmt.net/
Uhttps://github.com/xing-hu/DeepCom
Lhttps://github.com/pltrdy/rouge

ACM Trans. Softw. Eng. Methodol.

https://opennmt.net/
https://github.com/xing-hu/DeepCom
https://github.com/pltrdy/rouge

16 ~ Ding, Zishuo et al.

work [? ?], we calculate ROUGE-L which measures the longest matching sequence of tokens using LCS (Longest
Common Subsequence). The higher the BLEU and ROUGE scores, the better the model.

4.4.2 Code authorship identificatigbiven a code snippet, the task is to identify its author based on the
programmer's distinctive stylometric featured,[30. The task has many applications in the privacy and security

led, such as identifying programmers of malware and other malicious programs. Following Kang g4 we

also evaluate the embeddings on this task.

Approach. Kang et al [34]treat code authorship identi cation as a classi cation problem. Following Kang et al
[34], we use an LSTM neural network, which contains two hidden LSTM layers followed by a fully-connected
layer. The learning rate is set to 0.005, and the model is trained for 50 epochs. We select the model from the last
epoch as the nal model. This neural network contains an embedding layer, and we initialize it with di erent
code embeddings. We follow the use of token embeddings in Kang et al. [34].

Dataset. The evaluation dataset is provided by prior resear@4[which was initially collected from Google

Code Jam. The dataset contains 2,250 programs (5,548 methods) in total from 250 authors. Each author has the
same number of programs. Similar to the previous ta6kl5 34, we preprocess the dataset by converting the
tokens into lower cases and removing all the non-identi ers (e.g., quotation marks).

Evaluation. Following the existing work [, 30, we use the test accuracy as the evaluation metric. It calculates
the percentage of correct classi cations for the test set:

#D<14A >5 2>AA42C ?A4382C8>=B
22DA02= 12
)>CO0; =D<14A >5 ?A4382C8>=B (12)

4.4.3 Code clones detecti@iven two code fragments, the task of code clones detection aims to check whether
they are duplicate or not. It is widely studied in the literature and useful for program maintenance and avoiding
bugs caused by source code reuse in software systéikd] 33 54, 76 82 88 91]. This task is identi ed as a
downstream task to evaluate token embeddings in prior work [34].
Approach. For this task, we use the approach proposed by Zhang ef%], which considers code clones
detection as a binary classi cation problem. The approach splits the entire AST into a collection of statement
trees and then encodes the statement trees to vectors while retaining the lexical and syntax information. A
bidirectional Recurrent Neural Network-based model is used to produce the representation of the code fragment.
We select this approach since it uses a neural network-based approach and contains an embedding layer that can
be initialized by pre-trained code embeddings. In addition, the model is recently proposed and gives competitive
results.

Following the settings in the work of Zhang et a]95], we set the hidden dimension of the encoder and
bidirectional GRU to 100. The learning rate is set to 0.002, and the model is trained for 15 epochs.
Dataset. There are two public dataset benchmarks used for code clones deted®n The rst dataset is
constructed from the standard BigCloneBench (BCH)[The dataset contains nearly 6 million true clone pairs
and 260 thousand false clone pairs parsed from BCB. The second dataset is collected from the Online Judge
system (namely, OJClone) which was initially provided by Mou et al. [62].
Evaluation. Following prior work [95, the commonly used classi cation evaluation metric F1-measure (F1) is
used to measure the performance of the models with di erent embeddings. It is given as follow:

%A428B82420;;
=2 » 1
! %A428B8420;; (13)

where%A42888>)-§};/°—%, and'420;; =)T/()f/"—#,)% refers to the number of true positives% is the number of

false positives, and# is the number of false negatives.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 17

4.4.4 Source code classificatiBiven a collection of code fragments, this task is to classify them into cor-
responding categories based on their functionalities. We choose this task as it is commonly studied in the
literature [35 62 85 95 and has various applications. For example, in order to help other developers on Github

nd and contribute to projects, owners are encouraged to assign related topics to prdjettsth the help of

code classi cation techniques, the topics can be automatically attached to the projects.
Approach. Source code classi cation is a multi-class classi cation problem. We use the approach proposed
by Kim[37] as it is a widely used classi cation model and achieves competitive res@is [The model is trained

for 50 epochs and we select the model that has best results on the training set as the nal model. The learning
rate is set to 0.01 and the batch size is 64. The kernels sizes for convolution are set to 3, 4, 5 and the number of
output channels for the convolutional layer is set to 100.

Dataset. The dataset is collected from the Online Judge systeéamd provided by Mou et al[62]. The dataset
contains 104 classes categories, and each has 500 code fragments. The code in the dataset is converted into lower
cases and all the non-identi ers are removed.

Evaluation. Following prior work [95, we use the test accuracy metric, which is the same as the one used in the
code authorship identi cation task (c.f., Section 4.4.2).

4.4.5 Logging statements predicti®iven a code snippet, this task is to predict whether there is a need to
insert logging statements for collecting valuable runtime information. Logging statements play a crucial role in
tracking important runtime information of software systems. Developers rely heavily on such information to
monitor system behaviors and debug system failure$. [However, adding unnecessary logging statements can
signi cantly increase system overhead 8 94 and hide the truly useful information 21]. Therefore, providing
logging suggestions on whether to log is helpful for software developers.
Approach. Logging statements prediction is a binary classi cation problem. Similar to source code classi cation,
we use the approach proposed by Kii7] as it is recently proposed and widely used for classi cation tasks. We
adopt the same experimental settings as we do in the task of source code classi cation (c.f., Section 4.4.4).
Dataset. The dataset contains ve open source Java systéfnsladoop, Directory-Server, CloudStack, Camel
and Airavata and is provided by].
Evaluation. Following the work of?], we use the balanced accuracy (BA) metric to evaluate the performance of
the model with di erent embeddings.
BA averages the percentage of correctly identi ed logged and unlogged methods and is widely used to evaluate

the performance of models.on imbalanced data. BA is calculated as follows:

NS LI S L a4

2)%, # *2 %,)#

where) % refers to the number of true positives% is the number of false positives, ané is the number of
false negatives. A higher value of BA indicates a better model.

4.4.6 So ware defect predictiofhe task of software defect prediction is to predict whether the given code
shippet contains defects. Various techniques have been proposed to detect d&fAcWe select this task as

a downstream task since it can e ectively help developers nd bugs in source code and prioritize their testing
e orts [87].

Approach. software defect prediction is a binary classi cation problem. To extend the generalizability of our
evaluation of di erent embeddings, unlike the previous ve downstream tasks where the pre-trained embeddings
are used to initialize the embedding layer of neural networks, we choose to use a logistic regression (LR) classi er

L3https://help.github.com/en/github/administering-a-repository/classifying-your-repository-with-topics

Uhttps://sites.google.com/site/treebasedcnn/
15The original dataset contains six projects but the repository of Qpid-Java is unavailable at the time of this work.

ACM Trans. Softw. Eng. Methodol.

https://help.github.com/en/github/administering-a-repository/classifying-your-repository-with-topics
https://sites.google.com/site/treebasedcnn/

18 ~ Ding, Zishuo et al.

to learn the likelihood of defects from the code snippets, as it is used in original w8ik §nd thus we can

compare our results with that of the original workd7] to check whether we build an up-to-standard model. To

represent the code snippets, we follow a similar way in NLP task3.[Speci cally, we average the embedding

vectors of the code tokens in a source code le: 5
-1 (15)

115,

where is a set of code tokens in a source code snippet B8 + is the embedding vector of toke® + is

the learned embedding® is the nal vector representation of the code snippet, which are then fed into an LR

classi er as features.

For our LR classi er, the implementation is based on scikit-lea@§[and the threshold for binary classi cation

is set to 0.5, which is the default value of scikit-learn. As the defect data are often imbalanced, we perform a

re-sampling technique (i.e., SMOTE) to balance the training data.

Dataset. The dataset is provided by Wang et #7], which contains eight open source Java systems. Follow-

ing Wang et al [87], we use two consecutive versions of each project to generate the training and testing dataset:

the source code of an older version is considered as the training data, and that of a newer version is used to

generate the testing data.

Evaluation. Following the work of Wang et al[87], we use the F1 score to evaluate the performance of the

model with di erent embeddings.

5 EXPERIMENTAL RESULTS

In this section, we discuss our experimental results of evaluation our proposed appr@aaphCodeVeorganized
along three research questions (RQs). For each RQ, we explain the motivation and the approach before discussing
the corresponding results.

RQ1: How e ective isGraphCodeVammpared with other baseline embedding techniques in
representing the source code?

Motivation

Prior research §, 11, 16, 20, 25 29, 83 95 proposes di erent distributed code representations (i.e., code
embeddings) approaches to assist in software engineering tasks (e.g., method name prediction and software
vulnerability prediction). However, a recent study by Kang et @4] nds that code embeddings may not be
readily leveraged to enhance existing models for the downstream tasks which they have not been trained for.
Therefore, in this research question, we would like to explore whether our task-agnostic GCN-based approach
(i.e.,GraphCodeVecan produce a more generalizable token embeddings for a variety of SE tasks compared with
other baselines.
Approach

*UDSK&RGH9

/IHDUQHG
HPEHGGL

RNHQ (YDOXDWLR}
JVv GRZQVWUHD

||pHWKRGV

Fig. 5. The overall design of the approach for RQ1. In this experiment, the same prepocessed dataset is Gseph@odeVec
and baselines.

%DVHOLQHV H] ‘RUG YHF
*OR9H IDVWT7H][FRGH YHF

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 19

To answer our rst research question, we need to train the token embeddings produced by di erent embedding
techniques (i.eGraphCodeVemnd baselines, c.f., Section 4.3). As shown in Figure 5, during code embeddings
training, the same preprocessed training dataset (i.e. Jnea-smalldataset, c.f., Section 4.1) is used by di erent
embedding techniques.

Once nished the code embeddings training, we then need to evaluate these pre-trained embeddings. However,
as there is no direct evaluation methodology for evaluating the quality of code embeddings, we thus follow
previous work [34 and use six downstream SE tasks to evaluate the quality of code embeddings. Each of the tasks
has its respective dataset for model training and evaluation, and the only varying factor in each evaluation task
is the code embeddings (produced ByaphCodeVemnd baselines) used for code token representation (i.e., for
each task, only the embeddings are changed and other parameters are kept the same), and thus we can conclude
the performance changes are caused by the code embeddings. Note that the change of code embeddings would
also impact the weights learned for each model, which is discussed in Section 7. The detailed description of the
downstream SE tasks and the corresponding evaluation metrics are presented in Section 4.4.

Results

Overall, GraphCodeVgeerforms comparable or better than all baseline approaches on all downstream
tasks. The experimental results are provided in Table 2 with the best results for each task and dataset highlighted
in bold. In particular,GraphCodeVechieves the best results in ve out of the six tasks, including the tasks of
code authorship identi cation, code clones detection, source code classi cation, logging statements prediction,
and software defect prediction. To better illustrate the results, we speci cally compare with GloVe, as did in Kang
et al [34], since it was one of the most important work aiming for generating task-agnostic embeddings at the
time of our research. Then, we conduct a statistical analysis using a Wilcoxon signed-rank test to compare the
performance ofGraphCodeVeand the performance of GloVe. We use a p-value that is below 0.05 to indicate
that the performance di erence is statistically signi cant. For the di erences that are statistically signi cant, we
further compute the Cli 's delta e ect size. The reason why we use the Wilcoxon signed-rank test and Cli 's delta
is that they both do not assume a normal distribution of the compared data. As shown in TalBeaphCodeVec
performs better than Glove in 16 out of 23 cases, and 68.8% of the improvements are statistically signi cant with
a magnitude of large . We obtain a 5.0% relative increase in accuracy on source code classi cation task compared
to the representative baseline (i.e., GloVe). Moreover, for the evaluation on the task of software defect prediction,
which uses a traditional machine learning approach (i.e., Logistic Regression), our embeddings reach the best
results on more than half of the datasets. For the Log4j dataset, we obtain around 10.1% absolute increase (24.1%
relative increase) in the F1 score compared to that of GloVe. The results demonstrate that the learned embeddings
from GraphCodeVeaxan better represent the source code and generalize to various downstream tasks. Besides, we
nd that on the task of code authorship identi cation, by using the code embeddings generated by GloVe, we
achieve an accuracy of 79.3% and outperform the simpler approach in the work of Kand@&thhich uses
the TF-IDF features. This nding is di erent from that of Kang et dl34]. The di erence may be caused by the
di erent preprocessing steps on the training corpus and parameters for GloVe training. This nding suggests
that researchers and developers should be careful with the parameters selection and corpus reprocessing. To
further investigate the in uence of these factors, we have conducted more than 20 new experiments with di erent
experimental settings, the results are discussed in Section 6 and Section 7.

However, we observe that for some downstream tasks (e.g., source code classi cation and code authorship
identi cation), di erent embedding techniques can result in diverse performance. In particular, for the source code
classi cation task, using the embeddings trained by fastText can only have a 76.7% of test accuracy, compared to
a 89.2% test accuracy when using the embeddings trained by GloVe. This nding suggests practitioners should be
careful with the selection of code embedding techniques for di erent downstream tasks, as they may produce
diverse results. On the other hand, we also observe that leveraging di erent embeddings may not always impact
the performance of downstream tasks signi cantly. This observation is similar to that of prior studd&s43 84.

ACM Trans. Softw. Eng. Methodol.

20 ~ Ding, Zishuo et al.

Table 2. Evaluation results of usir@raphCodeVeand baselines on the test sets in the six downstream tasks.

Baselines
?;s\/;/(zstream Evaluation Metrics Dataset GraphCodeVec Word2vec GloVe fastText code2vec
Code comment BLEU GitHub 20.7(-4.7%) 21.1 21.7 19.9 21.0
generation ROUGE 36.1(-2.4%) 36.9 37.0 36.0 36.3
Code author-). racy Google Code Jam 80.2(+1.1%) 789 793 766 79.4
ship identi ca-
tion
BCB 93.4(+0%) 93.4 93.4 934 93.4
Code clones OJClone 93.8(+8.7%) 884 863 846 934
detection
Avg 93.6(+4.2%) 90.9 89.8 89.0 93.4
Source code Accuracy 0J dataset 93.7(+5.0%) 85.5 89.2 767 91.4
classi cation
Airavata 95.7(+0.7%) 95.3 95.1 95.1 95.0
. Camel 81.4(+0.4%) 80.9 81.1 79.8 80.5
Logging _state- CloudStack 86.3(-0.8%) 86.5 87.0 86.7 86.1
ments predic- BA Directory-Server ~ 89.1(+2.5%) 87.9 869 886 87.6
tion Hadoop 75.6(+0.7%) 757 750 74.4 73.9
Avg 85.6(+0.7%) . 85.3 85.0 84.9 84.6
Ant1.5->1.6 42.7(+23.5%) 35.9 34.6 36.0 475
Ant1.6->17 50.5(+13.0%) 43.9 447 442 46.8
Camel 1.2 ->1.4 44.6(+5.3%) 41.9 42.3 41.8 42.7
Camel14->1.6 46.7(-4.6%) 45.3 49.0 45.8 49.6
jEdit3.2 -> 4.0 57.0(-2.3%) 53.4 58.3 53.6 57.9
Software defect Edit4.0-> 4.1 58.0(-3.3%) 61.0 60.0 60.7 58.5
orediction F1 Log4j 1.0->1.1 72.5(+9.1%) 64.0 665 63.1 68.5
Lucene 2.0 -> 2.2 67.0(+9.3%) 63.1 61.3 63.2 63.2
Lucene2.2->2.4 65.2(+2.4%) 65.4 63.7 65.3 62.4
POI15->25 84.6(+4.0%) 65.7 81.4 65.1 82.1
POI125->3.0 74.9(+2.6%) 72.5 73.0 72.2 74.0
Xalan 2.4 ->2.5 52.5(+24.1%) 425 423 424 51.2
Avg 59.7(+5.8%) 54.6 56.4 54.5 58.7

Note: The best results for each task and dataset are highlighted in bold. The numbers in the brackets indicate the relative change of
GraphCodeVeo GloVe. The * means that the di erence is statistically signi cant. The superscript L represents large e ect size.

We nd that by using di erent embeddings, although we can obtain di erent performances on di erent tasks,
the di erence is limited in some cases. For example, the di erent embedding techniques result in the same F1
score of 93.4% on the BCB dataset for code clones detection. One possible explanation is that the approaches used
in the SE tasks are already powerful enough and there is enough dataset for learning a good model. Thus the
impact of using di erent embedding techniques may be negligible.

Compared to other embedding techniques, GraphCodeVgmroduces more stable results across all
the downstream tasks and datasets. Figure 6 shows the comparison of performance results produced by
GraphCodeVeand baselines. In this gure, to show the di erence to the best performance of each task, the
results are scaled to the range of 0-100%, which is the ratio of the current method's performance to the best

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 21

2.5% 7.5% 6.7% 7.8% 2.0%
— =

L] °

' I

*UDSK&RGH9HF ‘RUG YHF *OR9H IDVW7H[W

Fig. 6. Comparison of the results @raphCodeVemnd baselines. The horizontal axis represents all the evaluated methods;
the vertical axis is the scaled performance of di erent methods, which is calculated as the ratio of the current method's
performance to the best performance of one task. The numbers on top of each box are the corresponding coe icient of
variance.

performance of one task, and in each boxplot, we consider all the measures for all the datasets (i.e., there are 23
data points in each boxplot). We did not rank all the results and check the overall ranking of each technique,
because di erent downstream tasks use di erent measures with di erent ranges. Thus, for each downstream
task, we normalize the performance of each technique against the best performance across all techniques (i.e., we
use scaled performance). The scaled performance has consistent ranges across di erent downstream tasks thus
allowing better comparison and visualization of the performance of di erent techniques. We also calculate the
coe cient of variation (CV) for all the embedding techniques to quantify the variances. The results show that
GraphCodeVéws a relatively lower variance among all the tasks. For example, the biggest relative di erence
appears in the task of software defect prediction on Ant dataset, which is 42.7% compared to the best result, 47.5%.
Meanwhile, code2vec also has a stable performance on SE tasks, but its median is lower tharGhatlo€odeVec
On the contrary, some embedding techniques lead to unstable results. For example, the fastText embedding
technique achieves the best results on BCB dataset but the worst result (i.e., 84.6% compared to the best result,
93.4%) on OJClone dataset for the code clones detection task. Future work that depends on embedding techniques
should consider a stable technique such@saphCodeVeotherwise the performance may be compromised.
Discussion

In the above paragraphs, we have quantitatively demonstrated the superioritgraphCodeVemn the six
downstream tasks, thus in this part, we would like to discuss the limitation&oédphCodeVeas well as provide a
gualitative analysis of the learned embeddings to complement our quantitative evaluation on downstream tasks.
Strengths and limitations

As shown in Table 2, although, overatiraphCodeVegerforms the best compared to all baseline approaches on
ve out of six downstream tasks, there is still a non-negligible gap betwéaraphCodeVemd GloVe on the task
of code comment generation. By comparing the natural property of these tasks, we nd thaGraphCodeVec
works better on the classi cation tasks, such as code authorship identi cation, code clones detection and source
code classi cation, etc., but not on the text generation task (i.e., code comment generation). For the classi cation
tasks, the output is pre-de ned labels and the embeddings only work in the rst embedding layer which converts
the source code tokens to real number vectors. However, for the task of code comment generation, we use an

ACM Trans. Softw. Eng. Methodol.

22 ~ Ding, Zishuo et al.

Table 3. The agreement of the results betwgdraphCodeVeand baselines on the task of code clones detection.
Word2vec GloVe fastText code2vec

OJClone 0.82 0.77 0.75 0.89
BCB-Type-1 1.00 1.00 1.00 1.00
BCB-Type-2 1.00 1.00 1.00 1.00
BCB-Type-3 0.99 0.99 0.99 1.00
BCB-Type-4 0.99 0.99 0.99 0.99
BCB-Type-5 1.00 1.00 0.9 0.99

Note: We use Cohen's kappa to measure the agreement between the results generated by our method and that of the other four baselines.

encoder-decoder architecture where in the encoder part, similar to classi cation tasks, the embeddings are utilized
to transform source code tokens into vectors, while in the decoder part, the same code embeddings (instead of
word embeddings trained on comments or texts) are also used to convert the comment tokens (i.e., extracted
from code comments) into vectors. As the code tokens and comment tokens are naturally di erent and thus,
using only one code embeddings for both source code and code comments would confound the model, in other
words, one good code embedding may not perform well on texts. Thus, we conclude that the poor performance
may be caused by the fact th&@raphCodeVas able to capture the properties of the source code, but the learned
knowledge is too speci c for source code and thus cannot be transferred to natural language tokens. In future
work, to improve the performance dBraphCodeVamn such text generation tasks, we can enhance the model by
jointly learning the code and word embeddings based on the code and text information (e.g., documents and
comments).

Moreover, we also observe that for some tasks or datasgtaphCodeVetoes not bring signi cant bene ts.
For exampleGraphCodeVdwas the same results on the BCB dataset with the other embedding techniques for
code clones detectidfibut best performance (i.e., 8.7% improvement) on the OJClone dataset. Besides, similar
results are also observed on the Camel dataset for logging statements prediction, WnaephCodeVdwas a
small improvement (i.e. 0.4%) compared to other embedding techniques but a relatively larger improvement (i.e.,
2.5%) on the Directory-Server dataset. One explanation for this phenomenon is that larger training datasets may
produce more powerful models and mitigate the di erences between di erent embedding techniques. To obtain
such fully trained models, one possible way is to collect enough training dataset. Thus, we check the sizes of
datasets, and we nd that the size of the BCB dataset is almost twice larger than that of OJClone dataset and
the size of Camel dataset is more than ve times larger than that of Directory-Server. The ndings highlight
that GraphCodeVeran work better for downstream tasks which have small training datasets. In other words, if
the model cannot learn enough knowledge from the training dataset, we can use the embeddings generated by
GraphCodeVegas it can bring more external knowledge to the trained model, which is another ultimate goal of
the pre-trained embeddings (i.e., learning useful knowledge from external datasets to improve the performance
of downstream tasks).
Qualitative analysis of the learned embeddings

To further understand the trained embeddings, following prior wor& B1], we discuss the characteristic of
the trained embeddings from a qualitative perspective. We manually inspect code embeddings on one qualitative
task, i.e., token similarity, as it is usually considered as the most straightforward feature to evaluate token
representations [6, 56, 57, 81].

We select the target tokens and query their most similar tokens and then explore them intuitively. However,
we should be aware that there is no explicit guideline for selecting the representative tokens, thus qualitative
analysis might be subjective. In this work, we try our best to avoid the bias and select the subject tokens based

16 \We further check the results, and as Table 3 shows, all the code embeddings almost produce identical (clones) results on the BCB dataset.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 23

on the following three criteria: (1) tokens should be well-known in the vocabulary - to ensure that evaluators are
familiar with the characteristics of the tokens, (2) some of the tokens should provide di erent functionalities -

to ensure that their embeddings have a low similarity and thus are located far from each other in the semantic
space, and (3) some of the tokens should share similar functionalities - to ensure that their embeddings have a
high semantic similarity.

Following prior work [6, 43 81], we manually chose nine tokens from the vocabulary with di erent frequencies.
All the selected tokens are either Java reserved words (e.g. printin and nally) or frequently used methods (e.g.
sort) and some of them share similar functionalities (e.g., sort vs. comparator) and others provide di erent
functionalities (e.g., while vs. sort). For each chosen token, we retrieve its 40 most similar tokens (using cosine
similarity) according to di erent embeddings.

Visualization. In order to visualize high-dimension (i.e., 128 dimensions) embeddings, we compress them down
to a low dimensional space (i.e., two dimensions) using t-SBIE [The idea of t-SNE is to reduce dimensions
while trying to preserve the information of the original data points, namely, keeping similar tokens close on the
plane while maximizing the distance between dissimilar tokens. We plot the target tokens and their most similar
tokens. A good code embedding should project similar (e.g., similar functionalities) code tokens into the space
with a shorter distance and project the unrelated code tokens far from each other.

As shown in Figure 7, for the visualization of our embeddings (GraphCodeVgowne see that several clusters
are plotted closely, such as the clusters of sort and comparator , which is consistent with the fact that they
are frequently used together when performing sorting actions. Meanwhile, we do co-occurrence statistics (i.e.,
count the number of times that every two tokens are used together) of the listed keywords on the training
corpus and nd that for the token comparator, sort is the one that occurs together more times than any
other listed keywords, which conforms to our interpretation. Besides, for fastText, each target token's cluster
is clearly separated with that of other target tokens. However, fastText cannot project similar tokens with a
relatively shorter distance. For example, the cluster of sort is plotted closer to that of system or while , instead
of comparator . For the comparison betwedgbraphCodeVeand Glove, if we focus on the inter-relationships
between these clusters, they both project sort and comparator, release and lock as well as system and
println closer in the space; however, if we focus on the intra-relationships within each cluster, GloVe projects
the token release scattered across di erent clusters, while on the contrary each clust&raphCodeVes more
compact.

This nding con rms that GraphCodeVeaman project syntactically similar tokens to the vector space with a
relatively short distance. Although the visualization cannot provide us with direct measurement of the quality of
the embeddings, it still. helps us gain insights into the characteristics of the resulting embeddings.

Meanwhile, we also try to manually inspect the top-10 nearest neighbors of the given token using cosine
similarity. For example, given the target token, while , we retrieve its top-10 most similar tokens and examine
whether the token, for appears in the list or not. The results show that the for token only appears in the top-10
nearest neighbors of ‘while when retrieved using the embeddings generated by Word2vec. This observation
shows that the trained embeddings may return some results that are di erent from the prior knowledge of
developers or researchers and hard to interprg4][This nding also suggests the necessity of exploring the
characteristics of the learned embeddings from di erent perspectives and shows that Word2vec may perform
better than other embeddings when used for retrieving the similar tokens.

However, the above ndings may not violate the rst visualization part of the qualitative analysis. For the
visualization using the t-SNE, we retrieve 40 most similar tokens for the given target token and plot the clustering
gures for each token, which is di erent from retrieving top-k nearest neighbors and checking whether the
expected tokens are in the list or not.

ACM Trans. Softw. Eng. Methodol.

24 "~ Ding, Zishuo et al.

(a) GraphCodeVec (b) Word2vec (c) Glove

sort
v finally 20
while
printin
system
release
lock
exception
10 | x comparator

¢

Zs0 ¥ finally V.
while |

printin

system

release

;. joc)
g + exception
x

. comparator

g
.
8

2

-60 —40 -20 [20 40 -15 -10 -5 0 5 10 15

(d) fastText (e) code2vec

Fig. 7. Visualization of the target tokens and their 40 most similar tokens. The horizontal and vertical axes show the two
dimensions that are reduced from the original 128 dimensions using the t-SNE.

Our evaluation results show thaBraphCodeVexchieves the best results than all the baselines in v

out of six downstream tasks. Besid&raphCodeVédtas the most stable results on all downstream tasks.
Future research and practice that rely on code embeddings should be careful with the selection of dode
embedding techniques for speci ¢ downstream tasks, as they may produce diverse results.

RQ2: How does the structural context information of the source code impact the e ectiveness of the
embeddings generated b@raphCodeVec

Motivation

In RQL, our results show that our GCN-based appro&shphCodeVdtwas the most stable performance and
outperforms the baseline approaches. On one hand, prior studigkl] 29 83 95 show that incorporating the
structural information (e.g., AST structure of source code) of a particular source code of interest may provide
promising results in some software engineering (SE) tasks that rely on neural network-based techniques and
code is structured by its nature (e.g, class, method and block) and thus the code embeddings may bene t from

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 25

the structural representation. On the other hand, there are some studies that treat the source code as plain text
and achieve satisfactory resulté 20 25. Therefore, in this research question, we aim to understand how the
structural information (i.e., the graph context extracted from the ASTS) a ects the performanéeraphCodeVec
Approach

2ULJLQDO 7UDLQLQJ FRQWH[W 2ULILDQO WRNHQ
JHQHUDWLRQ ED %YQ $67V

PEHGGLRPJV
et et 0D U OO XV v e e ererenenenene Ty (YDOXDWLRQ RQ .

/ val GRZQVWUHDP WDVN
7UDLQLQJ FRQWH[W GGLQJV

JHQHUDWLRQ ZLWKRXW $67V ZLWKRXW VWUXWXFDO
LQIR LRQ

1R VWUXF

Fig. 8. The overall design of the approach for RQ2. In this figure, original refers tadGraphCodeVeblo-struc refers to the
method which does not utilize the ASTs while keeping other se ings the same&saaphCodeVec

In RQ1, the training context for generating code embedding&rgphCodeVeés constructed based on the graph
representation of source code, which preserves the structural information of source code. Thus, in this section,
to analyze the impact of our graph context on generating the embeddings, we design an ablation experiment
on these six downstream tasks. In this experiment, as shown in Figure 8, the embedding training technique is
the same (i.e., GCN), with the only di erence of the training context. We generate the training context from the
extracted methods without the structural information (unlike o@raphCodeVewhich generates the training
context based on ASTs) and then feed it into the GCN model to obtain the code embeddings. We then compare the
performance of the embeddings trained with and without the AST structure using the same training technique
(i.e., GCN). As the training context is the only changing factor, thus we state that the performance changes are
caused by the di erent training context. That is if the embeddings with the AST information performs better,
then we can conclude that our embeddings can bene t from the utilizing the ASTs. More speci cally, we treat
the source code as plain text and do not consider the AST relationship among the tokens. Below we discuss the
details of how we extract the training context and incorporate it in GCN.

First, the source code is transformed into plain text, of which all the tokens are lowercased, and the non-
identi ers (including punctuations such as ; and operators such as =) are removed. As the training model
(i.e., GCN) requires graph-format data as input, to make source code suitable for training, we then adopt a local
window to convert the plain text into graphs. Given a target token, all the surrounding tokens located in this
window are connected to the target token in the graph by an edge. For example, given the code snippet in
Section 3.1.1, assuming the target token is public , then void, printhame, string, someone, and name
are the neighboring nodes in the generated training context. We construct a graph context for the target token
public in the format shown in Figure 9:

public void printhame string someone name someone system out printin name

More speci cally, the target token public is the central node of this graph and connects to all the other ve
nodes, among which there is no edge between each other. We then feed the generated context to the embedding
learning phase. Finally, the learned embeddings are evaluated on the six downstream tasks. In our experiment,
we set the window size to ve on each side surrounding the target token, which is by default used in previous
work [10 42,56, 57, 73. Note that a larger window size would be able to capture more broad context, but with

the possibility of introducing noise as the context tokens might not be tightly related to the target token. On the

ACM Trans. Softw. Eng. Methodol.

26 "~ Ding, Zishuo et al.

SULQWQDPH
YRL® D)

! SXEOLF

d VRPHRQH

Fig. 9. An overview of the constructed graph context based on the plain text.

Table 4. Evaluation results @raphCodeVegith and without utilizing the graph context extracted from the ASTs.

DowsnstreamCode commentCode authorship . Source code) .

.) - Code clones detection g Logging statements prediction
Tasks generation identi cation classi cation
Datasets GitHub Google Code JafBCB OJClone Avg. | OJ dataset|Airavata Camel CloudStack Directory-Server HadoApg.
Metrics BLEU ROUGE Accuracy F1 Accuracy BA
Original 20.7 36.1 80.2 93.4 938 936 93.7 95.7 814 86.3 89.1 75.6 85.6
No-struc 20.7 36.0 80.0 93.4 935 93.5 93.6 95.3 80.6 86.0 87.7 747 848
Dowsnstream

Tasks Software defect predicttion

Datasets Ant Ant Camel Camel jEdit |jEdit Log4j Lucene Lucene POI POl Xalan v
1.5->1.61.6->1.71.2->1.41.4->1.63.2->4.04.0->4.11.0->1.12.0->2.22.2->2.41.5->2.52.5->3.02.4->2. 9-

Metrics F1
Original 42.7 50.5 44.6 46.7 57.0 58.0 72.5 67.0 65.2 84.6 74.9 525 59.7
No-struc 43.9 48.3 435 48.3 57.6 58.9 66.7 59.8 65.9 82.7 74.6 51.9 58.5

contrary, a smaller window size may contain more focused information about the target token but may not be
able to capture su cient context.

Results
Overall, the graph context extracted from the ASTs can improve the performance of the code

embeddings generated by GraphCodeVehowever, GraphCodeVenay not always signi cantly bene t

from the utilization of the graph context. Table 4 shows the results of comparing the performance of the
original GraphCodeVeand the one that does not use the structural information. In the table, Original refers to
our GraphCodeVeblo-struc is the variant ofsraphCodeVewhich only utilizes the plain text of the source code
instead of the graph context extracted from the ASTs while keeping other settings the saBesghCodeVec

In total, as Table 4 shows, we nd that our origin&raphCodeVemutperforms No-struc (i.e., the variant of
GraphCodeVehat does not consider the graph context extracted from the ASTS) in all six downstream tasks.
The comparison results demonstrate that even though we train the embeddings using the same model, utilizing
the graph context extracted from the ASTs can help improve the performance of the embeddings. For example,
on the logging statements prediction task, by training the embeddings using the graph cof@eaphCodeVec

has a overall balanced accuracy of 85.6% compared to 84.8% without the graph context.

On the other hand, for some tasks, the improvement is limited, and incorporating the graph context extracted
from the ASTs may cause performance degradation on some datasets. For example, on the task of code authorship
identi cation, the overall improvement is only 0.2% and 0.1% for the task if source code classi cation. In addition,
in almost half of the datasets of the software defect prediction task, utilizing the graph context degrades the
performance ofGraphCodeVethe result indicates the limited e ect of incorporating the graph context in some
cases. One possible reason is that some tasks may not be sensitive to the structural information of the source
code, thus using a structured code representation may not improve the performance signi cantly.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 27

We further conducted two more experiments with di erent window sizes (i.e., two and eight) and the result
(shown in Table 6) shows that paying more attention to closer neighbors (a smaller window size) would bring
more bene ts. As when we reduce the window size to two, we observe statistically signi cantimprovementin ve
out of seven (i.e., seven cases have signi cant performance changes among which ve cases have improvement)
cases (71.4%), and when we increase the window size to eight, we observe statistically signi cant improvement
in four out of eight cases (50%).

Although overall, the structural information extracted from the ASTs can ben&taphCodeVea
producing code embeddings for the downstream SE tasks, there may be cases where the strugtural
information may not provide additional bene t.

RQ3: How does the GCN model impact the e ectiveness of the embeddings generated by
GraphCodeVec

Motivation

Prior work [43 proposes a novel word embedding approach for NLP tasks that adopts a shallow, two-layer
neural network instead of Graph Convolutional Networks to incorporate the syntactic information between
words and achieves promising results. Their results raise our concern about whether a simple two-layer neural
network is powerful enough to model the syntactic information within the corpus. Therefore, in this research
question, we want to study how the GCN model a ects the performancé&soaphCodeVdor generating the
code embeddings for the downstream tasks.
Approach

(PEHGGLQPV 2ULILDQO WRNHQ
2ULJLQDO OHDUQLQJ XNLQJ *&? HPEHGGLOIV
_____ N~ 7UDLQLQJ FRQ (YDOXDWLRIQ .RQ,,
JHQHUDWLRQ EDYNG RO §67V GRZQVWUHDP WDVN
(FEAGGLAQPV
1R *&1 OHDUQLQJ pevtas 7RNHQ HPEHGGLQJV
PRGLILHG :RUG YHF ZLWKRXW XYLQJ *&1

Fig. 10. The overall design of the approach for RQ3. In this figure, original refers tazwaphCodeVeblo-GCN refers to the
method which does not utilize the GCN for embedding learning.

In RQ2, we analyze the impact of structural context information on the e ectiveness of the embeddings
generated by GCN. We train two di erent code embeddings using di erent training contexts (i.e., with and
without AST information) but the same training embedding technique (i.e., GCN). In this section, to analyze the
impact of the GCN model on generating the embeddings, similar to RQ2, we design an ablation experiment on
these six downstream tasks. In this experiment, as shown in Figure 10, we adopt two di erent training techniques
with the same training context, which both consider the structural information for code embedding learning.
Speci cally, we implement another method, namely, No-GCAg[for comparison. No-GCN uses a similar
approach to extract the graph context from the ASTs but adopts a shallow, two-layer neural network to train
embeddings. No-GCN was originally proposed by Li et[dB] for learning word embeddings by incorporating
the dependency information between words in a sentence. Li ef48] modify the original Word2vec model and
integrates the syntactic dependency information between words into the embeddings. In this work, we customize
No-GCN by replacing the syntactic dependency with the AST paths extracted from the source code.

ACM Trans. Softw. Eng. Methodol.

28 ~ Ding, Zishuo et al.

Table 5. Evaluation results of utilizing di erent models to train the code embeddings from the graph context.

DowsnstreamCode commentCode authorshipCode clones detectionSource code

Logging statements prediction

Tasks generation identi cation classi cation

Datasets GitHub Google Code JarBCB OJClone Avg. | OJ dataset|Airavata Camel CloudStack Directory-Server HadoApg.

Metrics BLEU ROUGE Accuracy F1 Accuracy BA

Original 20.7 36.1 80.2 93.4 938 93.6 93.7 95.7 814 86.3 89.1 75.6 85.6

No-GCN 214 36.7 79.8 93.4 91.0 92.2 90.1 95.9 804 86.3 87.4 74.7 849

Dowsnstream Software defect predicttion

Tasks

Datasets Ant Ant Camel Camel jEdit jEdit Log4j Lucene Lucene POI POl Xalan Vg
1.5->1.61.6->1.71.2->1.41.4->1.63.2->4.04.0->4.11.0->1.12.0->2.22.2->2.41.5->2.52.5->3.02.4->2. ’

Metrics F1

Original 42.7 50.5 446 46.7 57.0 58.0 72.5 67.0 65.2 84.6 74.9 525 59.7

No-GCN 43.3 49.8 441 49.6 58.6 57.3 69.1 63.0 62.0 77.2 71.8 484 57.8

No-GCN uses a similar way for extracting the training context from the source code. It rst transforms the
source code into ASTs, then traverses the trees to collect triples, where the rst and last elements are the leaf
nodes of an AST and the second element is the AST path connecting the other two elements. For example, given
atarget token, public in Figure 1, it starts from public and keep traversing the tree until it reaches another
leaf node (e.g., void), and the traversing path is recorded. By doing this, it can collect a set of triples that can be
used for training the code embeddings. Similar to our work, the number of triples is also limited by the length of
an AST path.

Di erent from the GCN used in this paper, No-GCN modi es the original Word2vec model to include the AST
paths instead of only considering the tokens (more details can be found in the work [43]).

Results

The comparison results with No-GCN show the advantage of using GCN for modeling the graph
context. Our experimental results for comparin@raphCodeVeweith No-GCN on the six SE tasks are presented in
Table 5. As Table 5 shows, we nd that overall oGraphCodeVdtas the best results in ve out of six downstream
tasks. For example, on the source code classi cation task, No-GCN achieves a test accuracy of 90.1%, while
GraphCodeVeeaches 93.7%. The comparison results show that GCN are more suitable for representing the
source code as graphs and capturing the syntactic structure of the source code when generating code embeddings.
However, similar to the results in RQGraphCodeVeadso does not reach the best results on the task of code
comment generation. This may be due to the fact ti@ataphCodeVeas good at capturing the properties of source
code, while the task of code comment is for generating the natural language texts, and thus our approach cannot
perform well. Besides, we nd that the improvement for the task of code authorship identi cation is limited,
with only 0.4% absolute increase. This observation further con rms our ndings in RQ2 that some tasks may be
not sensitive to the structural information of the source code.

Compared to the impact of the graph context in RQ2, we nd that the GCN model has a more stable in uence
on the performance ofsraphCodeVe©n the one hand, in RQ2, replacing the graph context with plain text
causes a relatively smaller performance decrease on the downstream SE tasks compared to changing the training
model in RQ3. For example, there is a 0.1% degradation of the test accuracy on the source code classi cation task
after changing the training context in RQ2, compared to 3.6% degradation after changing the training model in
RQ3. On the other hand, in RQ2, we do not observe improvement by using the graph context on almost half of
the datasets of the software defect prediction task; while in RQ3, we observe improvement by using the GCN
model on nine datasets. Our results suggest the promising research direction of using graph-based deep learning
methods for SE tasks.

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 29

Instead of using a vanilla neural network, the use of Graph Convolutional Networks can robustly bengit
the performance ofsraphCodeVdor training code embeddings for the downstream SE tasks.

ACM Trans. Softw. Eng. Methodol.

‘lopoyislA “Bu3 "MYos ‘suell INOV

Table 6. Evaluation results of code embeddings generate@iaphCodeVerith di erent thresholds and model hyperparameters. 8
Downstream Tasks N
Code Code Source
Value comment | authorship |Code clones detection code Logging statements prediction Software defect predicttion w)
Stage Name generation |identi cation classi cation| 5
. Google . Directory-| Ant Ant | Camel| Camel| jEdit | jEdit | Log4j [Luceng Lucene| POI POI | Xalan «Q
GitHub | code Jam| BCB| O3Cione | 03 da'ase‘A”a"a'%Came C'°“ds“‘c“ Senver 120001 1.5->1A1.6->1*1.2->1.4u.4->1. 254, fo->4i1.0-g>1wz.o->2. 252, 1,5->2.4§.5->3, 4525
BLEU[ROUGE Accuracy F1 Accuracy A F1 &
Defaul] 20.7 | 36.1 80.2 | 934 93.8 93.7 95.7 | 8L.4] 86.3 89.1 | 756 | 42.7 | 505 | 446] 46.7] 57 | 58 | 725] 67 | 652 846 749 525 >
Edge | 6 | 208 362 80 93.4 941 933 958 | 81.8| 87.3 881 | 74.4 | 489L | 52.2L | 43.3L | 47.6 | 59.4L | 55.2L | 67.6L | 64.3L | 65.7 | 82.5L | 72.0L | 49.7L 5
length (+0.59%(+0.3%) (-0.2%) [(+0.0%) (+0.3%) | (-0.4%) | (+0.1%)(+0.5%) (+1.2%) | (-1.1%) | (-1.6%)(+14.5%)(+3.4%) (-2.9%) (+1.9%)(+4.2%) (-4.8%) (-6.8%)|(-4.0%) (+0.8%)(-2.5%) (-2.7%) (-5.3%) ©
10 | 208] 362 80 934 931 934 94 | 792| 864 | 87.7S | 749 | 482L | 504 | 41.0L| 469 | 56.2 | 55.4L | 66.5L | 60.8L | 62.4L | 81.9L | 72.2L | 50.6L e
Training (+0.5%(+0.3%) (-0.2%) |(+0.0%) (-0.7%) (-0.3%) | (-1.8%) (-2.7%) (+0.1%) | (-1.6%) | (-0.9%)(+12.9%) (-0.2%) (-8.1%) (+0.4%) (-1.4%) (-4.5%) (-8.3%)|(-9.3%) (-4.3%)|(-3.2%) (-3.6%) (-3.6%, =2
context | Unique | 50 | 207 | 362 80.1 | 935 946 939 956 | 11| 861 | 86.7L | 747 | 425 | 511 | 444 | 465 | 57 | 583 | 709 | 66.7 | 652 | 839 | 745 | 53.1
¢ (+0.09%)(+0.3%) (-0.1%) [(+0.1%) (+0.9%) | (+0.2%) | (-0.1%)(-0.4%) (-0.2%) | (-2.7%) | (-1.2%) (-0.5%)| (+1.2%) (-0.4%) (-0.4%) (+0.0%) (+0.5%) (-2.2%) (-0.4%) (+0.0%) (-0.8%) (-0.5%) (+1.1%
generatior) node 207 361 80 934| 945 94 964 | 80.3| 8638 874 |734M| 436 | 50.7 | 443 | 465 | 56.9 | 58.1 | 723 | 66.7| 641 | 845 | 751 | 52.9
80 | (+0.094)+0.09) (-0.2%) |(+0.0%) (+0.7%) | (+0.3%) | (+0.7%)(-1.4%) (+0.6%) | (-1.9%)|(-2.9%) (+2.1%] (+0.4%) (-0.7%) (-0.4%) (-0.29%) (+0.2%) (-0.3%) (-0.4%) (-1.7%) (-0.196) (+0.3%)(+0.8%
200 | 207 362 80 |933N| 938 934 953 | 80.8| 869 | 86./M | 75 | 439 | 503 | 44 | 465 | 572 | 584 | 724 |665L| 64.7 | 843 | 747 | 526
Edge (+0.09%(+0.3%) (-0.2%) [(-0.1%) (+0.0%) | (-0.3%) | (-0.4%)(-0.7%) (+0.7%) | (-2.7%) | (-0.8%) (+2.8%) (-0.4%) (-1.3%) (-0.4%) (+0.4%) (+0.7%) (-0.1%) (-0.7%) (-0.8%) (-0.4%) (-0.3%) (+0.2%
600 | 208S| 362 80 934 93.7 936 953 | 795| 87 878 | 754 | 434 | 508 | 44 |450L| 571 | 583 | 721 | 665| 65 | 842 752 | 53.1
(+0.5%)(+0.3%) (-0.2%) |(+0.0%) (-0.1%) (-0.1%) | (-0.4%) (-2.3%) (+0.8%) | (-1.5%) | (-0.3%) (+1.6%) (+0.6%) (-1.3%) (-1.7%) (+0.2%) (+0.5%) (-0.6%) (-0.7%) (-0.3%) (-0.5%) (+0.4%6)(+1.1%
, | 207 361 80 935 922 93 953 | 79.8| 87 875 | 751 | 43.2 | 54.6L | 42.2L | 488 | 611L| 59 | 625L | 61.3L| 63.0L | 839L| 743 | 523
Window (+0.0%(+0.3%) (+0.0%) |(+0.1%) (-1.4%) (-0.6%) | (+0.0%)(-1.0%) (+1.2%) | (-0.2%) | (+0.5%) (-1.6%)|(+13.0%)(-3.0%) (+1.0%)(+6.1%) (+0.2%) (-6.3%)|(+2.5%) (-4.4%)|(+1.5%) (-0.4%) (+0.8%
(cf,RQ3) 5 | 20.7| 36 80 934 935 936 953 | 80.6] 86 87.7 | 747 | 439 | 483 | 435 | 483 | 576 | 589 | 66.7 | 59.8| 659 | 82.7| 746 | 519
g | 206 36 803 | 935| 921L 939 951 | 79.9| 875L 87 742 | 427 | 55.1L | 42.3L | 485 | 61.2L | 58.6 | 62.4L | 61.2L | 634L | 829 | 741 | 52.7
(0.5%)(+0.0%) (+0.4%) |(+0.1%) (-1.5%) (+0.3%) | (-0.29%) (-0.9%) (+1.7%) | (-0.8%) | (-0.7%) (-2.7%) (+14.1%)(-2.8%) (+0.4%)(+6.3%) (-0.5%) (-6.4%) (+2.3%) (-3.8%) (+0.2%)(-0.7%) (+1.5%
5 |205M[358L| 802 | 934 935 9% 949 | 82 86.7 882 | 756 | 46.2L | 4750 | 40.1L | 45.1L| 57.1 | 56.9L | 64.4L | 63.6L | 67.8L | 81.3L | 73.2L | 53.7L
Layer (-1.0%) (-0.8%) (+0.0%) |(+0.0%) (-0.3%) | (+0.3%) | (-0.8%)(+0.7%) (+0.5%) | (-1.0%) | (+0.0%)(+8.2%) (-5.9%)|(-10.1%)(-3.4%) (+0.2%) (-1.9%)(-11.2%6)(-5.1%) (+4.0%) (-3.9%) (-2.3%) (+2.3%
5 |200L[354L[801 |934| 904L 932 948 [821| 872 | 867L | 745 | 4L1L | 4L5L | 345L | 445 47.7L | 4721 | 458L| = | 57.3L | 76.8L 721L | 55.3L
(-3.4%) (-1.9%) (-0.1%) |(+0.0%) (-3.6%) (-0.5%) | (-0.9%)(+0.9%) (+1.0%) | (-2.7%) | (-1.5%) (-3.7%)|(-17.8%)(-22.6%)(-4.7%)(-16.3%)-18.6%6)-36.8%) (-12.19%)(-9.2%) (-3.7%) (+5.3%)
so | 206 36 7500 | 934| 91.0L 933 946 | 80 85.1 879 | 751 | 48.7L | 48.1L | 39.6L | 46.6 | 59.2L | 57.3 | 72 |618L| 61.4L | 82.7L| 74 | 528
Embedding O™ (-0.5%) (-0.3%) (-6.5%) |(+0.0%) (-3.0%) (:0.4%) | (-1.19%)(-1.7%) (-1.4%) | (-1.3%) | (-0.7%)(+14.1%) (-4.8%)|(-11.2%6) (-0.2%) (+3.9%) (-1.2%) (-0.7%) (-7.8%) (-5.8%)|(-2.2%) (-1.2%) (+0.6%
leaming 200 | 20.7| 361 817 | 934 956L 925 956 | 80.3| 874 | 87/5M | 753 | 423 | 524L | 44.1 | 482L | 60.8L | 57.8 | 68.4L | 629L| 64.9 | 83.8L | 72.1L | 50.6L
(+0.09%)(+0.0%) (+1.9%) [(+0.0%)) (+1.9%) | (-1.3%) | (-0.1%)(-1.4%) (+1.3%)| (-1.8%) | (-0.4%) (-0.9%)| (+3.8%) (-1.1%)(+3.2%)(+6.7%) (-0.3%) (-5.7%)| (-6.1%) (-0.5%) (-0.9%) (-3.7%) (-3.6%)
, | 207] 361 796 | 934 934 935 959 | 80.7| 86.3 884 | 74.6 | 50.8L | 48.7L | 40.1L | 48.3L | 59.3L | 58.2 | 65.4L | 60.9L | 63.0L | 83.0L | 73.3L | 49.3L
Neg. (+0.09%)(+0.0%) (-0.7%) |(+0.0%) (-0.4%) (-0.2%) | (+0.2%)(-0.9%) (+0.0%) | (-0.8%) | (-1.3%)(+19.0%) (-3.6%)|(-10.1%6)(+3.4%) (+4.0%) (+0.3%) (-9.8%)| (-9.1%) (-3.4%)|(-1.9%) (-2.1%) (-6.1%,
10 | 208S| 362 80.7 | 934 93.6 931 956 | 80.2| 864 883 | 76 | 47.0L | 49.3L | 444 | 47.8L| 60.2L | 59.4L | 67.9L | 63.2L | 62.2L | 81.3L | 72.8L | 49.4L
(+0.5%)(+0.3%) (+0.6%) |(+0.0%) (-0.2%) (-0.6%) | (-0.1%) (-1.5%) (+0.1%)| (-0.9%) | (+0.5%)+10.1%)(-2.4%)| (-0.4%) (+2.4%)(+5.6%) (+2.4%) (-6.3%)| (-5.7%) (-4.6%)|(-3.9%) (-2.8%) (-5.9%,
Batch | 32 | 299S[363M| 803 | 934| 948S 91.8L | 955 | 809| 87 87.7 | 73.7 | 444L | 51.4L | 42.3L | 49.4L | 60.0L | 56.6L | 66.0L | 67.1 | 66.9L | 83.3L | 73.6L | 49.9L
<ize (+1.O%)+0.6%) (+0.1%) |(+0.0%) (+1.1%) | (-2.0%) | (-0.2%)(-0.6%) (+0.8%) | (-1.6%) | (-2.5%) (+4.0%) (+1.8%) (-5.2%) (+5.8%)(+5.3%) (-2.4%)| (-9.0%)| (+0.19)(+2.6%) (-1.5%) (-1.7%) (-5.0%)
128 | 2065 36 80 933 93.8 938 95.7 | 80.3| 872 87.1 | 749 | 445L | 52.0L | 40.3L | 446L| 57.1 | 584 | 71.2 | 60.9L | 63.2L | 835L | 74.8 | 53.5L
(0.5%) (-0.3%) (-0.2%) |(-0.1%) (+0.0%) | (+0.1%) | (+0.0%)(-1.4%) (+1.0%)| (-2.2%) | (-0.9%) (+4.2%) (+3.0%) (-9.6%) (-4.5%) (+0.2%) (+0.7%) (-1.8%) (-9.1%) (-3.1%) (-1.3%) (-0.1%)(+1.9%
Dropout| 0.2 |, 298] 361 80.2 | 934 93.8 92.7 96.6 | 81.2| 872 873 | 742 | 418 | 469L | 44 | 47.6 | 59.8L | 59.1 | 66.7L | 62.6L | 65.2 | 80.0L | 73.3L | 53.9L
i © |(+0.59%)(+0.0%) (+0.0%) [(+0.0%) (+0.0%) | (-1.1%) | (+0.9%)(-0.2%) (+1.0%)| (-2.0%)|(-1.9%) (-2.1%)| (-7.1%)| (-1.3%) (+1.9%)(+4.9%) (+1.9%) (-8.0%)| (-6.6%) (+0.0%)(-5.4%) (-2.1%) (+2.7%)
05 |208S|362S| 801 | 934 93.7 938 944 | 80 86.7 874 | 753 | 45.6L | 511 | 42.6L | 45.1L | 58.8L | 57.3 | 66.6L | 61.6L | 64.7 | 81.2L | 72.6L | 5L.AL
" |(+0.5%)+0.3%) (0.1%) |(+0.0%) (-0.1%) | (+0.1%) | (-14%)(-1.7%) (+0.5%) | (-1.9%) | (-0.4%) (+6.8%) (+1.2%) (-4.5%) (-3.4%) (+3.2%) (-1.2%) (-8.1%)|(-8.1%) (-0.8%) (-4.0%) (-3.1%) (-2.1%
5 |2L1L[364L| 803 | 934 943 908L | 953 | 81.2| 869 87.7 | 745 | 42 | 52.4L | 46.1L | 48.0L | 58.8L | 62.3L | 68.9L | 62.9L | 62.7L | 83.7 | 74.5 | 50.6L
Epoch (+1.9%)(+0.8%) (+0.1%) |(+0.0%) (+0.5%) | (-3.1%) | (-0.4%)(-0.2%) (+0.7%) | (-1.6%) | (-1.5%) (-1.6%) (+3.8%) (+3.4%)(+2.8%)(+3.2%) (+7.4%) (-5.0%)| (-6.1%) (-3.8%)| (-1.1%) (-0.5%) (-3.6%)
10 |2120| 366L| 804 |933M| 942 909L | 952 | 79.8| 868 884 | 758 | 42 |5L4M | 47.2L| 47 | 57.9 | 62.6L | 69.9L | 63.0L | 62.4L | 81.9L | 72.3L | 47.6L
(+2.4%)+1.4%) (+0.2%) |-0.1%) (+0.4%) | (-3.0%) | (-0.5%)(-2.0%) (+0.6%) | (-0.8%) |(+0.3%) (-1.6%) (+1.8%) (+5.8%) (+0.6%)(+1.6%)(+7.9%) (-3.6%) (-6.0%) (-4.3%) (-3.2%) (-3.5%) (-9.3%)

Note: The results that are signi cantly di erent from that of the default settings are high
default settings ofraphCodeVetghe letters S, M, L, and N represent small, medium, large and negligible e ect sizes, respectively.

ighted in bold. The numbers in the brackets

ndicate the relative c

hange to the

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 31

6 DISCUSSION

In Section 5, we have conducted several experiments and shown that our task-ag@rsiphCodeVeran

e ectively be applied to di erent downstream tasks. In this section, we would like to have a discussion about the
impact of di erent model parameters and the results of repeating our experiments with di erent data sampling
using a 10-fold cross-validation.

Impact of modeling parameters. GraphCodeVemntains two stages (i.e., training context generation and
embedding learning) for learning the code embeddings where some thresholds and model hyperparameters are
involved for generating the training corpus as well as de ning the GCN structure. In this work, we either simply
follow previous work or use the default settings of the model and do not try to ne-tune the parameters for tting

into di erent tasks. In this part, to examine whether our generated code embeddings can be further improved
and assess the impact of the hyperparameters on the quality of the generated code embeddings, we conduct more
than 20 new experiments with di erent parameter settings and the corresponding results are listed in Table 6. We
also conduct a Wilcoxon signed-rank statistical test to check whether there is a signi cant performance change
between the performance of the model using the new con gured parameters and that of the model using the
default parameters results are signi cant, for signi cant changes, we further conduct Cli 's delta statistic to
check the e ect sizes. The signi cant changes are marked in bold as shown in Table 6.

The performance osraphCodeVem some tasks can be further improved by ne-tuning the model parameters.
For example, if we set the dimensionality of the embeddings to 300, we observe a signi cant performance increase
of the F1 score (i.e., from 93.8 to 95.6) on the OJClone dataset for the task of code clones detection. Meanwhile,
changing the parameters can also decrease the performan@afhCodeVet our experiment, using a smaller
dimensionality (i.e., 50) of the embeddings leads to performance degradation almost on all the tasks and datasets.
The reason may be that a small dimensionality of the embeddings cannot preserve the properties of the tokens
of high dimensional spaces, leading to the degradation of the quality of learned embeddings. On the contrary,
using a relatively larger dimensionality can preserve more information and improve the quality of the generated
embeddings. Another possible reason may be under tting of the models used in downstream tasks, as a smaller
input dimension means a simpler model and fewer weights to be learned during model training, and thus the
model cannot capture the relationship between the input and output variables accurately, generating a high
error rate on the testing data. To examine the impact of the number of training epochs, we provide another two
experiments with more training epochs (i.e., ve and ten epochs). During the embedding learning phase, the
training loss reduces from 1.79 at the beginning of the rst training epoch to 0.73 at the end of the rst epoch,
which further drops to 0.47 and 0.48 at the end of the fth and the tenth epochs, respectively. Further, we also
evaluated the quality of the newly generated embeddings on the downstream tasks. Overall, as shown in Table 6,
when the training epoch increases to ve, we observe seven signi cant improvements on the evaluation of the
downstream tasks. On the other hand, we also observe that there are signi cant degradations on some (i.e. ve)
of the datasets from source code classi cation and software defect prediction tasks. The results indicate that the
training epochs have di erent e ects (either positive or negative depending on the downstream tasks) on the
quality of the generated embeddings, and developers can ne-tune these epochs specially for their task. In our
experiments, as we stated in Section 4.4, we avoid only ne-tuning these settings only for our method aiming for
a better performance.

A model with more layers (i.e., deeper model) may not guarantee a better performance, especially for GCN
models. In our supplement experiments, we increase the depth (i.e., laye@&aphCodeVdmom one to three
and ve, we nd a continuous performance degradation for almost all the tasks, the model even returns a F1
score of zero for the task of software defect prediction on the Lucene project. This nding is consistent with
previous works P ? ? ? 73, that is with an increased depth (i.e., number of layers), GCN tends to easily over t the
training data and su er a continuous performance degradation. Except for reducing the number of layers (we set

ACM Trans. Softw. Eng. Methodol.

32 ~ Ding, Zishuo et al.

the layer to one to avoid over tting and performance degradation, c.f., Section 4.2) of the model, researehers [
also propose to use dropout to prevent over tting. Dropout is a regularization technique which randomly drops
out the units along with their connections of neural networks. To examine the impact of using dropout on the
quality of our generated code embeddings, we have experimented with two di erent dropout rates (i.e., 0.2 and
0.5). Overall, as Table 6 shows, we do not have obvious performance improvements when using di erent dropout
ratios. This can be explained by the fact that our model (e.g., one layer, 128 input dimension, and trained for
only one epoch) does not su er the over tting problem, and thus using dropout cannot further improve the
performance of our embeddings on downstream tasks. However, the results in our experiments do not mean
that dropout is useless, instead, it indicates that our model structure may not su er from the over tting issue.
Moreover, previous work24? ?] and experiment$’-18also show that using dropout may not always improve

the performance of neural networks, which further con rms our ndings. For examphd,and ?] observe that
adding dropout may reduce the performance of the model. Besides, in the original work of dro@dutte
authors also explored the e ect of changing data set size when dropout is used, and the results show that when
the size of data sets is very small (e.g., 100, 500 samples) or very large (e.g., 50K samples), dropout may not give
any improvements. These results suggest that developers and researchers should be careful when applying the
dropout to the neural networks. Meanwhile, previous worR4?] provides suggestions on how and when to use
dropout to avoid over tting. For example, it is expected that dropping the neurons in the model would reduce
the e ective capacity of a model, thug] suggest that increase the size of the model when using dropout and
they suggest to set the number of units t8?, where? is the dropout rate and: is the number of optimal units

for a model without dropout. Besides, Goodfellow et @4] also suggests that when there is a large amount of
training data, the bene t of using dropout may be outweighed by the computational cost of using dropout and
larger models. Thus, considering our simple model architecture and the large size of the training dataset (i.e.,
over 60K samples), it is reasonable that using dropout does not signi cantly improve the quality of our generated
embeddings. To better illustrate the ability of dropout in preventing model over tting, future work can try to add
more layers with more training epochs.

Traditional machine learning model (e.g., logistic regression used in the task of software defect prediction) is
more sensitive to the changes of code embeddings. As shown in Table 6, almost any changes of the parameters of
GraphCodeVamuld lead to signi cant changes of the performance (either improvement or deterioration) of the
software defect prediction task. This may be explained by the fact that the code embeddings are directly used
as features for the traditional machine learning models, thus any changes of embeddings could be immediately
propagated to the nal output of these models. However, for deep learning-based models, the embeddings are
only used to initialize the rst embedding layer of which the value would be later adjusted to better t the training
data, as a result, the impact of utilizing di erent embeddings may be diminished or even erased during the model
training and weights updating.

The thresholds used during the training context generation stage have a relatively more minor impact on the
code embeddings generated GyaphCodeVehan that of the parameters involved during the embedding learning
stage. For example, as we lower the thresholds of unique node (i.e., 50 and 80), there is only one signi cant
performance change among all 23 tasks or datasets. This nding shows@raphCodeVes di erent from
fastText, which is sensitive to the preprocessing of the corp@i [To complement the experiments, we have
done another experiment for fastText where we only perform a lowercase preprocessing on the tokens (i.e.,
without the removal of non-identi ers and low-frequency tokens). The results are shown in Table 7. In our
experiment, we nd that among all the six tasks, the performances of four tasks (i.e., code comment generation,

https://github.com/mvshashank08/article-dropout
L8https://github.com/harrisonjansma/Research- Computer-Vision/blob/master/08-12- 18%20Batch%20Norm%20vs%20Dropout/08-12-
18%20Batch%20Norm%20vs%20Dropout.ipynb

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 33

Table 7. Evaluation results of fastText with di erent preprocessing strategies.

DowsnstreamCode commentCode authorshig . | Source code . .

.) - Code clones detectign S Logging statements prediction
Tasks generation identi cation classi cation
Datasets GitHub |Google Code JafBCBOJClon¢ Avg. | OJ dataset|Airavata] Came(CloudStackDirectory-ServefHadoog Ang.
Metrics BLEU ROUGH Accuracy F1 Accuracy BA
Original 19.9| 36.0 76.6 93.4) 84.6 | 89.0 76.7 95.1 | 79.8 86.7 88.6 74.4 |84.9
Lowercase | 19.3| 35.3 70.5 93.4) 75.2 | 843 60.2 96.2 | 80.2 86.8 88.5 74.1 185.2
Dowsnstream

Tasks Software defect predicttion

Datasets Ant Ant Camel Camel jEdit jEdit Log4j Lucene Lucene POI POl Xalan v
1.5->1.61.6->1.71.2->1.41.4->1.63.2->4.04.0->4.11.0->1.12.0->2.22.2->2.41.5->2.52.5->3.02.4->2.5A 9:

Metrics F1

Original 36.0 442 418 458 53.6 60.7 63.1 63.2 65.3 65.1 72.2 42.454.5

Lowercase 29.3 41.7 445 46.0 533 615 58.7 65.0 62.3 69.9 72.5 47.1 54.3

Note: Original and Lowercase are two di erent preprocessing strategies, where Original contains three steps: 1) remove non-identi ers, 2)

Iter out the rare tokens, and 3) lowercase all tokens; while Lowercase means that we only perform a lowercase preprocessing on the tokens

(i.e., without removal of non-identi ers and low-frequency tokens).

code authorship identi cation, code clones detection, source code classi cation) have relatively large changes.
The results con rm that fastText is sensitive to the preprocessing of training context. For example, on the task of
source code classi cation, there is a 16.5% absolute decrease of fastText with di erent preprocessing strategies.
Besides, by checking the signi cant performance changes caused by di eBaphCodeVesettings, we nd

that changing parameters involved during the embedding learning stage has a higher possibility of causing
signi cant performance changes of the di erent tasks and datasets. More speci cally, modifying the threshold of
unique node and the edge only causes one or two signi cant performance changes, even on the software defect
prediction task, which is more sensitive to the change of code embeddings.

Impact of di erent data sampling. Di erent separations between training and test sets have a non-negligible

e ect on the performance of the models. Figure 11 shows the results of di erent embedding techniques on all
datasets using 10-fold cross-validation. We can observe the apparent variances on almost all the tasks or datasets.
For example, on the task of code authorship identi cation, all the results of the evaluated code embeddings
have large variances, and the di erences between the lowest and highest scores even exceed 10%. Although the
variances on the tasks of code comment generation and source code classi cation seem to be small, both have
obvious outliers, and the range of the Y-axis is larger. This nding further indicates the necessity of running
multiple times with di erent separations between the training and test datasets to mitigate the e ects on the data
separation. Otherwise, the reported conclusions may be misleading, as the rankings of performance of di erent
embedding techniques may di er.

Finally, we want to highlight that, on the one hand, ne-tuning parameters@faphCodeVédor the di erent
downstream tasks can usually result in improved performance. On the other hand, di erent parameters can have
diverse impacts on the nal performance, and if we do not know which settings to choose, starting from the
suggestions from previous work is always not a bad choice.

7 THREATS TO VALIDITY
This section discusses the threats to the validity of our work.

External validity. One major threat of using GCN for training embeddings is the computational costs. In our
work, the embeddings are trained in an NVIDIA GTX 1080Ti GPU, and it takes around 18 minutes to nish the
training process, which is acceptable. In fact, the major computational costs are caused by the downstream tasks.
For example, it takes around 10 hours to nish the evaluation on the comment generation task. Considering the

ACM Trans. Softw. Eng. Methodol.

34 ~ Ding, Zishuo et al.

large amount of time and computing resources needed for executing the downstream tasks, our quantitative
evaluation is conducted on six SE tasks. However, we train our embeddings in a task-agnostic manner using an
independent dataset from the datasets used in the downstream tasks. Although our study only focuses on six
tasks, the scale of our study is comparable to prior research on embeddings evaluafioMeanwhile, there
exist other tasks that adopt the pre-trained embeddings, and we cannot con rm that our embeddings might be
generalizable to all the tasks. For example, for the tasks that rely on both natural language texts and source code,
such as traceability link recovery? ?] and user review classi cation?], we think that our embeddings may not
perform very well on these two tasks as our code embeddings are only trained on source code and cannot capture
the properties of natural language texts, which is con rmed by the task of code comment generation. However, we
believe it would be a very promising research direction to jointly learn the code and text embeddings, and in that
way the embeddings can be applied to such tasks which involve both texts and source code. Another threat is that
some of our models used in downstream tasks may not give state-of-the-art results. For example, we use logistic
regression in the task of software defect prediction, which is simple and a bit out of date, especially in the era of
deep learning. However, our goal is to show the performance changes of di erent code embeddings. Although
this model is simple, it is able to re ect the representation ability of di erent code embeddings. Nevertheless, we
admit that our choices of the models in the studied downstream tasks pose a threat to the generalizability of
our ndings. Thus, using the downstream task of software defect prediction as an example, we experimented
with other models, including Random Forest (RF), Naive Bayesian (NB), and Support Vector Machines (SVM). We
observe that our general ndings remain the same, and our proposed embedding approach achieves the best
results for all the models except NB. We speculate that it may be because NB is not best suited for the task as
it holds a strong assumption on the independence of the features which are di cult to satisfy in the resulting
embeddings. In fact, the performance of NB is among the worst of all the considered models. On the other hand,
we encourage future work to validate our ndings on more downstream tasks and models. Moreover, there is a
lack of qualitative tasks for quality evaluation, and all the downstream tasks are external tasks, which means we
cannot do the evaluation directly. To minimize the threat and explore the internal characteristic of embeddings,
we also provide a qualitative evaluation. While the qualitative evaluation may include subjective bias in terms of
selection of example tokens and interpretation of their projection in the semantic space, that may be introduced by
the di erent backgrounds of researchers. However, we have already provided the trained embeddings, and readers
can explore the properties among the tokens of their own interests. Future studies can &pyphCodeVeo
other tasks, such as method name prediction, and develop some qualitative evaluation datasets, such as token
similarity or token analogy test sets. For the comparison of the results, we report the nal score of each evaluation
metric. However, small variations (e.g., when one instance is classi ed in a di erent direction) may change the
results. Our goal is to understand the performance changes between di erent code embeddings among di erent
tasks. Although a small number of misclassi cations may cause signi cant changes in the nal scores, especially
for small datasets, even in such cases, the improvement or decrease of the performance can still re ect the e ect
of the di erent embeddings. Besides, we do a 10-fold cross-validation to reduce the impact of such cases.
Internal validity. As described in Section 3.1, we attempt to represent the source code into graphs, where the
nodes are tokens in the source code, and edges are AST paths. There could exist other strategies for representing
the source code as a graph. Besides, we rely on the surface forms of the tokens to build the connected graph
within a method, as a result, changing the name of a variable would lead to the change of the constructed
graph. In particular, using meaningless identi ers (e.g., v) may negatively impact the quality of the resulting
embeddings and their e ectiveness in the downstream tasks. However, we have applied our approach on a variety
of real-world software projects. The results demonstrate the e ectiveness of our approach when applied to
ordinary code written by di erent developers. Meanwhile, using the same identi ers in di erent surrounding
code contexts would also impact the performance of our approach. For example, the keyword public , can be
used as modi ers for di erent levels of source code (i.e., class, attribute, and method), and ideally, they should

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 35

have di erent representations to better capture the properties. However, in our approach, the token “public’
has been assigned only one unique vector representation, which is non-optimal. Another threat to validity is
that there is a possibility that the temporal dependencies among code tokens (i.e., the sequence of the source
code tokens) may not be captured by the ASTs. However, prior wéK [, 29 83 95?] nds that the structural
information performs better for some SE tasks. On the other hand, our way of constructing the training context
still can capture such information, if the distance between the sequence of code tokens is within the threshold
(i.e., a pre-de ned value of the maximum number of AST nodes connecting two leaf nodes, c.f., Table 1). To better
illustrate it, given the following code sequence, public static void main, the temporal dependencies would be
public -> static-> void-> main , if we convert the code sequence to an AST, only the structure information of the
code sequence is preserved and the sequence information is lost. While, if the distances between these tokens in
the source code are within a threshold, by using our method to traverse the AST, we are able to construct the
following triples, public-> static, static->void, and void->main (di erent colors represent di erent AST
paths). And thus we can construct a graph which captures the temporal dependencies, pulsiiatic-> void
->main . Besides, in RQ2, we also treat the source code as a sequence of plain text for embeddings generation,
which also con rms the ndings that, overall, the structural information extracted from the ASTs can bene t code
embeddings generation for the downstream SE tasks. Another threat is that in RQ2, we examine how the training
context (with or without AST) impacts the resulting embeddings and thus on the performance of the downstream
tasks. Although we only vary the input of the embedding training from the process point of view, the change in
the resulting embeddings can impact the training process of the subsequent downstream tasks. More speci cally,
the changes of code embeddings would lead to di erent weight values between layers and neurons depending
on the embedding during the training process. Thus, the training context is not the sole varying factor of the
analysis and it confounds with other factors such as the training of the downstream tasks. Future work may
further investigate the impact of the individual steps (e.g., embedding training) while isolating other steps (e.g.,
downstream stream task training). In Section 4.1, we remove the rare tokens during the preprocessing stage,
which may also cause the removal of important tokens, leading to an over tting model. While, on the contrary,
rare tokens mean that there is not enough data for training. As we described in Section 3, if the tokens appear
only once or twice, the vector (i.e., embeddings) of that token can only be updated limited times (depending
on the epoch) which would result in a poor embedding of the code embedditgs/B 89, thus we follow
common practice 10, 73 89 and remove these rare tokens. In RQ1, we provide a qualitative analysis of di erent
embeddings, while the manual inspection may include subjective bias introduced by the individual participants.
Future work can consider di erent graph representations and perform manual analysis to verify our ndings.
Construct validity. As described in Section 4, we select six di erent tasks and corresponding models to
evaluate the generalizability of the code embeddings. Thus, one of the threats is the quality of the models used in
the downstream tasks. In our work, most of the models have a comparable or better performance compared to
the work in the literature [34, 87, 95?]. Although, in our experiment, the model used in the task of code comment
generation performs not as well as the original worR$ 34 (i.e., with a 5.7% performance degradation). This may
be caused by the di erent parameters used for the inference stage and the data separation. Previou@ 98¢ [
only mentions the parameters for the model training but don't provide the parameters for inference, and unlike
what we do in RQ1, they only randomly split the data into training, validation and test sets without a 10-fold cross
validation which also has a non-negligible impact on the results. However, we can still observe the performance
changes of the model caused by di erent code embeddings. Another threat is that the training data used for our
embeddings is thdava-smalldataset. There may exist other datasets that can be used for embedding training.
And in order to make a fair comparison with baselines, we only extract the training context based on the methods
which may lead to the inadequate use of the class or project level information from the source code. However,
as ASTs can represent the source code with di erent levels (e.g., method level, statement level, class level, etc.),
our method can also be applied to other types of training data. Besides, the edges (i.e., AST paths) in the graph

ACM Trans. Softw. Eng. Methodol.

36 ~ Ding, Zishuo et al.

representations are extracted based on the JavaParser tool. JavaParser is a mature tool and has been widely
used in various software engineering research. Nevertheless, the quality of the data generated by JavaParser
may impact the results of our studgraphCodeVeequires several hyper-parameters for the training process,

such as the dimensions, the number of GCN layers, and the number of training epochs, which may impact the
resulting code embeddings. To minimize the bias caused by the hyper-parameter con gurations, we follow the
practices from prior studiesq], 34, 95 to con gure the hyper-parameters. Performing further ne-tuning on

these hyper-parameters may further improve the resultsGrfaphCodeVetn our experiments, we randomly
initialize the OOV tokens with real numbers, which may a ect the performance of downstream tasks. However,

to minimize such in uence, we conduct a 10-fold cross-validation for all experiments.

8 CONCLUSIONS

In this paper, we introduce a graph convolutional network based appro&ataphCodeVewhich represents

source code as graphs and learns code token embeddings from the context information provided by the graphs.
GraphCodeVdrains code token embeddings in an unsupervised way, aiming to improve the generalizability

of the learned embeddings. We evalu&@eaphCodeVam an extended benchmark containing six downstream

SE tasks. The experiment results show ti@iaphCodeVaierforms comparable or better than all existing code
embedding techniques on all SE tasks. Our approach and our pre-trained embeddings can be leveraged by
software engineering researchers and practitioners in their downstream tasks that rely on or can be improved by
code embeddings. Our work also sheds light on future work that explores di erent approaches of constructing
graph representations of source code and utilizing graph-based deep learning methods to leverage the graph
representations.

REFERENCES

[1] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang. 2018. Large-Scale and Language-Oblivious Code
Authorship Identi cation. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, Zixh8d Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 101 114.
https://doi.org/10.1145/3243734.3243738
Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2015. Suggesting accurate method and class raroeseltings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015
Elisabetta Di Nitto, Mark Harman, and Patrick Heymans (Eds.). ACM, 38 49. https://doi.org/10.1145/2786805.2786849
Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to Represent Programs with Gr&pihénternational
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings
OpenReview.net. https://openreview.net/forum?id=BJOFETXR-
Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. 2016. A Convolutional Attention Network for Extreme Summarization of Source
Code. InProceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016
(JMLR Workshop and Conference Proceedings, YollaiB)-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 2091 2100.
http://proceedings.mir.press/v48/allamanis16.html
Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-based representation for predicting program properties.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2038 rey S. Foster and Dan Grossman (Eds.). ACM, 404 419. https://doi.org/10.1145/3192366.3192412
[6] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning distributed representations GfAONERL3, POPL
(2019), 40:1 40:29. https://doi.org/10.1145/3290353
Liliane Barbour, Foutse Khomh, and Ying Zou. 2011. Late propagation in software clon&Em27th International Conference on
Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September 25{8ERCdimputer Society, 273 282. https://doi.org/10.
1109/ICSM.2011.6080794
[97]]Bengio2012 Yoshua Bengio. [n. d.]. Practical Recommendations for Gradient-Based Training of Deep ArchitectNezsaliNetworks:

Tricks of the Trade - Second EditiGnégoire Montavon, Genevieve B. Orr, and Klaus-Robert Miiller (Eds.). Lecture Notes in Computer

Science, Vol. 7700. Springer, 437 478. https://doi.org/10.1007/978-3-642-35289-8_26
[9] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic Model for C8decéedings of the 33nd International

Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings,

[2

13

[4

5

[7

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 37

Vol. 48) Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 2933 2942. http://proceedings.mir.press/v48/bielik16.html

[10] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching Word Vectors with Subword InfornTatios.

Assoc. Comput. Linguistisg2017), 135 146. https://transacl.org/ojs/index.php/tacl/article/view/999

[11] Lutz Buch and Artur Andrzejak. 2019. Learning-Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection. In
26th IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou, China, February 24-27,
2019Xinyu Wang, David Lo, and Emad Shihab (Eds.). IEEE, 95 104. https://doi.org/10.1109/SANER.2019.8668039

[97]]Cai2019 Shaofeng Cai, Yao Shu, Gang Chen, Beng Chin Ooi, Wei Wang, and Meihui Zhang. [n. d.]. E ective and E cient Dropout for
Deep Convolutional Neural Networks. ([n. d.]). arXiv:1904.03392 [cs.LG]

[13] Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi Li. 2017. Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention
Embedding. IrProceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: LorgBagiatin
for Computational Linguistics, Vancouver, Canada, 1623 1633. https://doi.org/10.18653/v1/P17-1149

[97] 1Chen2020 Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. [n.d.]. Measuring and Relieving the Over-Smoothing
Problem for Graph Neural Networks from the Topological View. Tine Thirty-Fourth AAAI Conference on Arti cial Intelligence,

AAAI 2020, The Thirty-Second Innovative Applications of Arti cial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Arti cial Intelligence, EAAI 2020, New York, NY, USA, February 7{PD22)28AAI Press, 3438 3445.
https://aaai.org/ojs/index.php/AAAl/article/view/5747

[15] Tse-Hsun Chen, Stephen W. Thomas, and Ahmed E. Hassan. 2016. A survey on the use of topic models when mining software repositories.
Empirical Software Engineeri@d, 5 (2016), 1843 1919. https://doi.org/10.1007/s10664-015-9402-8

[16] Zimin Chen and Martin Monperrus. 2018. The Remarkable Role of Similarity in Redundancy-based Program@afpRibs/1811.05703
(2018). arXiv:1811.05703 http://arxiv.org/abs/1811.05703

[17] Michaél De errard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional Neural Networks on Graphs with Fast Localized
Spectral Filtering. IPAdvances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Bpaisl D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett
(Eds.). 3837 3845. http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized- spectral- Itering

[18] Zishuo Ding, Jinfu Chen, and Weiyi Shang. 2020. Towards the Use of the Readily Available Tests from the Release Pipeline as Performance
Tests. Are We There Yet?. Proceedings of the 42st International Conference on Software Engineering, ICSE 2020, Seoul, South Korea, July
6-11, 202(2020-07-11).

[19] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, and Krzysztof Czarnecki. 2013. An Exploratory
Study of Cloning in Industrial Software Product Lines. IYth European Conference on Software Maintenance and Reengineering,
CSMR 2013, Genova, Italy, March 5-8,, 20itBony Cleve, Filippo Ricca, and Maura Cerioli (Eds.). IEEE Computer Society, 25 34.
https://doi.org/10.1109/CSMR.2013.13

[20] Vasiliki Efstathiou and Diomidis Spinellis. 2019. Semantic source code models using identi er embeddiRgscéedings of the 16th
International Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montredii@aretdanne D. Storey, Bram
Adams, and Sonia Haiduc (Eds.). IEEE / ACM, 29 33. https://doi.org/10.1109/MSR.2019.00015

[21] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei Zhang, and Tao Xie. 2014. Where Do Developers
Log? An Empirical Study on Logging Practices in Industry@ompanion Proceedings of the 36th International Conference on Software
EngineeringHyderabad, Indiajl CSE Companion 201ACM, New York, NY, USA, 24 33.

[97] 1Garbin2020 Christian Garbin, Xingquan Zhu, and Oge Marques. [n.d.]. Dropout vs. batch normalization: an empirical study of their
impact to deep learning. 79, 19-20 ([n.d.]), 12777 12815. https://doi.org/10.1007/s11042-019-08453-9

[97] 1Goldberg2017 Yoav Goldberg. [n.dNeural Network Methods for Natural Language Processiioggan & Claypool Publishers.
https://doi.org/10.2200/S00762ED1V01Y201703HLT037

[24] lan Goodfellow, Yoshua Bengio, and Aaron Courville. 2@é&ep LearningMIT Press. http://www.deeplearningbook.org.

[25] Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir, Leonard R. Kosta, Akshay Rangamani, Lei H. Hamilton, Gabriel I. Centeno,
Jonathan R. Key, Paul M. Ellingwood, Marc W. McConley, Je rey M. Opper, Sang Peter Chin, and Tomo Lazovich. 2018. Automated
software vulnerability detection with machine learningCoRRabs/1803.04497 (2018). arXiv:1803.04497 http://arxiv.org/abs/1803.04497

[26] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. Devanbu. 2012. On the naturalness of sof¢he. In
International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, SWaranl&iciz, Gail C. Murphy, and Mauro
Pezzé (Eds.). IEEE Computer Society, 837 847. https://doi.org/10.1109/ICSE.2012.6227135

[27] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long Short-Term MenNeyral Comput9, 8 (Nov. 1997), 1735 1780. https:
/ldoi.org/10.1162/nec0.1997.9.8.1735

[97] 1HU2020 Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. [n.d.]. Deep code comment generation with hybrid lexical and syntactical
information. 25, 3 ([n.d.]), 2179 2217. https://doi.org/10.1007/s10664-019-09730-9

[29] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generati®noteedings of the 26th Conference on Program
Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-F8284 &homh, Chanchal K. Roy, and Janet Siegmund (Eds.). ACM,
200 210. https://doi.org/10.1145/3196321.3196334

ACM Trans. Softw. Eng. Methodol.

38 ~ Ding, Zishuo et al.

[30] Aylin Caliskan Islam, Richard E. Harang, Andrew Liu, Arvind Narayanan, Clare R. Voss, Fabian Yamaguchi, and Rachel Greenstadt.
2015. De-anonymizing Programmers via Code Stylometr24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 201&eyeon Jung and Thorsten Holz (Eds.). USENIX Association, 255 270. https://www.usenix.org/conference/
usenixsecurityl5/technical-sessions/presentation/caliskan-islam

[97] 1Johnson2015 Rie Johnson and Tong Zhang. [n. d.]. E ective Use of Word Order for Text Categorization with Convolutional Neural
Networks. INNAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Denver, Colorado, USA, May 31 - Juné€918),1Bada Mihalcea, Joyce Yue Chai, and Anoop Sarkar
(Eds.). The Association for Computational Linguistics, 103 112. https://doi.org/10.3115/v1/n15-1011

[97] 1Kallis2021 Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. [n. d.]. Predicting issue types on GitHub. 205
([n.d.]), 102598. https://doi.org/10.1016/j.scico.2020.102598

[33] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A Multilinguistic Token-Based Code Clone Detection System
for Large Scale Source CodEEE Trans. Software E2§, 7 (2002), 654 670. https://doi.org/10.1109/TSE.2002.1019480

[34] Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. 2019. Assessing the Generalizability of Code2vec Token Emb@&ddings. In
IEEE/ACM International Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA, NovembizHH 1512019
https://doi.org/10.1109/ASE.2019.00011

[35] Shinji Kawaguchi, Pankaj K. Garg, Makoto Matsushita, and Katsuro Inoue. 2006. MUDABIue: An automatic categorization system for
Open Source repositories. Syst. Softw.9, 7 (2006), 939 953. https://doi.org/10.1016/j.jss.2005.06.044

[36] Yoon Kim. 2014. Convolutional neural networks for sentence classi cataniXiv preprint arXiv:1408.58§2014).

[37] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classi catiofPrbiceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL
Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1746 1751. https://doi.org/10.3115/v1/d14-1181

[38] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi cation with Graph Convolutional Networkgh International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference TradBjenoRegingset.
https://openreview.net/forum?id=SJU4ayYg|

[39] Guillaume Kilein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. 2017. OpenNMT: Open-Source Toolkit for Neural
Machine Translation. IfProceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, System Demonstrafidoisit Bansal and Heng Ji (Eds.). Association for Computational Linguistics, 67 72.
https://doi.org/10.18653/v1/P17-4012

[40] Alexandros Komninos and Suresh Manandhar. 2016. Dependency based embeddings for sentence classi catiorPiasieedimgs of
the 2016 conference of the North American chapter of the association for computational linguistics: human language.t&@4B0d60&s

[41] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and Documerdsekdings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR Workshop and Conference Proceedings, Vol. 32)
JMLR.org, 1188 1196. http://proceedings.mir.press/v32/le14.html

[42] Omer Levy and Yoav Goldberg. 2014. Dependency-Based Word EmbeddiRgscéedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2: ShbineRsgsarsiation for Computer
Linguistics, 302 308. https://doi.org/10.3115/v1/p14-2050

[43] Chen Li, Jianxin Li, Yanggiu Song, and Ziwei Lin. 2018. Training and Evaluating Improved Dependency-Based Word Embeddings.
In Proceedings of the Thirty-Second AAAI Conference on Arti cial Intelligence, (AAAI-18), the 30th innovative Applications of Arti cial
Intelligence (1AAI-18), and the 8th AAAI Symposium on Educational Advances in Arti cial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 208heila A. Mcllraith and Kilian Q. Weinberger (Eds.). AAAI Press, 5836 5843. https://www.aaai.org/ocs/index.
php/AAAI/AAAIL8/paper/view/16429

[44])]Li2019 Guohao Li, Matthias Muller, Ali K. Thabet, and Bernard Ghanem. [n. d.]. DeepGCNs: Can GCNs Go As Deep As CNNs?. In
2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - NofzthberiZER)19
9266 9275. https://doi.org/10.1109/ICCV.2019.00936

[63])]Li2018a Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Ahmed E. Hassan. [n. d.]. Studying software logging using topic models.
23,5([n.d.]), 2655 2694. https://doi.org/10.1007/s10664-018-9595-8

[64])]Li2018b Qimai Li, Zhichao Han, and Xiao-Ming Wu. [n. d.]. Deeper Insights Into Graph Convolutional Networks for Semi-Supervised
Learning. InProceedings of the Thirty-Second AAAI Conference on Arti cial Intelligence, (AAAI-18), the 30th innovative Applications
of Arti cial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Arti cial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 22088), Sheila A. Mcllraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3538 3545.
https://www.aaai.org/ocs/index.php/AAAI/AAAIL8/paper/view/16098

[47] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Netwtinkisténnational
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference TratbsPrer 8etigigs
and Yann LeCun (Eds.). http://arxiv.org/abs/1511.05493

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 39

[48])]Li2021 Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. [n.d.]. DeepLV: Suggesting Log Levels Using Ordinal Based
Neural Networks. In43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-3202ay. 2021
IEEE, 1461 1472. https://doi.org/10.1109/ICSE43902.2021.00131

[97] 1Lin2004 Chin-Yew Lin. [n.d.]. ROUGE: A Package for Automatic Evaluation of Summari@exirSummarization Branches Out
(Barcelona, Spain, 2004-07). Association for Computational Linguistics, 74 81. https://aclanthology.org/W04-1013

[97] 1Liu2020 Zhiyuan Liu, Yankai Lin, and Maosong Sun. [n. diepresentation Learning for Natural Language ProcesSpringer.
https://doi.org/10.1007/978-981-15-5573-2

[51] Laurens van der Maaten and Geo rey Hinton. 2008. Visualizing data using t-SiErnal of machine learning reseag;tiNov (2008),

2579 2605.

[52] Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 20Martha Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.). Association for Computational Linguistics, 1506 1515.
https://doi.org/10.18653/v1/d17-1159

[53] Dominic Masters and Carlo Luschi. 2018. Revisiting Small Batch Training for Deep Neural Networks. abs/1804.07612 (2018).
arXiv:1804.07612 http://arxiv.org/abs/1804.07612

[54] Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the Automatic Detection of Function Clones in a Software
System Using Metrics. 16996 International Conference on Software Maintenance (ICSM '96), 4-8 November 1996, Monterey, CA, USA,
Proceeding$EEE Computer Society, 244. https://doi.org/10.1109/ICSM.1996.565012

[55] Paul W. McBurney and Collin McMillan. 2014. Automatic documentation generation via source code summarization of method context.
In 22nd International Conference on Program Comprehension, ICPC 2014, Hyderabad, India, JunétaacRalld. Roy, Andrew
Begel, and Leon Moonen (Eds.). ACM, 279 290. https://doi.org/10.1145/2597008.2597149

[56] Tomas Mikolov, Kai Chen, Greg Corrado, and Je rey Dean. 2013. E cient Estimation of Word Representations in Vector Sdate. In
International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings
Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1301.3781

[57] Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, and Je rey Dean. 2013. Distributed Representations of Words and Phrases and
Their Compositionality. InProceedings of the 26th International Conference on Neural Information Processing Systems(L¥k&ime 2
Tahoe, NevadaNIPS'13)Curran Associates Inc., USA, 3111 3119. http://dl.acm.org/citation.cfm?id=2999792.2999959

[97] IMnih2008 Andriy Mnih and Geo rey E. Hinton. [n. d.]. A Scalable Hierarchical Distributed Language Modéidirances in Neural
Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver,
British Columbia, Canada, December 8-11, @uiiB), Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou (Eds.). Curran
Associates, Inc., 1081 1088. https://proceedings.neurips.cc/paper/2008/hash/1e056d2b0ebd5c878c550dabac5d3724-Abstract.html

[59] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori L. Pollock, and K. Vijay-Shanker. 2013. Automatic generation of
natural language summatries for Java classesEBE 21st International Conference on Program Comprehension, ICPC 2013, San Francisco,
CA, USA, 20-21 May, 201BEE Computer Society, 23 32. https://doi.org/10.1109/ICPC.2013.6613830

[97] IMorin2005 Frederic Morin and Yoshua Bengio. [n. d.]. Hierarchical Probabilistic Neural Network Language MoRebckedings of
the Tenth International Workshop on Arti cial Intelligence and Statistics, AISTATS 2005, Bridgetown, Barbados, Janua(2@38),2005
Robert G. Cowell and Zoubin Ghahramani (Eds.). Society for Arti cial Intelligence and Statistics. http://www.gatsby.ucl.ac.uk/aistats/
fullpapers/208.pdf

[61] LiliMou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural Networks over Tree Structures for Programming Language
Processing. IProceedings of the Thirtieth AAAI Conference on Arti cial Intelligence, February 12-17, 2016, Phoenix, ArjZoala, USA
Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 1287 1293. http://www.aaai.org/ocs/index.php/AAAI/AAAIL6/paper/view/
11775

[62] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural Networks over Tree Structures for Programming Language
Processing. IProceedings of the Thirtieth AAAI Conference on Arti cial Intelligence, February 12-17, 2016, Phoenix, ArjZoala, USA
Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 1287 1293. http://www.aaai.org/ocs/index.php/AAAI/AAAIL6/paper/view/
11775

[63])IOliveto2010 Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. [n.d.]. On the Equivalence of Information
Retrieval Methods for Automated Traceability Link RecoveryTine 18th IEEE International Conference on Program Comprehension,
ICPC 2010, Braga, Minho, Portugal, June 30-July 2(Z011). IEEE Computer Society, 68 71. https://doi.org/10.1109/ICPC.2010.20

[64])]Oliveto2020 Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. [n.d.]. On the Equivalence of Information
Retrieval Methods for Automated Traceability Link Recovery: A Ten-Year RetrospectiV€ A€ '20: 28th International Conference on
Program Comprehension, Seoul, Republic of Korea, July 13-1802020ACM, 1. https://doi.org/10.1145/3387904.3394491

[65] John F. Pane, Chotirat (Ann) Ratanamahatana, and Brad A. Myers. 2001. Studying the language and structure in non-programmers'
solutions to programming problemsnt. J. Hum. Comput. Stufi4, 2 (2001), 237 264. https://doi.org/10.1006/ijhc.2000.0410

ACM Trans. Softw. Eng. Methodol.

40 " Ding, Zishuo et al.

[97] JPanichella2015 Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visaggio, Gerardo Canfora, and Harald C.
Gall. [n.d.]. How can i improve my app? Classifying user reviews for software maintenance and evoluti@d1% IEEE International
Conference on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany, September 29 - O@0bgy, Raid&s Koschke,

Jens Krinke, and Martin P. Robillard (Eds.). IEEE Computer Society, 281 290. https://doi.org/10.1109/ICSM.2015.7332474

[67] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method for Automatic Evaluation of Machine Translation.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, PhiladelphCPA, USA
311 318. https://www.aclweb.org/anthology/P02-1040/

[68] F.Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning inJBythahof Machine
Learning Researd2 (2011), 2825 2830.

[69] Je rey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global Vectors for Word Represent&ioneédings
of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting
of SIGDAT, a Special Interest Group of the, ABssandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1532 1543. https:
/Iwww.aclweb.org/anthology/D14-1162/

[70] Michael Pradel and Koushik Sen. 2018. DeepBugs: a learning approach to name-based bug deRaaidir2, OOPSLA (2018),

147:1 147:25. https://doi.org/10.1145/3276517

[71] Likun Qiu, Yue Zhang, and Yanan Lu. 2015. Syntactic dependencies and distributed word representations for analogy detection and
mining. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language P2dddsaitfp).

[72] Veselin Raychev, Martin T. Vechev, and Andreas Krause. 2015. Predicting Program Properties from "Big Gtrdeeédings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015
Sriram K. Rajamani and David Walker (Eds.). ACM, 111 124. https://doi.org/10.1145/2676726.2677009

[73] Radim «eh-°ek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large Corpofrdeeedings of the LREC 2010
Workshop on New Challenges for NLP FramewBtHA, Valletta, Malta, 45 50. http://is.muni.cz/publication/884893/en.

[97] JRong2014 Xin Rong. [n. d.]. word2vec Parameter Learning Explained. ([n.d.]). arXiv:1411.2738 [cs.CL]

[97]]IRong2020 Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. [n.d.]. DropEdge: Towards Deep Graph Convolutional
Networks on Node Classi cation. I8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2022020). OpenReview.net. https://openreview.net/forum?id=Hkx1gkrKPr

[76] Hitesh Sajnani, Vaibhav Saini, Je rey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes. 2016. SourcererCC: scaling code clone detection
to big-code. InProceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016
Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM, 1157 1168. https://doi.org/10.1145/2884781.2884877

[97] 1Schnabel2015 Tobias Schnabel, Igor Labutov, David M. Mimno, and Thorsten Joachims. [n. d.]. Evaluation methods for unsupervised
word embeddings. IfProceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2@045), Lluis Marquez, Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton (Eds.). The
Association for Computational Linguistics, 298 307. https://doi.org/10.18653/v1/d15-1036

[78] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-Shanker. 2010. Towards automatically generating
summary comments for Java methods ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp,
Belgium, September 20-24, 2GH@rles Pecheur, Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 43 52. https://doi.org/10.1145/
1858996.1859006

[97] 1Srivastava2014 Nitish Srivastava, Geo rey E. Hinton, Alex Krizhevsky, llya Sutskever, and Ruslan Salakhutdinov. [n. d.]. Dropout: a
simple way to prevent neural networks from over tting. 15, 1 ([n. d.]), 1929 1958. http://dl.acm.org/citation.cfm?id=2670313

[80] Je rey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal Kumar Roy, and Mohammad Mamun Mia. 2014. Towards a Big Data
Curated Benchmark of Inter-project Code Clones3@th IEEE International Conference on Software Maintenance and Evolution, Victoria,
BC, Canada, September 29 - October 3, [HHHB Computer Society, 476 480. https://doi.org/10.1109/ICSME.2014.77

[81] Bart Theeten, Frederik Vandeputte, and Tom Van Cutsem. 2019. Import2vec learning embeddings for software librRrizseddings
of the 16th International Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Mon}igalgaasiadane D.

Storey, Bram Adams, and Sonia Haiduc (Eds.). IEEE / ACM, 18 28. https://doi.org/10.1109/MSR.2019.00014

[82] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di Penta. 2010. An empirical study on the maintenance of
source code clone€mpirical Software Engineerit§, 1 (2010), 1 34. https://doi.org/10.1007/s10664-009-9108-x

[83] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2018. Deep learning
similarities from di erent representations of source code. Rroceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28;20\®028idman, Yasutaka Kamei, and Emily Hill (Eds.). ACM, 542 553.
https://doi.org/10.1145/3196398.3196431

[84] Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, and Partha P. Talukdar. 2019. Incorporating
Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Network3rdoeedings of the 57th Conference of
the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: LAngaP&pedrsnen,

ACM Trans. Softw. Eng. Methodol.

Towards Learning Generalizable Code Embeddings using Task-agnostic Graph Convolutional Networks =~ 41

David R. Traum, and Lluis Marquez (Eds.). Association for Computational Linguistics, 3308 3318. https://doi.org/10.18653/v1/p19-1320

[85] Mario Linares Vasquez, Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. 2014. On using machine learning to automatically
classify software applications into domain categori&snpirical Software Engineeritg, 3 (2014), 582 618. https://doi.org/10.1007/s10664-
012-9230-z

[86] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Dynamic Neural Program Embeddings for Program Répdinténnational
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings
OpenReview.net. https://openreview.net/forum?id=BJuWrGWO0Z

[87] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for defect predictRmedeedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14822201Billon, Willem Visser, and Laurie
Williams (Eds.). ACM, 297 308. https://doi.org/10.1145/2884781.2884804

[88] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional Clone Detection by Exploiting Lexical and Syntactical
Information in Source Code. IRroceedings of the Twenty-Sixth International Joint Conference on Arti cial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2@atles Sierra (Ed.). ijcai.org, 3034 3040. https://doi.org/10.24963/ijcai.2017/423

[89] Laura Wendlandt, Jonathan K. Kummerfeld, and Rada Mihalcea. 2018. Factors In uencing the Surprising Instability of Word Embeddings.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (L-MeyiBepard)alker, Heng Ji, and
Amanda Stent (Eds.). Association for Computational Linguistics, 2092 2102. https://doi.org/10.18653/v1/n18-1190

[90] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. 2019. Sorting and Transforming Program
Repair Ingredients via Deep Learning Code Similarities26th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, Hangzhou, China, February 24; Xing018ang, David Lo, and Emad Shihab (Eds.). IEEE, 479 490.
https://doi.org/10.1109/SANER.2019.8668043

[91] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments for code clone
detection. InProceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016, Singapore, September
3-7, 201David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 87 98. https://doi.org/10.1145/2970276.2970326

[92] Yichun Yin, Furu Wei, Li Dong, Kaimeng Xu, Ming Zhang, and Ming Zhou. 2016. Unsupervised Word and Dependency Path Embeddings
for Aspect Term Extraction. IfProceedings of the Twenty-Fifth International Joint Conference on Arti cial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 20%6bbarao Kambhampati (Ed.). IJCAI/AAAI Press, 2979 2985. http://www.ijcai.org/Abstract/16/423

[97] TYu2020 Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong Feng, and Dongyan Zhao. [n. d.]. Towards Context-Aware Code Comment
Generation. InFindings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 Nove(@8b202020
(Findings of ACL, Vol. EMNLP 2020¢vor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, 3938 3947.
https://doi.org/10.18653/v1/2020. ndings-emnlp.350

[94] Lei Zeng, Yang Xiao, and Hui Chen. 2015. Linux auditing: Overhead and adaptatia@1BIEEE International Conference on Communi-
cations, ICC 2015, London, United Kingdom, June 8-12EBR57168 7173. https://doi.org/10.1109/ICC.2015.7249470

[95] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source code representation
based on abstract syntax tree. Rroceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 20190anne M. Atlee, Tev k Bultan, and Jon Whittle (Eds.). IEEE / ACM, 783 794. https://doi.org/10.1109/ICSE.2019.00086

[97] 1Zhang2020 Xiaoging Zhang, Yu Zhou, Tingting Han, and Taolue Chen. [n.d.]. Training Deep Code Comment Generation Models
via Data Augmentation. Iinternetware'20: 12th Asia-Paci c Symposium on Internetware, Singapore, November (PEGQEPZALTM,
185 188. https://doi.org/10.1145/3457913.3457937

[97] 1Zhou2021 Kuanggi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng. [n. d.]. Understanding and
Resolving Performance Degradation in Deep Graph Convolutional NetworkBrarteedings of the 30th ACM International Conference
on Information & Knowledge Managemévitrtual Event, Queensland, Australia, 2021-10-&8KM '21) Association for Computing
Machinery, New York, NY, USA, 2728 2737. https://doi.org/10.1145/3459637.3482488

ACM Trans. Softw. Eng. Methodol.

42

Ding, Zishuo et al.

: —— == — — ——

53 —— = . Q . .

I . ©

I -

: .

:

i *UDSK&RGH9HF :RUG YHF *OR9H | *UDSK&RGHI9HF :RUG YHF *OR9H | *UDSK&RGH9HF :RUG YHF *OR9H

h&RGH Fi

*UDSK&RGHO9HF :RUG YHF *OR9H

*UDSK&RGH9HF :RUG YHF *OR9H | *UDSK&RGHO9HF :RUG YHF *OR9H
L %&% LL 2-&0RQH

G_&RGH FORQH GHWHFWLRQ

"eal-ntn].

‘UDSK&RGHQHF RUG YH *OR9H *UDSK&RGHIHF :RUG YHF *OR9H |
LUH WRU\ GHUY} Y +DGRRS
H /RJ VWDWHPHQW SUHGLFWLRQ

R -I-F-I-

*UDSK&RGH9HF :RUG YHF *OR9H | *UDSK&RGHI9HF :RUG YHF *OR9H | *UDSK&RGH9H
L $Qw ! LL $Qw !

"a = - o=

*OR9H | *UDSK&RGH9H
|

*UDSK&RGHI9HF :RUG YHF *OR9H I *UDSK&RGHI9HF :RU
LY &DPHO ! Y M

YHF *OR9H 1 *UDSK&RGHIHF :RUG YHF *OR9H | *UDSK&RGHIHF :RUG YHF *OR9H 1
RJ M ! YLLL /XFHQH ! L[/XFHQH !

n " - * N

== - — e H ow -

.
*UDSK&RGHQHF[:RUG YHF *OR9H | *UDSK&RGHO9HF :RUG YHF *OR9H | *UDSK&RGHQH[F:RUG YHF *OR9H |
! ! LL H D !

<
.
-3

¥%» 6R<ZDU H GHIHFW SUHGLFWLRQ

Fig. 11. The results of di erent embedding techniques on all datasets using 10-fold cross-validation.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related work

	3 Approach
	3.1 Training context preparation
	3.2 Embedding learning

	4 Experimental Setup
	4.1 Dataset preparation
	4.2 Training details
	4.3 Baselines
	4.4 Downstream tasks for evaluation

	5 Experimental Results
	6 Discussion
	7 Threats to Validity
	8 Conclusions

